2024

BCA

BCA First Semester End Examination - 2024 PAPER - CC101T

Mathematics Foundation for Computer Science I

Full Marks: 70

Time: 3 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

Attempt any ten questions:

 $10 \times 2 = 20$

- a) Suppose, a relation R={(10,11), (10,12), (11,11), (11,12), (12,13), (11,13)}. Determine the domain and range set of this relation.
 - b) Suppose, a function is specified as $f = \{(1,2), (1,3), (2,3)\}$. Is this function injective? Justify your answer.
 - c) What do you mean by graph $K_{m,n}$? Show one examle of $K_{3,2}$ graph.

(Turn Over)

- Find the total number of 4-digit numbers which are >6500 that can be formed only with digits 1, 2, 3, 4, 5, 6, 8, 0. Consider that repeation of digit is not allowed.
- Consider a complete graph of 7 vertices. How many colors are required to properly color this graph?
- Find the characteristic roots for the recurrence relation $f_{-} = f_{-1} + 2f_{-2}, f_0 = 1, f_1 = 2.$
- What do you mean by planar graph?
- Consider the word intellegence. Using all letters of this word, how many distinct words can be constructed?
- State Carley-Hamilton theorem.
- Find the degree of vartices a, b, c of the following graph.

- State the pigeon-hole principle.
- Can any two arbitrary matrices be multiplied?
- m) What is the significance of rank of a matrix?

- n) What is Euler graph? Show one example of Euler graph.
- o) Suppose, $A = \{1, 3, 6, 8\}, B = \{1, 4, 6, 9, 10\}$. Find $(A-B)\cap (B-A)$.

Group-B

Attempt any four questions:

 $4 \times 5 = 20$

- Find determinant of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 & 2 \\ 1 & 0 & 2 & 3 \end{bmatrix}$ 5
- Suppose, there are total 110 students in a class. Out of these, 40 students passed in biology, 50 passed in computer science, 35 students passed in chemistry, 30 students passed in exactly two of these three subjects. Total 5 students failed in all the three subjects. Find the number of students who passed in all these three subjects. 5
- Prove that sum of degree of odd-degree vertices is even. 5
- Solve the recurrence relation $f_n = f_{n+1} + f_{n+2}$, $n \ge 0$, $f_0 = 0$, $f_1 = 1$.

5

BCA RNLKWC(A)/BCA/CC101T/SEM-1/24

(Turn Over)

6. What do you mean by spanning tree? Find the adjacency matrix for the following weighted graph. 2+3

7. Suppose, $h(x)=6x^2+5x-2$, f(m)=2m-1, and $g(x)=x^2+2.x-2$. What will be the composition function f(h(x)+g(x))? 5

Group - C

Attempt any three questions:

3×10=30

- 8. a) What is adjacency matrix, A, of a graph? Is the square of adjacency matrix, A², signify any thing? 2+(1+2)
 - b) Determine the rank of the following matrix. 5+1

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 3 & 2 & 0 \\ 1 & 5 & 1 & 2 & 1 \\ 1 & 3 & 2 & 4 & 0 \\ 0 & 2 & -1 & -2 & 1 \\ 0 & 2 & 6 & 4 & 0 \end{bmatrix}$$

BCA RNLKWC(A)/BCA/CC101T/SEM-I/24

(Continued)

- a) Show the graphs or exponential function and logarithm function.
 - b) Consider the following recurrence relation:
 f(n)=2. f(n-1) + f(n-2), n≥2, f(0) =2, f(1) =3
 Solve this recurrence relation using characteristic equation.
- 10. a) Using the letters of word "success", how many unique 7-character strings can be formed?
 - b) Explain Hamiltonian circuit graph with an example. 4
 - c) Define walk, path with example. 4
 - . a) What do you mean by equivalence relation? Show an example of equivalence relation. 3+2
 - b) What do you mean by isomorphic graph? Give example of two isomorphic graphs. 2+3
- 12. a) Why do we use Warshall's algorithm? Illustrate this algorithm with an example. 2+4
 - b) What do you mean by bipartile graph? Show an example of bipartile graph. 2+2