M.Sc. Third Semester End Examination, 2023

Applied Mathematics with Oceanology and Computer Programming

PAPER-MTM-302

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary
[Transform and Integral Equation]

Answer question no. 1 and any four from the rest

1. Answer any four questions:

4x2 = 8

- a) Find f(o) and f'(x) where $F(p) = \frac{2p}{p^2 2p + s}$. Here is Laplace transform of f(t)
- b) If F(k) be the Fourier transform of f(x) then prove that F(k+a) is the Fourier transform of $e^{i\alpha x} f(x)$ where a is real.
- c) Evaluate the Convolution of two functions $\frac{1}{\sqrt{\Pi t}}$ and e^{at}

d) Find
$$L^{-1} \left[\frac{p^2 - 2}{(p-1)^4} \right]$$

- e) Show that the function u(x) = 1 x is a solution of the integral equation $u(x) = x + \int_{1}^{1} (x t)^{2} u^{2}(t) dt$
- f) If the function f(t) has period T>0 then calculate $L\{f(t)\}$ in the simplest form.
- 2. a) If in any finite interval a function f(x) is continuous and its derivative is piece-wise continuous, the integrals and $\int_{-\infty}^{\infty} f(x)dx, \int_{-\infty}^{\infty} f'(x)dx \text{ are absolutely convergent and } f(x) \to 0 \text{ as}$ $|x| \to \infty$ then prove that F[f'(x)] = -ik F(k) where F(k) is the Fourier transform of f(x).
 - b) Find the resolvent kernel and using this solve the integral equation $\phi(x) = x + \int_{0}^{1} (t+x)\phi(t)dt$ 4+4=8
- a) If f(t) is continuous and is of exponential order o(e^{at}) as t→∞ and f'(t) is piecewise continuous in any interval of t then lim_{p→0} pF(p) = lim_{t→∞} f(t) = f(∞).F(p) is the Laplace transform of f(t)

- b) If a and b are real constants, solve the following integral equation: $ax + bx^2 = \int_0^x \frac{y(t)}{(x-1)^{\frac{1}{2}}} dt$ 4+4=8
- 4. a)By use of Laplace Transform find the solution of the equation $t \frac{d^2y}{dt^2} + 2 \frac{dy}{dt} + ty = \sin t$
 - b) Use Perseval's relation to show that $\int_{\partial}^{\infty} \frac{\sin ax \sin bx}{x^2} dx = \frac{\pi a}{2}$ where a < a < b 4+4=8
- 5. Find the solution of the following problem of free vibration of a stretched string of an infinite length $\frac{\partial^2 u}{\partial x^2} \frac{1}{c2} \frac{\partial^2 u}{\partial t^2} = 0, \quad -\infty < x < \infty$ subject to $u(x,0) = f(x), \quad \frac{\partial}{\partial t} u(x,0) = g(x), \quad u \text{ and } \frac{\partial u}{\partial x} \text{ both vanish as } |x| \to \infty.$
- 6. a) Use residue theorem find the inverse of the function $\frac{p}{(p-2)(p^2+4)}$
 - b) Solve $\phi(x) = x + \int_0^x (t x)\phi(t)dt$ by iterative kernal method.

7. a) From an integral equation corresponding to the following differential equation $\frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + e^{-x}y(x) = x^3 - 5x$, subject to conditions, y(0) = -3 and y'(0) = 4:

b) If $L\{f(t)\} = F(p)$ which exists Real $(p) > \gamma$ and H(t) is unit step function, then prove that for any

 $\alpha, L\{H(t-\alpha)f(t-\alpha)\} = e^{-p\alpha}F(p)$ which exists for

 $(p) > \gamma$.

Internal Assessment - 10

Real

5+3