2023

Chemistry

B.Sc. Fifth Semester End Examination - 2023 PAPER - DSE-2T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary:

Group - A

1. Answer any five questions:

5×2=10

- (ii) What are the essential criteria for the selection of suitable solvents for paper chromatography. 2
- (iii) Distinguish between "End point' and 'Equivalence point'?

(Turn Over)

(3)

- (iv) What are the common instrumental factors that affect the thermogravimetric curve.
- (v) What is meant by ' R_{t} ' value? Compare the ' R_{t} ' value for ascending and descending chramatography. 1+1=2
- (vi) Which of the following molecules absorb at the longest wavelength?
 - (a) 1,3-hexadiene
 - (b) 1,4-hexadiene.

Explain.

- (vii) A mixture of CaCO₃ and CaO is analysed using TGA technique. Thermogram shows a mass change from 145.3 mg to 115.4 mg between 500°-900°C. Calculate the percentage of CaCO₃ in the given sample.
- (viii) The molar extinction co-efficient of an Fe(111) complex is 12000 dm³mol⁻¹cm⁻¹, and the minimum absorbance is 0.01. Calculate the minimum concentration of the complex that can be detected by Lambert-Beirs law (Path length = 1.00 dm)

Group - B

2. Answer tny four questions:

4×5=20

- (i) Construct the cell and write down the complete cell reaction for the potentiometric titration of a suitable precipitation titration.
 - Mention Cathode, Anode, Cathode reaction and Anode reaction.
 - Draw the potentiometric titration curve mentioning the process of its end point detection. 1+2+1+1=5
- (ii) Write down the principle of Flame atomic Absorption Spectroscopy.
 - Cite two examples of the fuel-oxidant mixture used for purpose and mention their ignition temperatures.

4+1=5

- (iii) Define sampling.
 - What are the limitations of Lambert-Beer's law.
 - How can you differentiate between Intermolecular and Intramolecular Hydrogen bending using IR spectroscopy.
 - How wan you identify geometric isomerism using the UV spectroscopy. $1+1+\frac{1}{2}+\frac{1}{2}=5$

- transmits 60% and when filled with 'liquid X' transmits 60% and when filled with 'liquid Y' transmits 40% of the mediant light of a certain wavelength. What would be the absorbance at this wave length when the same cell is filled with a mixture of equal volume of the two liquids.
 - Write a short nove on 'Bathochronic Shift'.3+2=5
- (v) Result found from a TLC experiment that 'R_f' value of a compound is 2.0. It is also noted that the solvent travelled a sistance of 4 cm on the plate. What can you conclude about this experiment. 3+1+1=5
 - (a) The solvent is not volatile.
 - (b) The reported data is invalid.
 - (c) The compound travelled a distance of 8 cm.
 - (d) There are multiple components in the mixture.
 - —Explain.
 - What is the wavelength range of UV-spectrum?
 - What will be the value of wave number of the photon which is associated with the wavelength 400 nm.
- (vi) Explain 'Random Error'.

Write down the two applications of TGA.

- Distinguish between the 'Idial' and 'Non-ideal' chromatography.
- Draw the conductometric titration curve for AgNO₃
 vs KCl titration with a proper explanation.

1+1+1+2=5

Group - C

3. Answer any 1 question

1×10=10

(i) • The resistance of an aqueous solution containing 0.624 gm of CuSO₄. 5H₂O per 100 cc of the solution in a conductance cell of cell sonstant 153.7 m⁻¹ is 520 homs at 298 K. Calculate the molar and equivalent condictivity of the given solution.

4+2+2+2=10

- Write a short note on TLC.
- What do you mean by 'Chiral Solvent' and 'Chiral Shift Reagent'.
- Why TGA is known as 'qualitative' as well as 'quantitative analysis.

- (ii) The specific rotation of (R)-(-)2-bromooctane is (-36°), what is the % of compositon of mixture of exantiomers of 2-bromooctane whose rotation is (+18°)
 - Write a short note on Auxochrome.
 - What are the factors on which the optical density of a solution depends.
 - Draw the conductometric titration curve for 'strong acid' vs 'weak base' titration with a proper explanation.

Í

B.Sc. RNLKWC(A)-/CHEM/DSE-1T/SEM-V/2023