Total Pages-04

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING [P.G.]

M.Sc. Fourth Semester End Examination-2024 [Regular & Supplementary Paper] PAPER-MTM-405

Full Marks: 50

Time: 02 Hrs

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary.

[Use separate answer script for each group]

405 A [Dynamic Meteorology]

F.M. - 25

1. Answer any two questions of the following:

2x2=4

- a. Define frontal surface and front in the atmosphere.
- b. What is 'Rossby wave'?
- c. What types of equation are used for numerical weather forecasting
- d. What is 'storm surge'?

2. Answer any two questions of the following:

- Defining front genesis and frontolysis, derive the condition for front genesis and frontolysis.
- b. Explain briefly thunderstorm formation in the atmosphere.
- c. How does 'hurricane' generate?
- d. Write notes on 'surface of discontinuity'.

3. Answer any one question of the following:

1x8=8

2x4 = 8

- a. Discuss the wind distribution near the frontal surface. Derive the angle between the frontal surface and earth's surface in the atmosphere.
- b. Write the mathematical formulation of pressure distribution near fronts. How is pressure troughs formed at fronts?

[Internal Assessment - 5]

405 B

[Operational Research Modelling]

F.M. - 25

1. Answer any two questions of the following:

2x2 = 4

- a) Define joint marginal and conditional entropies.
- b) What are MTBF and MTTF?
- c) What do you mean by memory less channel and channel matrix?

- d) What are the main objectives of encoding procedure?
- Find the path which minimizes the functional $J = \int_{0}^{1} (1+x^{2}) dt \text{ where } x(0)=1, x(1)=2$

Answer any two questions of the following:

2x8 = 16

- 2. a) Explain the Pontryagin's Maximum principle and illustrate it with the help of an example.
 - b) Use Shannon's encoding procedure to find the code for the alphabets A,B,C,D using the following information.

Alphabet A B C D
Probability 0.1 0.4 0.3 0.2

4+4

3. a) Obtain the necessary condition for the functional

 $I[y(x)] = \int_{x_1}^{x_2} f(x, y, y', y'') dx$ to be extremum satisfying the boundary

conditions
$$y(x_1) = y_1, y(x_2) = y_2, y'(x_1) = y_1'$$
 and $y'(x_2) = y_2'$

b) Find the curve passing through the points (x_1, y_1) and (x_2, y_2) which rolated about the x-axis gives a minimum surface area.

5+3

4. A transmitter and receiver have information consisting of three letters. The joint probabilities for communication are given below.
[Contd....P/4]

$P(x_i, y_i)$	y_1	<i>y</i> ₂	<i>y</i> ₃
x_1	0.25	0.28	0.05
x_2	0.06	0.12	0.02
x_3	0.04	0.08	0.10

Determine H(X), H(Y) and H(X/Y) for this channel.

8

[Internal Assessment – 5]

RNLKWC/M.Sc./CBCS/IVS/MTM-405/24