Total Pages—5

RNLKWC/IIIS/PHYSICS/CC6T/21

End Semester Examination, 2021 Semester - III

> Physics PAPER - CC6T Full Marks : 40 Time : 2 Hours

<u>Gr - A</u>

1. Answer any <u>five</u> questions :- 5x2=10

- a) A Carnot engine is working in between 500 K and 400 K temperature. Calculate its efficiency.
- b) If 1g of water freezes into ice, the change in its specific volume is 0.091 cc. Calculate the pressure to be applied to freeze 10g of water at $-1^{0}C$.
- c) When a gas expands adiabatically, its volume is doubled while its absolute temperature is decreased by a factor 1.32. Compute the number of degrees of freedom for the gas molecules.
- d) Prove that the ratio of the adiabatic to the isobaric pressure coefficient of expansion is $\frac{1}{1-\gamma}$.
- e) Two finite, identical, solid bodies of constant total heat capacity per body, C, are used as heat sources to drive heat engine. Their initial temperatures are T_1 and T_2 respectively. Find the maximum work obtainable from the system.

- 2
- f) The density of Hydrogen at N.T.P. is $8.96 \times 10^{-5} g/c.c$. Calculate the r.m.s velocity for an oxygen molecule at N.T.P.
- g) Show that Maxwell's law of distribution of molecular speed is independent of temperature if the most probable speed is taken as the unit of measuring.
- h) Show that at critical temperature, the departure of the van der Waals' gas law from that of the ideal gas $\frac{p_c V_c}{T_c} = R$ measures 62%.

<u>Gr - B</u>

Answer any <u>four</u> questions :-

4x5=20

- One kilogram of water is heated by an electrical resistor from 20°C to 99°C at constant (atmospheric) pressure. Estimate :
 - a) The change in internal energy of the water.
 - b) The entropy change of the water.
 - c) The factor by which the number of accessible quantum states of the water is increased.
 - d) The maximum mechanical work achievable by using this water as heat reservoir to run an engine whose heat sink is at 20^oC. 1+1+1+2
- 3. a) Deduce the Clausius-Clapeyron equation :

 $\frac{dp}{dt} = \frac{L}{T(V_2 - V_1)}$, Where the symbols have their usual significance.

RNLKWC/IIIS/PHYSICS/CC6T/21

- b) Mention the characteristics of a first order phase transitions. 3+2
- 4. Consider an arbitrary heat engine which operates between two reservoirs, each of which has the same finite temperature-independent heat capacity *c*. The reservoirs have initial temperatures T_1 and T_2 , Where $T_2 > T_1$, and the engine operates until both reservoirs have the same final temperature T_3 .
 - a) Give the argument which shows that $T_3 > \sqrt{T_1T_2}$.
 - b) What is the maximum amount of work obtainable from the engine? 2+3
- 5. a) Obtain the following Tds equation :

 $Tds = C_V dT + T\alpha E_T dV$

where, $E_T = -V \left(\frac{\partial P}{\partial V}\right)_T$ is the isothermal elasticity and $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P$ is the volume coefficient of expansion, S is the entropy and T the Kelvin temperature.

- b) If U is the internal energy then show that for an ideal gas $\left(\frac{\partial U}{\partial V}\right)_T$. 3+2
- 6.a) What do you mean by 'Degrees of Freedom' of a dynamical system ?
- b) A shower of 10⁴ molecules, each originally moving with the same velocity, traverses a gas. Find the RNLKWC/IIIS/PHYSICS/CC6T/21

3

number of molecules which will not be deflected even after traversing a length twice the mean free path.

- c) Calculate the fraction of gas molecules will have free paths lying between λ and 2λ . 2+2+1
- 7.a) Write down Maxwell's speed distribution of a gas molecule. Show it graphically :
 - i) For two different temperature T_1 and T_2 ($T_1 > T_2$)
 - ii) For two different molecules, say O_2 and H_2 .
 - b) If c be the speed of sound in a gaseous medium $(\gamma = 1.4)$, show that the r.m.s. speed ν of the gas molecules is $v = \left(\frac{15}{7}\right)^{\frac{1}{2}}c$ 3+2

Gr - C

Answer any one question :-1x10=10

- 8.a) State and prove Carnot's theorem.
 - b) What is Helmholtz function? Show that it represents the free energy of the system in a reversible isothermal process or the energy available for work.
 - c) Consider an ideal gas whose entropy is given by : $S = \frac{n}{2} \left[\sigma + 5RIn \frac{U}{n} - 2RIn \frac{V}{n} \right]$

$$S = \frac{1}{2} \left[\sigma + 5RIn - \frac{1}{n} - \frac{2RIn}{n} \right]$$

Where n = number of moles, R = universal gas constant, U=internal energy, V=volume, and σ = constant.

Calculate C_{p} and C_{v} , the specific heats at constant pressure and volume. 4+4+2RNLKWC/IIIS/PHYSICS/CC6T/21

- 9.a) What are the critical constants of a gas? Obtain their values in terms of the constants of van der Waals' equation.
 - b) Define Boyle's temperature and find it's relation with critical temperature.
 - c) The critical temperature of CO_2 is 31^0C and the critical pressure 73 atmos. Assuming that CO_2 obeys van der Waals' equation, estimate the diameter of its molecule. (2+3)+3+2

RNLKWC/IIIS/PHYSICS/CC6T/21