Chemistry (P.G.) [CBCS]

# M.Sc. Second Semester End Examination-2024

(Regular & Supplementary Paper)
PAPER- CEM-203

[Inorganic Chemistry-II]

Full Marks: 40

Time: 02 Hrs

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

### Group-A

### Answer any four questions.

4×2=8

- a. Explain why the polarization effect is not observed in cubic or higher symmetry molecule.
  - b. What is molybdenum blue?
  - c. The molecule (OC)<sub>5</sub>M=C(OCH<sub>3</sub>)(C<sub>6</sub>H<sub>5</sub>) obey 18 electron rule. Find the metalsfrom 3d and 4d group satisfying this condition.
  - d. Established that  $a_i = \frac{1}{h} \sum X(R)$ . Xi(R) where the terms have usual significance.
  - e. [Mn(H<sub>2</sub>O)<sub>6</sub>]<sup>+2</sup> demonstrates very weak colour Explain.
  - f. What is fluxional behavior? Explain with an appropriate example.

#### Group-B

## Answer any four questions.

4×8=32

- 1. a) Determine the character of irreducible presentation of C<sub>2</sub>h point group. Write the appropriate Mulliken symbols for these irreducible representations.
  - b) b) Prove that px to py is allowed electronic transition for a tetrahedral molecule.

| Td | Е  | 8C3 | 3C2 | 6S4 | 6d |      |          |                        |
|----|----|-----|-----|-----|----|------|----------|------------------------|
| A1 | +1 | +1  | +1  | +1  | +1 | -    | x2+y2+z2 | xyz                    |
| A2 | +1 | +1  | +1  | -1  | -1 | -    | -        | -                      |
| E  | +2 | -1  | +2  | 0   | 0  | -    | (2z2-x2- | •                      |
|    |    |     |     |     |    |      | y2,      |                        |
|    |    |     |     |     |    |      | x2-y2)   |                        |
| T1 | +3 | 0   | -1  | +1  | -1 | (Rx, | -        | [x(z2-y2),             |
|    | İ  |     |     |     |    | Ry,  |          | y(z2-x2),              |
|    |    |     |     |     |    | Rz)  |          | z(x2-y2)               |
| T2 | +3 | 0   | -1  | -1  | +1 | (x,  | (xy,     | (x3, y3,               |
|    |    |     |     | i   |    | у,   | xz,yz)   | z3)                    |
|    |    |     |     |     |    | z)   |          | [x(z2+y2),             |
|    | ļ  |     |     |     |    | l i  |          | y(z2+x2),<br>z(x2+y2)] |
|    |    |     |     |     |    |      |          | z(x2+y2)]              |

4+4=8

- 3. a) Write the structure of Vaska's complex and mention the oxidation state of the central metal atom.
  - b) KMnO4 is intensely coloured Explain.
  - c) How many B-B bonds are present in B<sub>4</sub>H<sub>10</sub>?

- d) What is STYX number of B<sub>5</sub>H<sub>9</sub>. Draw its structure.
- 1+2+2+3
- 4. a) What are the fundamental differences between the alkene and alkyne complexes while binding to the transition metal ion? Draw the possible binding mode of alkyne to transition metal ion.
  - b) Briefly explain the term Agostic interaction with a suitable example.
  - c) Which of the following metal alkene complex do you think will look most like a metallacyclopropane? Justify your answer.

(I) 
$$(CH_2=CH_2)Ni(PPh_3)_2$$

(II) 
$$(CH_2=CH_2)Fe(CO)_4$$

4+2+2

- 5. a) The Ground State of NO<sub>2</sub> is A1. It got excited by electronic dipole transition. Mention the symmetry of excited state and what polarization of light is it necessary. C<sub>2</sub>v point group is given in other question one above.
  - b) Use group theoretical principle to obtain the IR and Raman activity of the vibrational modes of H<sub>2</sub>O.

| C2v | E  | C2<br>(z) | v(xz) | v(yz) |       |                  |                 |
|-----|----|-----------|-------|-------|-------|------------------|-----------------|
| Al  | +1 | +1        | +1    | +1    | z     | x2,<br>y2,<br>z2 | z3,<br>x2z,y2z  |
| A2  | +1 | +1        | -1    | -1    | Rz    | ху               | xyz             |
| B1  | +1 | -1        | +1    | -1    | x, Ry | XZ               | xz2,x3,<br>xy2  |
| B2  | +1 | -1        | -1    | +1    | y, Rx | yz               | yz2, y3,<br>x2y |

- 6. a) Write two major uses of Boron. Explain BNCT.
  - b) Discuss the bonding of [Re<sub>2</sub>Cl<sub>8</sub>]<sup>2</sup>-
  - c) Discuss the structure and bonding of transition metal allyl complexes.

    3+3+2
- 7. a) Compare the Fischer and Schrock carbene complex.
  - b) Explain "reversal of polarity" during the reaction of transition metal boundalkene complexes.
  - c) Explain why Fe(CO)<sub>5</sub> shows only one peak at room temperature while two peaks are observed at low temperature in <sup>13</sup>C nmr spectroscopy.
  - d) Discuss any two method of preparing alkene complexes of transition metal.

RNLKWC/M.Sc./CBCS/IIS/203/24