Total Pages-5 RNLKWC(A)-/PHYSICS/DSE-2T/SEM-V/2023

2023

B.Sc. (Honours)

B.Sc. Fifth Semester End Examination - 2023 PHYSICS

PAPER - DSE-2T

Full Marks: 60

Time: 3 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1.	Ans	swer any five questions:	2×10	=20
	(a)	How moentum of nucleon in nucleus varies number?	with n	nass 2
	(b)	Find spin and parity for ground state of \$\frac{41}{18} Ar.		2
	(c)	What do you mean by differential cross-section significance.	n? and	l it's 2
	(d)	The half-life of Ux_1 is 24.1 days. How many Ux_1 has been isolated, will it take for 90% change to Ux_2 ?		
			(Turn (Over)

	(e)	What is specific ionisation of α -particle?					
	(f) What do you mean by 'Helicity'? Write down it						
		significance.	2				
	(g) What is the working of Di-anode in photomultiple						
		tube?	2				
	(h)	What is iso-spin?	2				
	(i)	What is Dead time and delay time of GM counter.	2				
	(j)	Write down Geiger-Nuttall law.	2				
-	(k)	Calculate the magnetic moment of deuteron.	2				
	(1)	What are magic numbers?	2				
	(m) What do you mean by strangeness number and hypercharge?						
	(n)	Compare a fixed frequency cyclotron with a betaron. 2					
	(o)	What are kaons? How are they produced?	Ì				
Group - B							
Answer any four questions. 5×4=20							
2.	(a)	State the characteristics of nuclear force.	2				
	(b)	₂ He ⁴ nucleus has no magnetic moment. Explain.	1				
	(c)	Determine the raii of a ¹⁶ O nucleus and a ²⁰⁸ Pb nuc	leus				
			1				

(Continued)

B.Sc. RNLKWC(A)-/Physics/DSE-2T/SEM-V/2023

		being given that $r_0=1.4$ fm.	2	
3.	(a)	Describe the construction and working principle of		
•	(-)		2+1	
	(b)	Discuss factors that limit the maximum energy.	2	
4.	(a)	What are quarks?	2	
	(b)	Are the following reactions allowed? Give reason	ns in	
	,	support your answer.	3	
		(i) $\pi^{-+}p^{+} \rightarrow \pi^{0} + n$ (ii) $k^{+} + \pi^{+} \rightarrow p^{+} + p^{-}$		
5.	(a)	Explain the operation of semi concuctor detector.		
	(b)	The atomic masses of ²²⁶ ₈₈ Ra and ²²² ₈₆ Rn are 226.02 and 222.0175 u respectively. Find the kinetic ener		
		α particle. [m(${}_{2}^{4}$ He) = 4.0026 u]	3+2	
6.	(a)	How does gamma ray interact with matter?		
	(b)	Determine the intrinsic partity of π^- in followed reaction.	wing	
		$\pi^- + d \rightarrow n + n$		
7.	(a)	What is parity? How parity conservation is conf	nected	
	, ,	to conservation laws of elementary particles.		
	(b)	Explain 'internal conversion' process in gamm		
		spectrum.	3+2	

B.Sc. RNLKWC(A)-/Physics/DSE-2T/SEM-V/2023

(Turn over)

Group - C

Answer any two questions:

 $10 \times 2 = 20$

- 8. (a) On the basis of liquid drop model give a simple derivation of Weizsacker semi-empirical mass formula giving arguments for each term.
 - (b) What are the important conclusions drawn from its formula.
 - (e) Assuming nuclear shell index to be correct, what would be the spin and parity of the ground state of $\frac{1}{2N}$ 15?
- 9. (a) Defind Q-value of nuclear reaction. Mention various conservation laws in nuclear reaction.
 - (b) A nucleus of mass M absorbs a photon energy hv. Show that the energy of excitation of the nucleus is given by

$$Mc^{2}\left[\left(1+\frac{2hv}{Mc^{2}}\right)-1\right]$$

(c) Describe the compound nucleus theory of nuclear reactions.

10. (a) Show that, in Rutherford scattering process the scattering cross-section for scattering angle 0 is proportional to $\frac{1}{\sin^4(\frac{\theta}{2})}$.

(b) Draw and explain the construction of GM counter. What is external and internal quenching in GM counter?

3+2

11. (a) Radioactive nucleus A decays to another radioactive nucleus B which is turn decays to a statble nucleus C.

$$A \xrightarrow{\lambda_L} B \xrightarrow{\lambda 2} C$$

If at t=0, the number of nuclei A and B were N_0 and zero and λ_1 and λ_2 are disintegration constants.

Then show that at t₀ time, number of B nuclei

$$N_B = \frac{N_0 \lambda_1}{\lambda_2 - \lambda_1} \Big(e^{-\lambda_1 t_0} - e^{-\lambda_2 t_0} \Big)$$

and N_B is maximum at time, $t_{max} = \frac{l_n \left(\frac{\lambda_2}{\lambda_1}\right)}{\lambda_2 - \lambda_1}$

Also discuss the condition of transient and secular equilibrium. 2+1+4

(b) Explain colour quantum number in the view of flavour symmetry in elementary particle synthesis.

B.Sc. RNLKWC(A)-/Physics/DSE-2T/SEM-V/2023