2022

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

[P.G.]

(M.Sc. Fourth SemesterEnd Examination-2022) PAPER-MTM 404B

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

[Special Paper – OR] [Nonlinear Optimization]

Answer question No 1 and any four

1. Answer any four

4x2 = 8

- a) Define bi-matrix game with an example.
- b) Write the advantage of Geometric programming.
- c) What do you mean by complementary stackness condition concerning a wolfe's method.
- d) State slater's constraint qualification.
- e) What is stochastic programming problem? Who first defined chance constant program technique and in which year.
- f) What do you mean by quadratic programming?

- 2. a) Let X be an open set in R'' and θ and g be differential and convex on X and let \overline{x} solve the minimization problem and let g satisfy the Kuhn-Tucker constant qualification. Show that there exists a $\overline{u} \in R'''$ such that $(\overline{x}, \overline{u})$ solves the dual maximization problem and $\theta(\overline{x}) = \psi(\overline{x}, \overline{y})$
 - b) Prove that all strategically equivalent bimatrix game have the Nash equilibria. 5+3
- 3. When solve the problem minimize $Z_x = 7x_1x_2^{-1} + 3x_2x_3^{-2} + 5x_1^{-3}x_2x_3 + x_1x_2x_3$ and $x_1, x_2, x_3 \ge 0$ by geometric programming problem. 8
- 4. Solve the non-linear programming problem given below:

Optimize $Z = x_1^2 + x_2^2 + x_3^2$

Subject to $x_1 + x_2 + 3x_3 = 2$

$$5x_1 + 2x_2 + x_3 = 5$$

$$x_1, x_2, x_3 \ge 0$$

8

- 5. a) State and prove Fritz-john saddle point sufficient optimality theorem. What are the basic differences between the necessary criteria and sufficient criteria of FJSP.
 - b) Define the Minimization problem 6+2
- 6. a) How do you solve the following geometric programming problem?

Find
$$X = \begin{cases} x_1 \\ x_2 \\ \vdots \\ x_n \end{cases}$$
 that minimizes the objective function

$$f(x) = \sum_{j=1}^{n} U_{j}(x) = \sum_{j=1}^{n} \left(c_{j} \prod_{i=1}^{n} a_{ij} \right)$$

- $c_{j} > 0, x_{i} > 0, a_{ij}$ are real numbers $\forall i, j$
- b) Derive the Khun-Tucker conditions for quadratic programming problem. 5+3
- 7. Solve the following problem by Beale's method

Max
$$Z = 10x_1 + 25x_2 - 10x_1^2 - x_2^2 - 4x_1x_2$$

Subject to $x_1 + 2x_2 + x_3 = 10$
 $x_1 + x_2 + x_4 = 9$
 $x_1, x_2, x_3, x_4 \ge 0$

Internal Assessment -10