Mathematics [HONOURS]

(CBCS)

(B.Sc. ThirdEnd SemesterExaminations-2023) [Regular and Supplementary Paper]

MTMH-C303

Full Marks: 60 Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

[REAL ANALYSIS - II]

1. Answer any TEN questions:

10x2=20

- a) Find the value of $\lim_{x\to 0} |\operatorname{sgn}(x)|$ exists.
- b) Show that $\lim_{x\to 0} f(x)$ does not exists where $f(x) = e^{-\frac{1}{3}}$
- c) Define the limit $\lim_{x\to 0} f(x) = -\alpha$
- d) A function $f: \square \to \square$ satisfies f(x+y) = f(x).f(y) for all $x, y \in \square$ and f is continuous at 0. Prove that f is continuous at every $C \in \square$.

- e) Let $f(x) = \operatorname{sgn}(x) \left| \operatorname{Sin} \frac{1}{x} \right|, x \neq 0 = 0, x = 0$. Find the nature of discontinuity Φ of f(x) at 0.
- f) Let $f:[a,b] \to [a,b]$ be continuous in [a,b] show that for some $\xi \in [a,b]$ st $f(\xi) = \xi$
- g) Show that $3^{Sinx} 4 Sinx$ has a solution in $\left(0, \frac{\pi}{2}\right)$
- h) Prove that $f(x) = x^2, x \in \square$ is not uniformly continuous on
- i) If $f: \Box \to \Box$ is differentials at $C \in \Box$. Show that $f'(c) = \lim_{n \to a} \left\{ \frac{n}{c} \left\{ f \left(1 + \frac{1}{n} \right) \right\} \right\}$

Where f satisfies f(x.y) = f(x) + f(y)

- j) State Rolle's theorem for polynomial
- k) State Taylor's theorem for $f:[a,a+b] \rightarrow \square$ with Langrange form of remainder.
- 1) Verify Language Mean Theorem for the function $f(x) = 2 (4 x)^{2/3}$ on [2,5]
- m) Discuss the continuity of the function

$$f(x,y) = \begin{cases} \frac{|xy|}{\sqrt{x^2 + y^2}} (x,y) \neq 0 \\ = 0 \ (x,y) = (0,0) \end{cases}$$

- n) Let f, g be continuity form \Box to \Box and suppose that f(r) = g(r) for all rational numbers. Is it true that f(x) = g(x) for all $x \in \Box$.
- o) Find $f_x(0,0), f_y(0,0)$ of the function $f(x,y) = \log \log(1+xy)$

2. Answer any FOURquestions

5x4=20

- a) Let I = (a,b) be a bounded open internal and $f: I \to \sqcup$ be a monotone increasing on I proof that if f is bounded above on I then $\lim_{x \to b} f(x) = \frac{Sup}{x \in (a,b)} f(x)$
- b) Let $f:(a,b) \to \sqcup$ and f is continuous at x=c. If f is monotonic increasing in (a,c) and monotonic decreasing in (c,d) then proof that f(x)=0 has a unique solution at x=c
- c) The functions u and v are continuous and devisable on \square . If $uv' + vu' \neq 0 \forall (\alpha, \beta)$ then v is stanchly monotonic on (α, β) where α and β are two consecutive root of u.
- d) Let I = [a,b] and a function $f: I \to \Box$ be differentiable on I. Let $f'(a) \neq f'(b)$. If K be a real number lying between f'(a) and f'(b) then there exists a point C in (a,b) such that f'(c) = k
- e) A function f is defined on (-1, 1) by

$$f(x) = x^{\alpha} Sin \frac{1}{x^{\beta}} x \neq 0$$
$$= 0 x = 0$$

- i) State condition on such that f(x) is continuous at x = 0
- ii) For what value of β , f(x) is continuous at x = 0 when $\alpha = 0$
- iii) Show that if $\alpha = 1$, $\beta > 0$ f'(0) does not exists but $\alpha > 1$, $\beta > 1$ f'(0) exists

f) Let
$$f(x, y) =\begin{cases} \frac{x^2 y(x-y)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Find $f_{xy}(0,0)$ and $f_{yx}(0,0)$ verify they are equal or not. If not, then specify the reason

3. Answer any TWO question

10x2=20

- a) i) Let. $f:[a,b] \to \Box$ State and prove Lagrange. Mean value theorem. Hence prove that if f has continuous derivative on [a,b] then f is a Lipsachity function on [a,b].
 - ii) Find local ϕ extrema, local extrema values, Saddle point if exists of the function

$$f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4$$