APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

M.Sc. Fourth Semester End Examination-2024 [Regular & Supplementary Paper] PAPER-MTM-401 [Functional Analysis]

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words

as far as practicable

Illustrate the answers wherever necessary

1. Answer any four questions of the following: 4x2=8

- a) In any inner product space X, prove that if the closed unit ball is compact than X is finite dimensional.
- b) Show that $(T_1T_2)^* = T_2^*T_1^*$.
- c) Show that in a Hilbert space strong convergence of a sequence implies weak convergence.
- d) Prove that Apollonius identity

$$||z-x||^2 + ||z-y||^2 = \frac{1}{2}||x-y||^2 + 2||z-\frac{1}{2}(x+y)||^2$$

- e) Let H be a Hilbert space and fix $y \in H$. Define $f(x) = \langle x, y \rangle$ for all $x \in H$. Find ||f||.
- f) State the Riesz representation theorem.

2x8 = 16

2. Answer any four questions of the following: 4x4= 16

- a) Let E be a measurable subset of \mathbb{R} and for $t \in E$, let $x_1(t) = t$. Let $X = \{x \in L^2(E) : x_1x \in L^2(E)\}$ and $F: X \to L^2(E)$ be defined by $F(x) = x_1x$. Show that if E = [a,b], then F is continuous, but if $E = \mathbb{R}$, then F is not continuous.
- b) In a real Hilbert space if ||x|| = ||y|| Show that (x+y, x-y) = 0Interpret the result geometrically if H is Euclidean 2-space \mathbb{R}^2 .
- c) Let X be a normed space and X_0 be a closed subspace of X If $x \in X$, then x does not belong to X_0 if and only if there exist a non-zero linear functional $\phi \in X^*$ such that $\phi(x) \neq 0$ and $\phi(y) = 0$ for all $y \in X_0$.
- d) If T is a bounded linear operator from Hilbert space X to itself satisfying (Tx, x) = 0 for all x is X then show that T is a zero operator.
- e) Let $T: H \to H$ be self adjoint operator. Show that all eigen values of T are real and eigen vactors corresponding to different eigen values of T are orthogonal
- f) Let H be a Hilbert space and $E \subset H$. Prove that $\overline{span(E)} = E^{\perp \perp}$

Answer any two questions of the following:

- 3. a) Let Y be a subspace of X and $g: Y \to \mathbb{C}$ be a continuous linear functional. Show that the set of all Hahn-Banach extensions of g to X is a nonempty, convex, closed and bounded subset of X^* .
 - b) Let $X=C^1[0,1]$ be equipped with the norm $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and Y=C[0,1] be equipped with a supremum norm $||x||_{\infty}$. Check whether the linear operator $F: X \to Y$ defined by F(x) = x continuous.
- 4. a) If T: R² → R² defined by T(x,y) = (x cos θ y sin θ, x sin θ + y cos θ)
 Show that T is bounded linear transformation and ||T|| = 1
 b) Let Z be a fixed member in a Hilbert space H. Show that f(x) = (x, z) for all x ∈ H is a bounded linear functional over H with ||f|| = ||z||.
 4+4
- 5. a) State the open mapping theorem. Explain why Tx = sin x + cos x is not an open mapping from R to R.
 b) If parallelogram holds in a Banach space. Show that it is a Hilbert space.

6. a) Let $T: l^2 \to l^2$ be given by

$$T(x_1, x_2,...,x_n,...) = \left(x_1, \frac{1}{2}x_2,..., \frac{1}{n}x_n,...\right).$$

- Is T bounded? Is the range of T complete (as a subspace of l^2)?
- b) Let X be A normed space and $f: x \to \mathbb{C}$ be linear. If f is discontinuous, show that $f(B_1) = \mathbb{C}$, where B_1 denotes the open ball centred at 0.

[Internal Assessment – 10]

RNLKWC/M.Sc./CBCS/IVS/MTM-401/24