2023 ### Chemistry # B.Sc. Fifth Semester End Examination - 2023 PAPER - CC12T Full Marks: 40 Time: 2 hours The figures in the right-hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary. ### Group - A A. Answer any five questions: $5\times2=10$ - 1. How will you distinguish between inter and intra-molecular hydrogen bonding on the basis of NMR spectroscopy? - 2. Arrange the following carbonyl compound in order of increasing carbonyl stretching frequency. (Turn Over) 3. Predict the product & give mechanism. - 4. Explain the application of high dilution principle for the synthesis of medium sized rings. - 5. Give the structure of main product of the following reaction and propose a mechanism. 6. Suggest a mechanism of the following reaction. - 7. Why two equivalents of dizomethane is required in Arndt-Eistert synthesis. Explain with mechanism. - 8. Tertiaty anime of the type R¹R²NCH₃ can be prepared using formaldehyde and formic acid as the reagent. Explain. (Continuted) B. Answer any four from the following: 4×5=20 Group - B 9. What is auxochrome? Give some significant examples of it. Explain red shift and hypchromic shift graphically. $1+1+1+2\times 2=5$ 10. Write short notes on the following (any two) $2\frac{1}{2} \times 2=5$ - (a) Fischer Hepp rearrangement. - (b) Japp-Klingermann reaction. - 11. (a) What do you mean by FGI, Synthone (SN) and Syntheticequivalent (SE). Give examples. - (b) Using retro-synthetic analysis, synthesize the following molecule. 12. Give the product(s) with mechanism. $2\frac{1}{2} \times 5 = 5$ B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023 (Turn over) (b) $$H,C$$ $$C_{i}H = \frac{\partial_{i}PCI_{i}}{\partial_{i}H_{i}O^{i}}$$ OH 13. (a) Give the retrosynthetic approach and foward synthesis for the following compound. - (b) How will you distinguish cis and trans-stilbene by means of 'H-NMR spectroscopy? 3+2=5 - 14. (a) A compoud C₉H₁₀O₂ has strong infrared absorption at 1695 cm⁻¹. The ¹H-NMR spectrum has five sets lives: a singlet at δ9.8 (1H) ppm, a coublet at δ7.8 (2H), a doublet at δ7.0(2H), a quartet at δ4.1 (2H), triplet at δ1.3 (3H). Suggest a structure for this compound. - (b) Why IR is called rotational-vibrational spectroscopy? 3+2=5 ## Group - C C. Answer any one from the following: 1×10=10 15. (a) An organic compound A, C₆H₁₂O₂ on heating with Na/ Xylene produces another compound B, C₆H₁₂O₂ along B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023 (Continuted) with an alcohol C_3H_8O which does not give iodoform test. Oxidation of compound B with HNO₃/ CH₃COOH generates a compound C, $C_6H_{10}O_2$ which shows one quatret and one triplet signal in ¹H-NMR spectrum and characteristic IR band at 1730 cm ¹. Treatment of compound C with exces $C_3H_3MgBr/H_2O/H^4$ give a compound D, $C_{10}H_{22}O_2$ which shows one quatret (8H), one triplet (12H) and a broad peak (2H) in ¹H-NMR spectrum and a broad IR band at 3350 cm ⁻¹. Heating compound D, with dil H_2SO_4 affords E, $C_{10}H_{20}O$ showing IR band at 1710 cm ¹. Identify the compound A to E and explain the reactions. (b) Distinguish between the following pair of organic compounds as indicated (any three) B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023 (Turn over) $5+\frac{1}{2}+\frac{1}{2}+2=10$ 16. (a) give the retrosynthetic pathway and its forward path for synthesis of the following. (b) Fill in the blanks (c) What is functional and fingerprint region in IR spectra?) (d) Write down the product with mechanism. B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023