M.Sc. Third Semester End Examination, 2022

Applied Mathematics with Oceanology and Computer Programming PAPER-MTM-304

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

[Discrete Mathematics]

Answer question no. 1 and any four from the rest

1. Answer any eight questions:

8x2=16

- a) Define centre and diameter of a graph.
- b) Define planar graph. Is K_5 planar? Explain.
- c) Define generating function of a sequence of numbers. Find the generating function of the sequence {1, 1, 1,}
- d) Define degree of a vertex in a graph. If a graph with 10 vertices each of degree six then how many edges are there?
- e) Define Bipartite graph.
- f) What is language on a non-empty set?
- g) What is phrase-structure grammar and give an example.
- h) Determine whether the word coab belongs to the language generated by the grammer G = (V, T, S, P) where, $V = \{a, b, b\}$

c, A, B, C, S}, T = {a, b, c}, S is the starting symbol and $P = \{S \to AB, A \to Ca, B \to Ba, B \to cb, B \to b, C \to cb, C \to b\}$

- i) Define walk, path of a graph.
- j) Write down the principle of induction and principle of inclusion.
- k) What is logic gate and define binary logic?
- 1) Write the duality principle in Boolean algebra. Find the dual of the Boolean expression ab(b+b'c)+a'c

2. Answer any six questions

4x6=24

a) Draw the diagram for finite state-machine

	f	g
State	Input	Input
	0 1	0 1
S_0	S_1 S_0	1 0
S_1	S_3 S_0	1 1
S_2	S_1 S_2	0 1
S ₃	S_2 S_1	0 0

- b) Show that the distributive law x(y+z) = xy + xz is valid
- c) Convert the Boolean expression (a'+b+c')(a'+b+c)(a+b'+a) in disjmative normal form.
- d) Use mathematical induction to prove that $z^n < n! 2^n \le n!$, for every positive integer n with $n \ge 4$

- e) Let G be a grammer with vocabulary = $\{S, 0, 1\}$, set of terminals T= $\{0, 1\}$ starting symbols S, and $P = \{S \rightarrow 11S, S \rightarrow 0\}$ What is L(G) the Language of this grammar?
- f) Define spanning tree of a graph. Find two spanning tree of K_5
- g) Using mathematical induction, prove that $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$

Internal Assessment - 10