Total Pages - 4

M.Se. RNLKWC-/CEM-301/22

2022

ADVANCE SPECTROSCOPY-I

M.Sc. Third Semester End Examination - 2022 PAPER - CEM-301

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

Answer any four questions each carrying 5 marks. 4×5=20

- 1. a) Write down rate of primary photophysical process.
 - b) What do you mean by self quencting in fluorescence? 2+3
- 2. a) What is P-type delayed emission? Give one example.
 - b) What are excimer and exciplex emission? 3+2
 (Turn Over)

- 3. a) Why thermal activation to excited singlet state at room temperature is not possible in pyrene?
 - b) What are α -phosphorescence and β -phosphorescence?

2+3=5

(Continued)

- 4. a) What is population inversion?
 - b) Write down the characteristics of LASER light. 2+3=5
- 5. A laser rated at 0.10 J can generate radiation in 3 ns pulss at a pulse repetition rate of 10Hz. Assuming that the pulses are rectangular, Calculate the peak power output and the average power output of this laser. Comment on the result obtained.
- 6. (a) Discrete electrons can't be observed in electron ionisation of an atom. Explain.
 - (b) What is hyperfine splitting. Predict the high resolution spectrum (Showing spin-spin interation) of CH₃CHO in CCl₄ solution. 2+1+2=5
- (a) Calculate the ESR frequency of an unpaired electron in a magnetic field of 0.33T, given that for the free electron, g_e=2 and μ₀=9.273×10⁻²⁴ J.T. ¹.

- (b) Between the two molecules N_2 and O_2 which will show an ESR spectrum and why? 3+2=5
- 8. (a) Enumerate the NQR frequencies for a nucleus with $I=^9/_2$ in an axially symmetric EFG ($\eta=0$). How do they arise?
 - (b) NQR is not observed in gassous and solid state. Explain. 3+2=5

Group - B

Answer any two questions each carrying 10 marks. 2×10=20

- (a) How do you measure quantum fluorescene and phosphorescence in a unimolecular photophysical process.
 - (b) Discuss the effect of temperature on emission processes. 5+5=10
- 10. (a) Deduce the stern-volmer equation.
 - (b) What is the basis difference between prompt fluorescence and delayed fluorescence? What is E-type delayed fluorescence?

 5+1+4=10

- 11. (a) Write a short notes on (any one)
 - (i) Gas lasers (b) Q-switching
 - (b) What is Q-switching in LASER. Discuss one application of lasers in chemistry. 4+3+3=10
- 12. (a) Mention the selection rule for NQR transition.

 In $_{13}^{27}$ Al, I= $_{13}^{5}$ /₂. Whow that the NQR frequency ratio

 Y₁:Y₂=1:2
 - (b) The hyperfine constants in the ESR spectrum of naphtholene at the α and β positions are a=0.49 mT and a=0.183 mT respectively. Map the unpaired electron spin density around the ring. 1+4+5=10