Zoology (P.G.) [CBCS]

M.Sc. First Semester End Examination-2023 (Regular & Supplementary Paper) PAPER-104

Full Marks: 40

Time: 02 Hrs

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group 104.1

Full Marks 20

[Cell Biology]

1. Answer any two questions of the following:

2x2 = 4

- a. What do you mean by GPI anchored protein?
- b. What are the structural differences between three types of lipid molecules found in biomembrane?
- c. Microtubule has polarity. What is the basis for this polarity?
- d. Draw a schematic diagram induced cell cycle arrest at different phases of cell cycle.
- 2. Answer any two questions of the following:

2x4 = 8

- a. Explain how CDK activity is controlled or modulated by the following proteins:
 - i) Cyclin
- ii) CAK
- iii) Weel
- iv) APC
- 4

- b. Briefly discuss how GTP hydrolysis by Ran in the cytosol provides directionality to nuclear transport?
- c. What is lipid rafts? State the difference between voltage-gated ion channels and ligand-gated ion channels.
- d. Mention any two name of chemical inhibitors of action filament? What is filament nucleation?

3. Answer any one question of the following:

1x8 = 8

- a. i) The Rb protein has been called the master brake of the cell cycle. Describe how, the Rb protein acts as a cell cycle brake released in mid to late G1 to allow the cell to S-phase?
 - ii) What is securin? Write its function.

(3+3)+2

- b. i) Explain how GPCR increases cytosolic Ca²⁺ and activate protein Kinase C?
 - ii) What is GPCR desensitization?

6+2

Group 104.2

Full Marks 20

[Cytogenetics]

4. Answer any two questions of the following:

2x2 = 4

a. Calculate the allele frequency from the following population:

Phenotype	Genotype	Number	
MM	Γ _W Γ _W	182	-
MN	LMLN	172	
NN	L _N L _N	44	

- b. Differentiate cin heterozygote and trans heterozygote.
- c. The frequency of the allele for red-green colour blindness is 0.08; find out the ratio between men and women.
- d. Which protein is the major player in activating a DNA damage cheekpoint?

5. Answer any two questions of the following:

2x4 = 8

a. In a transduction experiment, the donor is $a^{\dagger}b^{\dagger}c^{\dagger}$ and the recipient is abc. Selection is a⁺. Four classes of transductants from this experiment are shown in the following table:-

BO10			
No of individuals			
55			
72			
300			
3			

- i) Determine the contransduction frequency for a and b
- ii) Determine the cotransduction frequency for a and c
- Which co-trunsduction frequency shows the smaller iii) actual distance between genes?
- b. The ability to taste PTC is due to a single dominant allele "T". You sampled 215 individuals in biology and determined that 150 could defect bitter taste of PTC and 65 could not. Calculate all of the potential frequencies.
- Mention the role of Ras protein in a signaling cascade with proper diagram.

d. A DNA fragment obtained from a bacteria whose genotype is pur⁺ pro⁻ his .Cuts are made at random. A mixture of these fragment are added to a culture of recipient bacterium having genotype pur pro⁺ his ⁺ and pur ⁺ is selected. From the data given below predict the gene order.

Genotype	Number of Colonies			
pro ⁺ his ⁺	103			
Pro his +	24			
pro ⁺ his ⁻	158			
Pro his	i			

6. Answer any one question of the following:

1x8=8

a. Six different rII deletion strain of phage T4 listed for recombination by pair wise crossing in E.Coli. Following table is the result. Form the deletion map.

Deletion mutation	M_1	M ₂	M ₃	M ₄	M ₅	M ₆
Dfp	0	0	+	0	0	0
Dfq	0	+	0	+	0	0
Dfr	0	+	+	0	0	+
Dfs	0	0	0	0	0	0
Dft	0	+	0	+	+	0

b. The gene for coat color in rabbit can exist in four alleles formed C (full coat color), C^{ch} (chinchilla), C^{h} (Himalayan) and C (albino). ($C > C^{ch} > C^{h} > C$). In a population of rabbit in Hardyweinberg equilibrium the allele frequencies are –

 $C=0.05, C=0.34, C^{ch}=0.17, C^{h}=0.44$

- i) What is the frequency of albino rabbit?
- ii) Among 1000 rabbit, how many would you expect to have a Himalayan coat color
- iii) Among 1000 rabbit, how many would be hetero-zygous with a chinchilla coat color.