2024

PHYSICS

B.Sc. First Semester End Examination - 2024 PAPER - MJ-101T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

- 1. Answer any 5 (five) questions out of 8 (eight) questions: 2×5=10
- (a) A projectile is fired horizontally with a velocity 500 m/s at 30°N latitude. Calculate the horizontal component of coriolis acceleration.
- (b) Prove that for a particle moving under a central force, the motion of the particle is always confined to a plane. 2

(Turn Over)

- For a particle of mass 10 gm, the position vector $\vec{r} = 10\hat{i} + 6\hat{j}$ and velocity $\vec{v} = 5\hat{i}$ cm/s. Find the angular momentum at the
- Show that, $r^n r$ is solenoidal vector if n=3.
- Calculate the percentage contraction of a rod moving with a velocity 0.8 times the velocity of light in a direction inclined at 60° to its own length.
- If \vec{r} be he position vector of a point on a closed contour, prove that the line integral $\sqrt{r} \cdot d\vec{r} = 0$
- A 20 kg mass is suspended from a length of copper wire 1 mm in radius. If the wire breaks suddenly, calculate the change in temperature. [Given: Y=12 ×10¹¹N/m²; density of copper 9000 kg/m³; specific heat = 0.42 J/gm/deg.K]
- Setup the equation of mothion of a sphrical body of radius r moving vertically downward through a viscous fluid.

Group -B

Answer any four out of six.

(i) Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at (2,-1,2)

B.Sc. RNLKWC(A)/Physics/MJ-101T/SEM-I/24

(Continued)

- (ii) A mass of 25×10 2 kg is suspended from the lower end of a vertical spring having a force constant 25 Nm⁻¹. What should be the damping constant of the system so (3+2)=5that the motion is critically damped?
- If w is angular velocity of a rigid body rotating about 3. a fixed axis and \vec{v} is the velocity of a particle (body) then prove that, curl \vec{v} is equal to twice the angular velocity.

(ii) If
$$\overline{A} + \overline{B} + \overline{C} = 0$$
, prove that $(\overline{A} \times \overline{B}) = (\overline{B} \times \overline{C}) = (\overline{C} \times \overline{A})$

$$(4+1)=5$$

- (i) Solve that, $\frac{dy}{dx}$ +ytan x = sin(2x), y(0)=1
 - (ii) If one litre of glycerine gets reduced in volume by 0.21 cm³ under a pressure of 10 kg/cm², calculate bulk modulus of glycerine. (4+1)=5
- 5. Show that the general equation of central orbit of motion, of a parcicle of mass m is-

$$\frac{d^2u}{d\theta^2} + u = -\frac{F.(\frac{1}{2}u)}{mh^2u^2}$$

[symbols have their usual meanings]

- (ii) Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$, is a conservative force field. Find the potential. 3+2=5
- State Clauss's divergence theorem. If $\hat{F} \approx 2y\hat{i} z\hat{j} + x^2\hat{k}$ and S in the surface of the parabolic cylinder y2-8x in the first octant bounded by a planes y-4 and z-6, evaluate fffinds. (1+4-5)
- 7. What is radius of gyration? If a rigid sphere of radius a and radius of gyratoin k rolls down withour slipping along a plane inclined at an angle θ with horizontal, then show that

its acceleration will be
$$f = \frac{g \sin \theta}{1 + \left(\frac{k}{a}\right)^2}$$
 (2+3=5)

Group - C

Answer any one question:

1×10=10

- (a) If $A = (ax)\hat{i} + (by)\hat{j} + (cz)\hat{k}$ evaluate $\sqrt{A.ds}$ over the 8. surface S of a sphere of unit radius.
 - (b) A particle moving under a central force field describes a spiral orbit given by r=aebe where a and b are

(5)

constants. Obtain the force law.

- (c) Taking carth as rotating frame, show that the value of un lititude \(\lambda\) decreases by a value \(\omega^2 R\) con^2\(\lambda\), where R is the radius and ω is the angular velocity of earth. (4+3+3)
- Prove that if at any instant of motion kinetic energy is suddenly increased by a blow in the ration $(1+\beta)$:1. the amplitude of the swing is increased in the ratio, 9.

$$\sqrt{1 + \frac{\beta v^2}{\alpha^2 \omega^2}} : 1$$

[symbols have their usual meanings]

- (ii) Starting from Lorentz transformation equations for space and time co-ordinates derive equations for relativistic addition of velocities. Hence prove that no material particle can move with a velocity greater than
 - (iii) Show that Newton's law are invariant under Gallilian transformation.

B.Sc. RNLKWC(A)/Physics/MJ-101T/SEM-1/24