Chemistry (P.G.) [CBCS]

M.Sc. First Semester End Examination-2023 (Regular & Supplementary Paper) PAPER- CEM-101

Full Marks: 40

Time: 02 Hrs

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any four questions.

4×2=8

- a. From the molecules listed below, find out which one will give rotational spectrum. Mention the reason. (i)
 N₂ (ii) CCl₄ (iii) CH₃Cl and (iv) SF₆.
- b. Existence of zero point energy is a consequence of Heisenberg Uncertainty Principle.
- c. The most intense line in the rotational spectrum of ⁷⁹Br¹9F at 300K is from J=17→18 transition. Calculate the rotational constant.
- d. How does fugacity relate to the chemical potential of a real gas? How can fugacity be estimated graphically?
- e. Write the partition function for a two level system where the lower state ($\varepsilon = 0$) is non-degenerate and the upper state (ε) is doubly degenerate.

- f. Write down time independent Schrödinger equation for He atom.
- g. Find the commutators[x, p_x] and [x, p_y] where p_x and p_y are the linear momentum operators along x and y directions respectively.

Group-B

Answer any four questions.

4×8=32

- 2. a) Prove that $(f_2/p_2) = \int_0^{p_2} (\frac{z-1}{p}) dp$, Where the terms have their usual meaning. Give the interpretation of the value of fugacity for a vander Waals gas using the above equation.
 - b) What are the different scales with respect to which the activities of electrolytes are defined for non-ideal solutions?

 6+2=8
- 3. A solution of a free particle Schrodinger equation $(-h^2/8\pi^2m) \ d^2\Psi(x)/dx^2 = E \ \Psi(x)$ is $\Psi(x) = e^{ikx} = Cos(kx) + iSin(kx)$
 - a) Derive the expression for energy 'E' and momentum 'p' of the particle.
 - b) Using the above relations, show that the wave length (λ) is h/p. 4+4=8

- 4. a) Number of spectral lines are observed in the rotational spectrum of ¹H¹²7I and the gap between the successive lines is 13.10 cm⁻¹. Calculate its (i) the rotational constant, B (ii) moment of inertia (iii) bond length (iv) wavelength of J=9 →10 transition.
 - b) (i) What is Born-Oppenheimer approximation? (ii) Using this, write down the energy expression for combined rotational-vibrational spectroscopy and mention the relevant terms. (iii) What are P, Q and R branches in combined rotational-vibrational spectra?

 4+4=8
- 5. a) Write the ISO definition of nanomaterials. Give classification of nanomaterials on the basis of dimensions. Why do nanomaterials show properties in between that of molecules and bulk materials?
 - b) Give example of one top down and one bottom up approach for the synthesis of nanomaterials.
 - c) Write two biomedical applications of electro-spun nanofiber. 4+2+2=8
- 6. a) Derive the Gibbs-Duhem equation.
 - b) Show mathematically and graphically that $\Delta_{mix}G$ will have a minimum value and $\Delta_{mix}S$ will have a maximum value at $x = \frac{1}{2}$ when two gases are mixed together. 3+5=8

- 7. a) What is phase space? Show that number of energy levels in range E to E + dE is given by $g(E)dE = \frac{2\pi V}{h^3}(2m)^{\frac{3}{2}}.E^{\frac{1}{2}}.dE$
 - b) Four distinguishable molecules are distributed in the energy levels E_1 and E_2 with degeneracy 2 and 3 respectively. Find the number of microstates with 3 molecules in energy level E_1 and one in energy level E_2 .
 - c) The population of proton spin in the highest energy level of a sample at 273k in magnetic field of 1.5 Tesla and 7.0 Tesla are N' and N respectively. Find out the value of $\frac{N'}{N}$.
- 8. a) For any arbitrary Hermitian operator A, write Heisenberg's equation of motion and hence, find an expression for the force acting on a particle (also known as Ehrenfest's relation).
 - b) Check whether $\psi(x,y) = \sin(n_x \pi x/L) \cos(n_y \pi x/L)$ is an eigen function of the 2-dimensional operator $H = -(\hbar^2/2m)(\partial^2/\partial x^2 + \partial^2/\partial y^2)$