M.Sc. First Semester End Examination, 2022

Applied Mathematics with Oceanology and Computer Programming

PAPER-MTM-102

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

[COMPLEX ANALYSIS]

Answer question no. 1 and any four from the rest

1. Answer any four questions:

 $2 \times 4 = 8$

- a) Is $f(z) = |z|^2$ analytic?
- b) Determine the region of w-plane when the region bounded by x = 0, y = 0, x = 2, y = 3 in z -plane under the map $w = z\sqrt{2}e^{i\pi/4}$.
- c) If $f(z) = \frac{z^2 + 5z + 6}{z 2}$, does Cauchy's theorem apply when |z| = 3?

- d) Evaluate $\int_0^{2+i} \bar{z}^2 dz$ along real axis from z = 0 to z = 2 and then along a line parallel to y -axis from z = 2 to z = 2 i.
- e) Expand $f(z) = \frac{1}{z}$ as a series about z = 1.
- f) Find the points at which $w = \sin(z)$ is not conformal.
- 2. a) Find the Taylor or Laurent series expansion of the function f(z) = z/((z-1)(z-3)) for the region of convergence: 1 < |z| < 3
 - b) When $\log(z) = In(r) + i\theta$, r = |z| > 0, Show that $\log(i^2) \neq 2\log(i)$ for $\frac{3\pi}{4} < \theta < \frac{11\pi}{4}$, while $\log(i^2) = 2\log(i)$ for $\frac{\pi}{4} < \theta < \frac{9\pi}{4}$.
- 3. a) State and prove Morera's theorem.
 - b) The only singularities of a single valued function f(z) are poles of order 1 and 2 at z=-1 and z=-2, with residues at these poles 1 and 2 respectively. If $f(0)=\frac{7}{4}$, f(1)=5/2, determine f(z).

4. a) Apply the calculus of residues to evaluate the integral

$$\int_{0}^{\infty} \frac{x^{6}}{(x^{4} + a^{4})^{2}} dx, a > 0.$$

- b) Use Rouche's theorem determine the number of zeros of the polynomial $f(z) = z^{10} 6z^7 + 3z^3 + 1$ in |z| < 1. 5+3
- 5. a) Find a conformal map of the unit disk |z| < 1 onto the right half-plane Re (w) > 0.
 - b) Find the Mobious transformation that maps 1, 0, -1 to the respective points i, ∞ , 1. 6+2
- 6. a) If f(z) = u + iv is an analytic function and $u v = \frac{-\cos x + \sin x e^y}{2\cosh y \cos x}$, find f(z) when $f(\pi) = 1/2$.
 - b) Find the value of $\int_0^\infty \frac{\cos x}{\sqrt{x}} dx$, by contour integration. 4 + 4
- 7. a) If a function f(z) is analytic for all finite values of z and as |z| → ∞ |f(z)| = A|z|^k, then prove that f(z) is a polynomial of degree less and equal to k.
 - b) Evaluate $\int_{C} \frac{e^{z}}{z^{z}(z+1)^{3}} dz$ where $C: 9x^{2} + 4y^{2} = 36 4 + 4$

[Internal Assessment – 10]