2023

B.Sc. (Honours)

B.Sc. Third Semester End Examination - 2023

PHYSICS

PAPER - CC5T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1. Answer any five questions

 $5 \times 2 = 10$

(a) What is Dirichlet's condition?

2

- (b) Express, $f(x) = 1+x+x^2+x^3+x^4$ in terms of Legendre polynomial.
- (c) Show that $\beta(m,n) = \frac{n-1}{m+n-1}\beta(m,n-1)$
- (d) Show that $\overline{|(n)|} = \int_0^1 \left[\ln \left(\frac{y}{y} \right) \right]^{n-1} dy$, (n>0)

(Turn Over)

(e) Evaluate
$$\int_{-1}^{+1} [p_3(x)]^2 dx$$

- (f) Express $8x^3+8x^2-6x+2$ in terms of Hermite polynomials.
- (g) Find the value of p_s(x) from Rodrigues formula.
- (h) Can you expand tanx in fourier series? Justify your answer.

Show that,
$$H''_n(x) - 2x H'_n(x) + 2n H_n(x) = 0$$

Group - B

Answer any four of the follwing questions.

4×5=20

- Find the point on the plane ax+by+cz=β at which the function f(x)=x²+y²+z² has a minimum value and find the minimum f.
- 3. Find Founer series for a fuction, f(x)=x(1+x), $\pi < x < \pi$. Hence show that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots \propto$
- 4. Using the expression of Bessel's function,

$$J_{n}(x) = \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r! (m+r+1)} \left(\frac{x}{2}\right)^{n+2r}$$

Show that

(i)
$$J_{m+1}(x) + J_{m-1}(x) = \frac{2m}{x} J_m(x)$$

B.Sc. RNLKWC(A)-/Physics/CC-5T/SEM-III/2023 (Continued)

(ii)
$$J_{m-1}(x) - J_{m+1}(x) = 2J_m^1(x)$$
 3+2

- 5. (i) Derive the complex form of Fourier Series.
 - (ii) Deduction using the following generating function for $P_{-}(x)$:-

(a)
$$P_n(1)=1$$
 (b) $P_n(-1)=(-1)^n$ 2+2+1

6. Prove that

$$\int_{0}^{\infty} x^{2} e^{-x^{4}} dx. \int_{0}^{\infty} e^{-x^{4}} dx = \frac{\pi}{8\sqrt{2}}$$

7. Prove that
$$H_n(-x)=(-1)^n H_n(x)$$
 5

Group - C

Answer any one of the following:

1×10=10

8. (a) Express the function

$$f(x) = \begin{cases} 0 & -1 < x < 0 \\ x & 0 < x < 1 \end{cases}$$

in Fourier-Legandre expansion

(b) Prove that

$$P'_{n+1}(x) + P'_{n-1}(x) = 2x P'_{n}(x) + P_{n}(x)$$
 5+5=10

9. (a) A thin circular plate, with faces impervious to heat flow and the edge kept at Zero degree, has its initial temperature at t=0 as a function of F(r) of the radial

B.Sc. RNLKWC(A)-/Physics/CC-5T/SEM-III/2023

(Turn Over)

distance r. Find the subsequent temperature distribution in the plate.

(b) Show that

$$\beta(m,n) = 2 \int_0^{\pi/2} (\sin \theta)^{2m-1} (\cos \theta)^{2n-1} d\theta$$

(c) Find the relation between Beta and Gamma functions.

5+2+3

B.Sc. RNLKWC(A)-/Physics/CC-5T/SEM-III/2023