2022

Computer Science

[P.G.]

(CBCS)

(M.Sc. Third Semester End Examination-2022) PAPER-303 Graph Theory

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

1. Answer any FIVE questions of the following:

5x2 = 10

- a) Define path and cycle with proper example.
- b) Define Cut set and Cut vertex with a suitable example.
- c) How many perfect matchings are there in a complete graph of a 6 vertices?
- d) Define clique of a graph with example.
- e) Is K₆ a planner graph? Justify.
- f) Define complete graph with proper example.
- g) Define chromatic number of a graph. Find the chromatic number of a cycle of odd length.
- h) Prove that if in a graph G there is one and only one path between every pair of vertices, G is a tree.

2. Answer any FOUR questions of the following: 5x4 = 20

- a) Show that K_{3,3} is a non planner graph.
- b) Draw atleast 3 non-isomorphic graph of 4 vertices.
- c) What do you mean by complement of a graph? Find the complement of C₅ graph. Define independent set.
- d) Show that any simple connected planner graph satisfy the inequality $e \le 3n-6$ where n and e are the number of vertices and edges of the graph respectively.
- e) Show that a simple graph with n vertices and k components can have at $\frac{(n-k)(n-k+1)}{2}$ edges.
- f) Let G = (V,E) be a simple graph, where $|V| = n \ge 3$. If for every pair of nonadjacent vertices $u, v \in V, \deg(u) + \deg(v) \ge n$ holds, then the graph G is Hamiltonian.

3. Answer any one question of the following: $1 \times 10 = 10$

- a) i) Show that the number of pendent vertices in a binary tree is $\frac{n+1}{2}$ where n is the number of vertices in the tree.
 - ii) Find incidence and adjacency matrix of the following graph:

545

 V_1 e_1 e_3 V_2 e_4 V_3

b) Find the MST for the following graph using Prim's algorithm. Explain it.

How will you find minimal independent set? Explain. 6+4

Internal Assessment: 10
