2023

Chemistry

B.Sc. Fifth Semester End Examination - 2023 PAPER - CC12T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

A. Answer any five questions:

 $5\times2=10$

- 1. How will you distinguish between inter and intra-molecular hydrogen bonding on the basis of NMR spectroscopy?
- 2. Arrange the following carbonyl compound in order of increasing carbonyl stretching frequency.

(Turn Over)

3. Predict the product & give mechanism.

- 4. Explain the application of high dilution principle for the synthesis of medium sized rings.
- 5. Give the structure of main product of the following reaction and propose a mechanism.

6. Suggest a mechanism of the following reaction.

- 7. Why two equivalents of dizomethane is required in Arndt-Eistert synthesis. Explain with mechanism.
- 8. Tertiaty anime of the type R¹R²NCH₃ can be prepared using formaldehyde and formic acid as the reagent. Explain.

(Continuted)

B. Answer any four from the following: 4×5=20

Group - B

9. What is auxochrome? Give some significant examples of it. Explain red shift and hypchromic shift graphically.

 $1+1+1+2\times 2=5$

10. Write short notes on the following (any two) $2\frac{1}{2} \times 2=5$

- (a) Fischer Hepp rearrangement.
- (b) Japp-Klingermann reaction.
- 11. (a) What do you mean by FGI, Synthone (SN) and Syntheticequivalent (SE). Give examples.
 - (b) Using retro-synthetic analysis, synthesize the following molecule.

12. Give the product(s) with mechanism.

 $2\frac{1}{2} \times 5 = 5$

B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023

(Turn over)

(b)
$$H,C$$

$$C_{i}H = \frac{\partial_{i}PCI_{i}}{\partial_{i}H_{i}O^{i}}$$
OH

13. (a) Give the retrosynthetic approach and foward synthesis for the following compound.

- (b) How will you distinguish cis and trans-stilbene by means of 'H-NMR spectroscopy?

 3+2=5
- 14. (a) A compoud C₉H₁₀O₂ has strong infrared absorption at 1695 cm⁻¹. The ¹H-NMR spectrum has five sets lives: a singlet at δ9.8 (1H) ppm, a coublet at δ7.8 (2H), a doublet at δ7.0(2H), a quartet at δ4.1 (2H), triplet at δ1.3 (3H). Suggest a structure for this compound.
 - (b) Why IR is called rotational-vibrational spectroscopy? 3+2=5

Group - C

C. Answer any one from the following: 1×10=10

15. (a) An organic compound A, C₆H₁₂O₂ on heating with Na/
Xylene produces another compound B, C₆H₁₂O₂ along
B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023 (Continuted)

with an alcohol C_3H_8O which does not give iodoform test. Oxidation of compound B with HNO₃/ CH₃COOH generates a compound C, $C_6H_{10}O_2$ which shows one quatret and one triplet signal in ¹H-NMR spectrum and characteristic IR band at 1730 cm ¹. Treatment of compound C with exces $C_3H_3MgBr/H_2O/H^4$ give a compound D, $C_{10}H_{22}O_2$ which shows one quatret (8H), one triplet (12H) and a broad peak (2H) in ¹H-NMR spectrum and a broad IR band at 3350 cm ⁻¹. Heating compound D, with dil H_2SO_4 affords E, $C_{10}H_{20}O$ showing IR band at 1710 cm ¹. Identify the compound A to E and explain the reactions.

(b) Distinguish between the following pair of organic compounds as indicated (any three)

B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023

(Turn over)

 $5+\frac{1}{2}+\frac{1}{2}+2=10$

16. (a) give the retrosynthetic pathway and its forward path for synthesis of the following.

(b) Fill in the blanks

(c) What is functional and fingerprint region in IR spectra?

)

(d) Write down the product with mechanism.

B.Sc. RNLKWC(A)-/CHEM/CC-12T/SEM-V/2023