Mathematics [Minor]

(NEP-CBCS)

(B.Sc. First Semester End Examinations-2023)

PAPER: MTM-MI-01

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far

as practicable

Illustrate the answers wherever necessary

Group – A

[Calculus: Marks-23]

1) Answer any FOUR questions:

4x2 = 8

- a) Evaluate $\lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x}$
- b) Evaluate $\int_0^{\pi/2} \sin^{3/2} x \cos^3 x \, dx$
- c) If $I_n = \int e^{-x} x^n dx$, prove that $I_n = -e^{-x} x^n + nI_{n-1}$
- d) Find all the asymptotes of $x^3 2x^2y + xy^2 + x^2 xy + 2 = 0$.
- e) Use Leibnitz's rule to find the nth derivative of $x^2e^x \cos x$
- f) Find the point of inflexion for the curve $y = x^3$ at x = 0.

2) Answer any ONE question:

1x5=5

- a) Find the reduction formula for $I_{m,n} = \int_0^{\pi/2} \cos^m x \sin nx dx$, m,n being positive integers. And hence deduce that $I_{m,n} = \frac{1}{2^{m+1}} \left[2 + \frac{2^2}{2} + \frac{2^3}{3} + \dots + \frac{2^m}{m} \right].$
- b) (i) Find the total length of the astroid $x = a\cos^3\theta$, $y = a\sin^3\theta$
 - (ii) Evaluate $\lim_{x \to 2} \frac{x^3 2x^2 + 2x 4}{x^2 5x + 6}$

3) Answer any ONE question:

1x10=10

(a) (i) If $y = a\cos(\log x) + b\sin(\log x)$

Prove that ...

$$x^2y_2 + xy_1 + y = 0$$

&
$$x^2 y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$$

- (ii) Find the radius of curvature of $9x^2 + 4y^2 = 36x$ at the point (2,3).
- (b)(i) Show that the arc of the upper half of the Cardioide $r = a(1-\cos\theta)$ is bisect at $\theta = \frac{2\pi}{3}$. Show that the perimeter of the curve is 8a.
 - (ii) Show that $y = x^4$ is concave upward at the origin and $y = e^x$ everywhere concave upward. (3+3)+4

Group - B

[Geometry: Marks-23]

4) Answer any FOUR questions:

4x2=8

- a) Determine the nature of the conic $x^{2} + 6xy + 9y^{2} + 4x + 12y - 5 = 0.$
- b) Find the centre and the radius of the sphere $3x^2 + 3y^2 + 3z^2 + 2x 4y 2z 1 = 0$
- c) Find the equation of the cone whose vertex is origin and the base is $y^2 + z^2 = b^2$, x = a
- d) Find the translation which transforms the equation $x^2 + y^2 2x + 14y + 20 = 0$ into $x^{12} + y^{12} = 30$.
- e) Find the equation of the quadratic cylinder with generators parallel to z axis and passing through the curve $ax^2 + by^2 + cz^2 = 1, lx + my + nz = p$
- f) Find the point on the conic $\frac{15}{r} = 1 4\cos\theta$ whose radius vector is 5.
- 5) Answer any ONE question

1x5=5

a) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$ and 2x + 3y + 4z = 8 is a great circle.

b) If g is a variable tangent of the conic $\frac{1}{r} = 1 - e \cos \theta$, show that the locus of the perpendicular from the pole on g is the circle $r^2(e^2-1) + 2elr\cos\theta + l^2 = 0$

6) Answer any ONE question

 $1 \times 10 = 10$

a) (i) Reduce the equation $x^2 - 5xy + y^2 + 8x - 20y + 15 = 0$ to its standard canonical form and show that it represents a hyperbola.

(ii) Find the nature of the conic $\frac{8}{r} = 4 - 5\cos\theta$ 7+3

b) (i) Find the equation of the cone whose vertex is the point (1,2,3) and guiding curve is the circle $x^2 + y^2 + z^2 = 9$, x + y + z = 1

(ii) Find the vaues of c for which the plane x+y+z=c touches the sphere $x^2+y^2+z^2-2x-2y-2z-6=0$.

Group - C

[Linear Algebra - I: Marks 14]

7) Answer any TWO questions:

2x2 = 4

a) Prove that the set of vectors $\{(1,2,2), (2,1,2), (2,2,1)\}$ is linearly independent in \mathbb{R}^3

b) Find the rank of the matrix $\begin{pmatrix} 1 & 0 & 3 \\ 4 & -1 & 5 \\ 2 & 0 & 6 \end{pmatrix}.$

- c) Find the eigen value and eigen vector for the matrix $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$
- 8) Answer any TWO questions:

2x5=10

- a) State and prove caley Hamilton theorem.
- b) Solve the system of equation

$$x_1 + 3x_2 + x_3 = 0$$

$$2x_1 - x_2 + x_3 = 0$$

c) Find the geometric and algebraic multiplicities of each eigen

value of the matrix
$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$