BCA [SEC] [NEP-CBCS]

B.Sc. First Semester End Examination-2023 PAPER: BCA-SEC1T [Digital Electronics]

Full Marks: 40

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group A

- 1. Answer any FIVE questions of the following: 5x2=10
- i) For an *n*-inputs X-NOR gate, $N \ge 2$, when will the out put be high?
- ii) A = 01100010, B = 01011110. Find $\overline{A-B}$.
- iii) Consider an 8 bit register R, that contains Excess 128 code of
 12 . Show the content of R register.
- iv) How does a sequential circuit differ from combinational circuit?
- v) Find binary equivalent of (206.25)₁₀. Find decimal equivalent of (101001.101)₂.
- vi) what is the need of clock signal in a sequential circuit?

- vii)Define: (r-1's complement of a number, Where r is the base of the number system
- viii) What is meant by overflow? Give an example to illustrate it.

Group B

Answer any FOUR questions of the following: 4x5 = 20

- 2) Show the truth table of a full subtractor. Design a full subtractor using two half subtractors.
- 3) Is the expression $F_1 = w \cdot x + x \cdot \overline{y} \cdot \overline{z}$ is in sum of product (SOP) from? Justify your answer. Simplify the Boolean function $F(a,b,c,d) = \sum_{1}^{\infty} (m_1, m_2, m_3, m_7, m_{10}, m_{11}, m_{12}) \text{ using Karnaugh map.}$
- 4) What is the role of an $n \times 1$ multiplexor circuit? It is required to implement $F(x, y, z) = \begin{cases} x, & \text{if } z = 0 \\ y, & \text{if } z = 1 \end{cases}$
 - Can multiplexor be used for this task? If yes, then show your circuit.
- 5) In IEEE-754 single precison representation, total 32 bits are used, out of which 23 bits are used for mantissa and 8 bits are used for Exponent. Show the representation of decimal floating point number 36.25 using IEEE-754 32 bit representation.
- 6) Design a circuit that converts 3-bit binary code into equivalent gray code.

7) Sketch the logic system of a clocked SR flip-flop. Also write down the characteristics equation of SR flip-flop. What advantage does a JK flip-flop have over an SR flip-flop? How do SR, JK and D flip-flops differ?

2+1+1+1

Group C

Answer any ONE question of the following:	$1 \times 10 = 10$
---	--------------------

- 8) a) Design a 4-bit CLA. Compare and contrast between serial and parallel adder.
 - b) Design a 4-bit left shift register. Show timing diagram. 3+2
- 9) a) Design a modulo 10 counter.
 - b) Write a short note on IC design and fabrication process. 5+5

......