Total Pages-4 RNLKWC(A)-/PHYSICS/CC6T/SEM-III/2023

2023

B.Sc. (Honours)

B.Sc. Third Semester End Examination - 2023 PHYSICS PAPER - CC6T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1. Answer any five questions

5×2=10

- (a) For a gas under isothermal conditions, its pressure varies with volume as $p \propto v^{-5/3}$. Calculate the value of bulk modules and degree of freedom.
- (b) Show that Maxwell's law of distribution of molecular speed is independent of temperature if the most probable speed is taken as the unit of measuring.

(Turn Over)

- The mean free path of the particles of gas at temperature T_0 and pressure P_0 has a value λ_0 . If the pressure is increased to 1.5 P₀ and the temperature is reduced to 0.75 T_o. Calculate the value of new mean free path.
- (d) Calculate the Van-der Waals' constants for dry air, given that $T_c=132K$, $P_c=37.2$ atoms, R per mole = $82.07 \frac{\text{cm}^3 - \text{atoms}}{\checkmark}$
- What is Gibb's potential?
 - (b) Show that the Enthalpy

$$H = \left[\frac{\partial (G/T)}{\partial \left(\frac{I}{T}\right)} \right]_{V}$$

Where G is the Gibb's Enerty.

- Show that the number of molecules striking unit area of surface per unit time is $\frac{\eta c}{4}$, where average speed is \bar{c} and η is the number of molecules per unit volume.
 - (b) Define 'Boyle temperature' and 'critical temperature' of a gas. How they are related for a Van-der Waals gas?
 - 2+3

(Continued)

- (a) Show that for ideal gas pressure (p) is perfect differential.
 - (b) Show that for one mole of Vander Waal's gas

$$d\mathbf{Q} = \mathbf{C}\mathbf{V}d\mathbf{T} + \frac{\mathbf{R}\mathbf{T}}{\mathbf{v} - \mathbf{b}}d\mathbf{V}$$
 2+3

- (a) Show that the root mean-square speed C is $\sqrt{\frac{3}{2}}$ times the speed of sound.
 - (b) What is the importants of second viral co-efficient?

3+2

Group - C

Answer any one question:

1×10=10

- Distinguish between cooling produced by J-T expansion and adiabatic expansion.
- (b) Derive an expression for J-T co-efficient μ.
- Show that for a Van-der Waals gas

$$\mu = \frac{b}{C_p} \left(\frac{T_p}{T} - 1 \right)$$

Where T_i is inversion temperature. Hence write down the importance of inversion temperature. 2+3+4+1

B.Sc. RNLKWC(A)-/Physics/CC6T/SEM-III/2023

(Turn over)

- 9. (a) Derive 1st Tds n equation in thermodynamic system.
 - (b) Show that entropy of the 'Universe' increases in an irreversiable process.
 - (c) Prove that $C_p C_v = T \left(\frac{\partial P}{\partial T} \right)_v \left(\frac{\partial V}{\partial T} \right)_p$
 - (d) What is the importance of Clapeyron Equaton in phase transition? 2+3+3+2