Mathematics

[MAJOR]

(NEP-CBCS)

(B.Sc. First Semester End Examinations-2023)

PAPER: MTMH-MJ-101

(Calculus, Geometry and Linear Algebra-I)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far

as practicable

Illustrate the answers wherever necessary

Group – A [Calculus: Marks-23]

1. Answer any FOUR questions:

4x2 = 8

- a) If = sinkx + coskx, prove that $y_n = k^n [1 + (-1)^n sin2kx]^{\frac{1}{2}}$
- b) Evaluate $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x}}$
- c) Find the radius of curvature of $y = xe^{-x}$ at the point where y is maximum.
- d) Find the point of inflexion on the curve $r = \frac{a\theta^2}{\theta^2 1}$
- e) Find the asymptote (if any) of the curve $y = a \log(\sec \frac{x}{a})$.

f) Determine the length of one arch of the cycloid $x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$

2) Answer any ONE question

1x5=5

- a) Prove that the envelope of circles whose centres lie on the rectangular hyperbola $xy = c^2$ and which passes through its centre is $(x^2 + y^2)^2 = 16c^2xy$
- b) Let $P_n = D^n(x^n \log x)$ Prove that the recurrence relation $P_n = nP_{n-1} + (n-1)!$

Hence show that $P_n = n! \left(\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$

3) Answer any ONE question

1x10=10

- (a)(i) Find the equation of the cubic which has the same asymptotes as the curve $x^3 6x^2y + 11xy^2 6y^3 + x + y 1 = 0$ and which passes through the points (0,0),(1,0) and (0,1).
- (ii) Find the value of a, b, c so that $\lim_{x \to 0} \frac{ae^x bcosx + ce^{-x}}{xsinx} = 2$
- (b)(i) If $y = e^{m \sin^{-1} x}$ show that $(1-x^2)$ $y_{n+2}-(2n+1)$ $xy_{n+1}-(n^2+m^2)y_n=0$. Also find y_n at x=0.

(ii) Find the perimeter of the Cardioide $r = a(1 - \cos\theta)$ and show that the arc of the upper half of the curve is bisected at $\theta = \frac{2\pi}{3}$. (3+2)+5

Group - B

[Geometry: Marks-23]

4. Answer any FOUR questions:

4x2 = 8

- a) On the ellipse $r(5-2\cos\theta) = 21$, find the point with the greatest radius vector.
- b) Find the angle of rotation about the origin which will transform the equation $x^2-y^2=4$ into XY+2=0
- c) Determine the value of a so that the equation $ax^2+6xy+9y^2+3x+6y-4=0$ may represent a conic having no centre.
- d) Find the value of c for which the plane x+y+z=c touches the sphere $x^2+y^2+z^2-2x-2y-2z-6=0$
- e) Find the equation of the cone whose vertex is the origin and base is the curve $2x^2+3y^2=1$, z=0
- f) Show that the equations $x=1+\lambda y=-1+2z/\lambda$ represents a generator of the hyperboloid $x^2-2yz=1$

5) Answer any ONE question

1x5=5

a) Reduce the equation $4x^2 - 4xy + y^2 + 2x - 26y + 9 = 0$ to its conical form and determine the type of the conic represented by it.

(4

b) Find the locus of a luminous point if the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ casts a circular—shadow on the plane z = 0

6) Answer any ONE questions

1x10=10

- a) (i) Find the director circle of the conic $\frac{1}{r} = 1 + e \cos \theta$
 - (ii) If the normal at P of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ meets the principal planes in G₁, G₂, G₃ and if PG₁²+ PG₂²+ PG₃²=k² then show that the locus of P is the curve of intersection of given ellipsoid and the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = \frac{k^2}{a^4 + b^4 + c^4}$ 5+5
- b) (i) Find the equation of the right circular cylinder whose axis is $\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$ and radius is 2.
- (ii) Find the equation of the lines of intersection of the plane x-5y+3z=0 with the cone $7x^2+5y^2-3z^2=0$.

Group - C

[Linear Algebra -I: Marks-14]

7. Answer any TWO questions:

2x2=4

a) Let A be a matrix such that (I + A) is non-singular. Show that A is skew symmetric if $(I - A)(I + A)^{-1}$ is an orthogonal matrix.

- b) Find the condition on $a,b \in R$ so that the set $\{(a,b,1),(b,1,a),(1,a,b)\}$ is linearly dependent in R^3
- e) Show that the eigen value of the idompotent matrix is either 1 or0.

8. Answer any TWO questions:

find A^{-1}

5x2=10

- a) Define rank of the matrix. Determine the conditions for the system of equations has only one solution, many solutions, no solution: ax + y + z = 6, x + ay + 2z = 1, x + y + az = 1.
- b) State cayley-Hamilton theorem and apply this to show that for the matrix $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$, A^{-1} is a polyunomial in A and also

c) Prove that eigen values of orthogonal matrix is unit modulus.