2023

B.Sc. (Honours)

B.Sc. Third Semester End Examination - 2023

PHYSICS

PAPER - CC5P

[Practical]

Full Marks: 20

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Distribution of marks:

(Program: 15 + LNB:02 + Viva voce: 03)

Print input and output.

Attempt one set of questions from the following:

1. Solve the following set of equations

$$x_1+2x_2-x_3=1$$

 $2x_1+x_2+4x_3=2$
 $3x_1+3x_2+4x_3=1$

15

2. Solve the differential equation.

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + w_o^2x = 0$$

(Turn Over)

Plot the displacement as a function of time for $w_0=2$, and b=0, 0.25, 2.0 and 2.5.

given
$$x(0)=10$$
 and $x'(0)=0$

- Consider a series LR circuit with a de voltage of 20V. Plot the current as a function of time during growth and decay. given R=4Ω and L=5H.
- 4. Given a numpy array [[1,2,3,4,5], [0,1,2,3,4]], treat the first element as x-data and the second element as y-data, plot y³ vs x using matplotlib. Label the axes as x-data and y-data and set title as 'Experimental Plot' 15
- 5. For an electrical resister network, we have the following set of equations.

$$R_1I_1+R_2(I_1-I_3) + R_3(I_1-I_2)=0$$

 $R_4I_2+R_3(I_2-I_1) + R_5(I_2-I_3)=5$

$$R_6I_3 + R_5(I_3-I_2) + R_2(I_3-I_1) = 5$$

The resistances in the circuit are $R_1 = R_2 = R_3 = 2\Omega$ and $R_4 = R_5 = R_6 = 3\Omega$.

Find the currents
$$I_1$$
, I_2 , I_3 , I_4 , I_5

6. Find the solution.

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{-x}$$
 that satisfies the initial conditions: y(0)=0

and
$$y'(0)=0$$
 15

(Continued)

- 7. The temperature θ of a well stirred liquid by the isothermal heating coil is given by $\frac{d\theta}{dt}$ = k×1000. Where k=2.5, constant of the system. find the value of θ at t=1 second.
- Write a program to solve the differential equation for damped motion

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0 \text{ with initial consitions y(0)=0, y'(0)=10.}$$

9. Solve the differential equation.

$$\frac{d^2x}{dt^2} = -w_0^2x$$

with x(0)=10 and x'(0)=0.

Take wo as input.

Plot both displacement and velocity as functions of time.15

- 10. Generate a numpy array X within [0,5]. Plot the following curves using matplotlib for
 - (i) $y=(3x^3-2x^4)/(1+x^2)$
 - (ii) y=sin²x

(iii)
$$y = a_1 \exp(-\lambda_1 x) + a_2 \exp(-\lambda_2 x)$$

B.Sc. RNLKWC(A)/PHYSICS/CC5P/SEM-III/2023

(Turn Over,

15

for a_1 , a_2 , λ_1 , $\lambda_2 = [1,-1,1,2]$, [1, -1,2,1], [1,10,1,1] and superpose them with putting legands. 5+5+5

11. Consider the set of measured values:

x	1	2	3	4	5
у	0.5	3.8	7.9	16.5	27.3

Fit the data with a user defined function (try quadractic). Plot the scattered data along with the fitted line graph over it.15

- 12. Use malplotlib package to plot the following functions:
 - (i) $f(x) = e^{-x/10} \sin (\pi x)$ and
 - (ii) g(x) = xe^{-x/3} over the interval (0,10)
 include labels for the axes, give legend and a title,
 'plotting Functions'.
- 13. Numerically show the following identify using Scipy

$$(n+1) P_{n+1}(x) = (2n+1)x P_n(x) - \eta P_{n-1}(x)$$

14. The equation for radioactive decay $\frac{dN}{dt} = -2N$. where N(0)=10000 solve the equation and plot upto t=5s. Give title and properly label the axes.

B.Sc. RNLKWC(A)/PHYSICS/CC5P/SEM-III/2023