## APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING (P.G.)

## M.Sc. Second Semester End Examination-2024

(Regular & Supplementary Paper)

## PAPER- MTM-201 [Fluid Mechanics]

Full Marks: 50

Time: 02Hrs

The figures in the right hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

## Attempt Question No. 1 and any four from the rest:

1. Attempt any four questions:

 $4 \times 2 = 8$ 

- a) What do you mean by Uniform and No uniform Flow?
- b) Find the image of a sink of strength -m placed at a point z = a.
- c) Find the stream lines of motion where the velocity potential is  $\varphi = \frac{a}{2}(x^2 + y^2 2z^2)$ .
- d) For the Gulf Stream, velocity  $U \sim 1m/s$ , depth  $L \sim 100$  km and viscosity  $v \sim 10^{-6} m^2/s$  calculate the Reynolds number.
- e) Define the Newtonian and Non-Newtonian fluids with examples.
- f) What is similar flow?

- 2. Calculate the image of a doublet of strength  $\mu$  placed outside the circle of radius a.
- 3. Prove that the vector  $\Omega$  of an incompressible viscous fluid moving under no external forces satisfies the equation

$$\frac{\mathrm{d}\Omega}{\mathrm{d}t} = (\mathbf{\Omega}.\nabla)\mathbf{q} + \mu\nabla^2\mathbf{q}.$$
 8

- Show that the average velocity is the half of the maximum velocity in case of Hagen-Poiseuille flow through a circular pipe.
- Prove that the row for an infinite single row of parallel rectilinear vortices of the same strength behave like a vortex sheet.
- 6. What arrangement of source and sinks will give rise to the function  $w = \log\left(z \frac{a^2}{z}\right)$ ? Draw the rough sketch of the stream lines to this curve.
- 7. Derive the Navier Stoke's equation of motion of in compressible viscons fluid.

[Internal Assssment-10]