Chemistry (P.G.) [CBCS]

M.Sc. Second Semester End Examination-2024 (Regular & Supplementary Paper) PAPER- CEM-201 [Physical Chemistry]

Full Marks: 40

Time: 02 Hrs

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any four questions.

4×2=8

- Write down the differences between a clissical Harmonic oscillator and quantum Harmonic oscillator.
- b. What are micelles and reverse micelles? Explain.
- c. What is radial distribution function? Plot the Radial function, and Radial distribution function, for 2s orbital of hydrogen atom. Given: $R_{2s} = \left(\frac{1}{2a_0}\right)^{3/2} \left(2 \frac{r}{a_0}\right) e^{-r/2c_0}$
- d. What is the selection rule of vibrational Raman spectroscopy?
- e. What are the effects of high electric field and frequency on ion conductance?
- f. Two enzymes, A and B have turnover number of 200/s and 40000/s. Which one will be considered more efficient and why?

Group-B

Answer any four questions.

4×8=32

2. a) Evaluate the expectation value of potential energy of the harmonic oscillator in the ground state. The ground-state normalized wave function for the harmonic oscillation is $\psi_0 = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^2/2}$,

where $\alpha = \frac{2\mu\pi\nu}{\hbar}$

- b) Calculate the most probable distance of the electron from the nucleus in the ground state of hydrogen atom. Given $\psi_{1s}=\frac{1}{\sqrt{\pi}a_0^{\frac{3}{2}}}e^{-r/a_0}$
- c) Calculate the $\langle 1/r \rangle$ for the H-atom for Is orbital and calculate the average potential energy of electron for H-atom in Is orbital from it. Given: $\psi_{1s} = \frac{1}{\sqrt{\pi}a_0^{3/2}}e^{-r/a_0}$ 2+3+3=8
- 3. a) What is the essential condition of Raman spectroscopy? State the mutual exclusion principle.
 - b) Asymmetric stretching and bending mode of CO_2 is Raman inactive whereas all the vibrational modes of H_2O are Raman active-Explain. 4+4=8
- 4. a) What are the effect of temperature on CMC? Discuss.

- b) Discuss on the classification of surfactants.
- c) For pure rotational Raman spectroscopy of a linear diatomic molecule what will be the energy expressions for Stokes' and anti-Stokes' lines. Show the Raman transition of such molecules indicating the energy separations between the lines.

2+2+4=8

- 5. a) Derive Walden's rule.
 - b) Larger ions satisfy Walden's rule more accurately than the smaller ions. Explain.
 - c) The Debye-Huckel-Onsagar equation is $\lambda_m = \lambda_m^0 (A + B\lambda_0)\sqrt{c}$. What are the significances of the term A and B? Explain. 3+2+3=8
- 6. a) What are the difference between surface tension and interfacial tension?
 - b) Write the BET isotherm equation and state the significance of the parameters therein. Draw appropriate plots to show different types of BET isotherm for adsorption of a gas on a solid surface.
 - c) Verify the validity of Langmuir adsorption isotherm by graphical method. 1+(2+2)+3=8
- 7. a) Explain the influence of solvent on reaction rate for a simple ionic reaction using double sphere model.

b) The following mechanism has been proposed for the enzyme catalysis.

$$E + S \xrightarrow{k_1} ES$$

$$k_3$$

$$ES \to P + E$$

Show that the reaction rate is given by $r = \frac{k_3[E]_0[S]}{k_m + [S]}$; where the symbols have their usual meanings. Discuss the rate when $k_m \gg [S]$ and $k_m \ll [S]$. 3+(3+2)=8

RNLKWC/M.Sc./CBCS/IIS/201/24