2022

COMPUTER SCIENCE

[HONOURS]

(CBCS)

(B.Sc. First Semester End Examination-2022)
PAPER-CC2T

[Computer System Architecture]

Full Marks: 40

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

1. Answer any five questions of the following:

5x2=10

- a) Show the realization of two-input OR gate using NAND gates only.
- b) Consider the statement " $a \oplus b \oplus c = \overline{a \odot b \odot c}$ ". Do yopu think this statement is correct? Justify in brief.
- c) Find the binary equivalent of decimal number -14 in 2's complement representation in 8-bit register.
- d) What is write through cache?
- e) Suppose, a CPU has word size 8-bit and is connected with a memory of size 4 KB. What will be the minimum length of

memory data register and memory address register for this system?

- f) Suppose a program P consists of 150 instructions. The clock cycles consumed by each of these instructions is 5. What will be the total execution time for a 4 MHz CPU to execute this program P
- g) Suppose, a computer architecture has 8-bit opcode format.

 Maximum how many instructions can be encoded in this opcode format?
- h) Performsubtraction by 2's complement method: 100 -110000.

Group-B

Answer any four questions of the following:

4x5 = 20

2. Realize the Boolean function using a 8x1 multiplexer:

$$f(x, y, z) = \sum_{n=0}^{\infty} (m_0, m_2, m_4, m_6, m_7)$$

- 3. Write a short note on microproammed control unit with a suitable diagram. 5
- 4. What is race condition in flipflop? Show how can we obtain a T flip from a J-K flip flop.
- 5. Prove that in ideal case, maximum speedup achievable by a k-stage instruction pipeline processor would be k.
- 6. a) Simplify the following Boolean function using Karnaugh map:

$$f(a,b,c,d) = \sum_{k} (m_1, m_2, m_3, m_7, m_8, m_{12}, m_{14})$$

- b) Perform the subtraction 110-1010 using 2's complement representation.
- 7. a) Design a 3-bit left-shift register using J-K flip-flops.
 - b) Realize EX-OR gate using NAND gates only.

Group -C

Answer any one question:

1x10 = 10

- 8. a) A CPU employs 5-stage instruction pipeline execution. Time taken by opcode fetch, instruction decode, read operand, execute operation and write result stages are 5ms, 2ms, 4ms, 2ms, and 4ms respectively. A program P consists of 250 instructions all of which are non-brunching instructions. Calculate the total execution time of P 4

 b) What do you mean by cycle stealing mode of DMA
 - b) What do you mean by cycle stealing mode of DMA operation? What is polling method of resolving the priority of interrupting devices?

 3+3
- 9. a) Explain Booth's multiplication algorithm.
 - b) Perform -5x4 using this algorithm.

5+5