2023

B.Sc. (Honours)

B.Sc. Fifth Semester End Examination - 2023 PHYSICS PAPER - DSE-1T

Full Marks: 60

Time: 3 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1.	Answer any 10 questions:		=20
	(a)	If F and G are functions of positon co-ordinates q _i , momentum co-ordinates p ₁ , define the poisson's brace	
		of F and G. Prove that [F,G]=-[G,F]	2
	(b)	Explain cyclic co-ordinates with example.	2
	(c)	Define stable and unstable equilibrium.	2
	(d)	State the postulates of special theory of relativity.	2

(Turn Over)

- (e) A particle of unit mass moves in a potential, $v(x) = ax^2 + \frac{b}{x^2}$, where a and b are the constents. Prove that angular frequency of small oscillations about the minimum of the potential is $\sqrt{8a}$.
- (f) A bead moves on a circular wire. Specify the type of constraint.
- (g) Write down the expression of Lienard-Wiechert potential of a moving point charge.
- (h) Represent Lorentz transformation in matrix from. 2
- (i) What do you mean by cyclic coordinate?
- (j) For the Hamiltonian $H = \frac{1}{2} \left(\frac{1}{q^2} + \frac{p^2}{q^4} \right)$, find the equation of motion for q.
- (l) Write down the number of degree of freedom of CO₂ molecule.
- (m) Write the Lagrrange's equation of motion of Atwood's machine with m_1 and m_2 as masses suspended by the thread of length l and that passes over a smooth fixed pulley.

(Continued)

- (n) Two photons approach each other. What is their relative velocity? Give the explanation.
- (o) Write down the Hamilton's principle.

Group -B

Answer any four questions from the following: $4\times5=20$

- 2. (a) Derive Hemitton's equation of motion in terms of Posson bracket from.
 - (b) Write down Poisson's theorem.
- Find the lagranigian and equation of motion for a bead slides on a wire with shape of cycloid, described by equations:
 x=a(θ-sinθ), y=a(1+cosθ) where 0≤θ≤2π.
- 4. (i) Give difference between real fluid and ideal fluid.
 - (ii) Deduce Stoke's law by thhe method of dimension in the case of a small sphere falling through a viscous fluid.

2+3

3+2

 "Two events are simultaneous, this simultaneisty is relative", explain.

Write down Lorentz transformation equations. 3+2

6. (a) What is generalised coordinate and generalised momentum?

B.Sc. RNLKWC(A)-/Physics/DSE1T/SEM-V/2023

(Turn over)

(b) A pion at rest decay into muon and neutrino. Show that the momentum of the muon is given by

$$\left| \overrightarrow{p}_{\mu} \right| = \frac{c(m_{\pi}^2 - m_{\mu}^2)}{2m_{\pi}}$$

Where m_{π} and m_{μ} are the rest masses of pion and muon.

2+3

- 7. (a) Using velocity addition theorem, show that the velocity of light in any inertial frame is same.
 - (b) Suppose m_0 is the mass of particle in rest frame. It if moves in a straight line with the velocity v, show that the momentum p can be given by

$$p = \frac{m_0 v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Group - C

Answer any two questions.

2×10=20

8. Obrain the Lagrange's equation of motion using D'Alembert's principle. Show that if the Lagrangian does not depend explicity on time, then the total energy is conserved.

6+4

(Continued)

- · · · · ·

(a) Determine the length of a rod (proper length 100 cm) moving with a velocity of 0.8c in a direction inclined at an angle of 60° to its own length.

(b) An excited atom of mass m_0 is at rest in a certain frame of reference. It is emits a photon and thereby lose an internal energy ΔE . Considering the recoil of at atom, show that the frequency of the emitted photon is

$$v = \frac{\Delta E}{2\pi\hbar} \left(1 - \frac{\Delta E}{2m_0 c^2} \right)$$

- (c) Consider a particle under central force.
 - A. Write down the Lagrangian of the system and find the equation of motion.
 - B. Show that the angular momentum of the system is conserved.
 - C. Find the effective potential for such system.

[3+3+(2+1+1)]

10. (a) What is Bernoulli's theorem. What are meant by static head, dynamic head and gravity head? Show hoe Bernoulli's theorem is related to conservation theorem?

(b) Establish Torricelli's theorem.

2

- (c) A horizontal tube has radii 0.5 cm and 0.3 as at two places. For flowing water, the pressure difference at the two places is 1 cm of water. What is the rate of flow?
- 11. (a) Using Posson bracket, show that the following transformation is canonical.

Q=
$$(e^{-2q}-p^2)^{1/2}$$

P = $\cos^{-1}(Pe^q)$

(b) P, Q, R be any three dynamical variables, then prove the Jacobi's identity that states that

$$[P,[Q,R]]+[Q,[r,P]]+[R,[P,Q]]=0$$

where P, Q, R are functions of of generalised coordinates and generalised momentum.

(c) Show that the kinetic energy of a particle of rest mass m_0 and moving with velocity v is given by

$$T = m_0 c^2 \left[\left(1 - \frac{v^2}{c^2} \right)^{-1/2} - 1 \right]$$

B.Sc. RNLKWC(A)-/Physics/DSE1T/SEM-V/2023