2023

B.Sc. (Honours)

B.Sc. Sixth Semester End Examination - 2023 PHYSICS

PAPER - CC12T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1. Answer any five questions:

 $5 \times 2 = 10$

- (a) How a Wigner Sietz unit cell is constructed?
- (b) A substance has fcc lattice, its molecular weight 60.2 and density 6250 kg/m³. Now calculate its lattice constant.
- (c) Why X-rays are used for crystal structure analysis?
- (d) Explain the concept of phonon, which statistics does it obey?

(Turn Over)

- (e) How does the paramagnetic susceptibility of a material vary with temperature?
- (f) What are ferrites? Write its applications.
- (g) What is 'plasmons'?
- (h) Estimate the Debye temperature of gold if its atomic weight is 197, the density is 1.9×10⁴ kg/m³ and the velocity of sound in it is 2100 m/s.

Group - B

Answer any four questions:

 $4 \times 5 = 20$

- 2. (a) What are the significances of Miller indeces of a crystal plane?
 - (b) Derive an expression for the inter planar spacing for planes of the (hk λ) type for a cubic structure. 2+3
- (a) Define geometrical structure factor. Derive an expression for the seattering amplitude in terms of geometrical structure factor.
 - (b) Explain the fact that (100), (300) reflection lines vanishes for metallic sodium but (200), (110) lines are present. (1+3)+1

- 4. (a) What are Brillouin zones?
 - (b) A three dimensional lattice has basis vectors

$$\vec{a} = \hat{i} - \hat{j}$$
, $\vec{b} = 2\hat{i} - \hat{j}$ and $\vec{c} = \hat{k}$

Find the basis vectors of reciprocal lattice.

2 + 3

- 5. (a) Write down the dispersion relation for the lattice wave in a monatomic linear lattice in terms of the wave velocity. Then discuss the dispersion behaviours
 - (i) at low frequencies (ii) at high frequencies of vibration.
 - (b) Compute the cut off frequency for a linear monatomic lattice if the velocity of sound and interatomic spacing in the lattice are 3×10³ m/s and 3×10⁻¹⁰ m respectively.

3+2

6. (a) What is piezoelectric effect?

B.Sc. RNLKWC(A)-/Physics/CC12T/SEM-VI/2023

- (b) Explain the origion of piezoelectric effect and discuss about the application of piezoelectric crystals. 2+(2+1)
- 7. (a) Why is ionic polarizability found to be rather insensative to temperature?
 - (b) Dy³⁺ has outer electric configaration of 4f⁹ 6S°.

 Calculate effective number of Bohr magneton and

magnetic susceptibility for a salt containing one kg mole of Dy³⁺ ions at 300 k. 2+3

Group - C

Answer any one question:

 $1 \times 10 = 10$

- 8. (a) Derive the relation for lattice heat capacity following instein model.
 - (b) Discus the relation at very high and very low temparatures.
 - (c) Give the predictions of the model and compare with experimental observations.
 - (d) Calculate the Einstein temperature for given Einstein's frequency 9×10¹¹ Hz. 5+2+2+1
- 9. (a) Write a short note on flux quantisation.
 - (b) The transition temparature of mercury with an average atomic mass of 200.59 amu is 4.153K. Determine the transition temperature of one of its isotopes 80 Hg²⁰⁴.
 - (c) Explain the differences between the type I and type II super conductors using Meissner effect.
 - (d) State and discuss Block theorem for the periodicity character of potential in a crystal. 2+3+3+2

B.Sc. RNLKWC(A)-/Physics/CC12T/SEM-VI/2023