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Abstract

The purpose of this research work is to solve mixed-integer non-linear programming problem with constraints by a real-
coded genetic algorithm (RCGA). This GA is based on Roulette wheel selection, whole arithmetic crossover and non-uni-
form mutation. Here, mutation is carried out for the fine-tuning capabilities of the system by non-uniform operator whose
action depends on the age of the population. This methodology has been applied in solving multiple price break structure
and implemented for multi-item deterministic inventory control system having two separate storage facilities (owned and
rented warehouse) due to limited capacity of the existing storage (owned warehouse). Also, demand rate is a linear function
of selling price, time and non-linearly on the frequency of advertisement. The model is formulated with infinite replenish-
ment and shortages are not allowed. The stocks of rented warehouse (RW) are transported to the owned warehouse (OW)
in bulk-release rule. So, the mathematical model becomes a constrained non-linear mixed-integer problem. Our aim is to
determine the optimal shipments, lot size of the two warehouses (OW and RW), shipment size and maximum profit by
maximizing the profit function. The model is illustrated with numerical example and sensitivity analyses are performed
with respect to different parameters.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Inventory; Two-storage; All unit discount; Genetic algorithm; Bulk-release rule
1. Introduction

Generally, the basic assumption of classical inventory model is that the management purchases or produces
a single item. However, in many real-life situations, this assumption is not correct. Instead of a single item,
many companies or enterprises or retailers are motivated to store several items in their show-room for more
profitable business affair. Another cause of their motivation is to attract the customers to purchase several
items in one show room/shop. Multi-item classical inventory models under different resource constraints such
0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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as available floor space/shelf space, capital investment and average number of inventory, etc. are presented in
the well-known books by Churchman and Ackoff [1], Silver and Peterson [2], etc., of this subject. Padmanab-
han and Vrat [3] developed a multi-item multi-objective inventory model of deteriorating items with stock
dependent demand by a non-linear goal programming method. Considering two constraints on available space
and budget, Ben-Daya and Raouf [4] discussed a multi-item inventory model with stochastic demand. Abou-
et-ata and Kotb [5] formulated and solved a multi-item inventory model with varying holding cost under two
restrictions with the help of geometric programming. Recently, Guria et al. [6] studied multi-item EOQ model
with storage facilities for uniform demand.

Now-a-days, the inventory systems with quantity discount are of growing interest due its practical impor-
tance in purchasing and material control. In the third world countries, with the introduction of open market
system and advent of multi-nationals, there is a stiff competition amongst the companies to capture the max-
imum possible market. It is a common practice on the procurement in inventory systems that the suppliers
(whole sellers) offers price discount to the retailers for purchase orders of large sizes. In general, there are
two types of discount-All Unit Discount (AUD) and Incremental Quantity Discount (IQD). In AUD, the dis-
count is available for every unit purchased where as in the incremental quantity discount system, the discount
applies only to the additional units beyond the quantity over which the discount is given. Among these two
types of discount, AUD is more popular and is usually utilized by the retailers.

The basic technique to solve the quantity discount models dates back to the early days of operational
research. The basic model of EOQ under price breaks has been extensively analyzed in Hadley and Whitin
[7] and reported in other books. Later, several authors have made extensions of the above model. Benton
[8] considered quantity discount for MRP lot sizing, Majewicz and Swanson [9] for dynamic lot sizing, Goyal
[10], Monahan [11], Kim and Hwang [12] for integrated decision making by supplier and buyer, Pirkul and
Arkas [13] for multi-item inventory, Das [14] for generalized discount structure unifying the IQD and
AUD policies. Also, Rubin et al. [15] proposed some computational simplifications and Das [16] presented
a complete graphical solution to the discount problems. The purpose of the quantity discount is to offer a
lower price which motivates retailers to increase order quantities and thereby reduce the total purchase cost.
Therefore, quantity discount models always demand to buy a large number of items for which existing ware-
house may not be sufficient to store these items. In the existing literature, it is found that the classical inventory
models generally deal with a single storage facility. The basic assumption in these models is that the manage-
ment has a storage with unlimited capacity. However, it is not true (e.g., in an important supermarket, the
storage space of showroom is very limited) in the field of inventory management. Due to attractive price dis-
count for bulk purchase or some problems in frequent procurement or very high demand of items, manage-
ment decides to purchase a huge quantity of items at a time. These items cannot be stored in the existing
storage (owned warehouse, OW) with limited capacities. So, for storing the excess items, one (some time more
than one) warehouse is hired on rental basis. The rented warehouse RW is located near the OW or little away
from it. Usually, the holding cost in RW is greater than the same in OW. Further, the items of RW are trans-
ported to OW in bulk fashion to meet the customer’s demand until the stock level of RW is emptied.

In the last two decades, a good number of two warehouses inventory models have discussed by several
researchers. This type of problem was first developed by Hartely [17] with the assumption of uniform demand
of items. After Hartely [17], one may refer to the works of Sarma [18,19], Dave [20], Goswami and Choudhuri
[21], Bhunia and Maiti [22,23], Pakkala and Achary [24], Benkherouf [25], Lee and Ma [26], Kar et al. [27] and
others.

As an inventory problem is a decision-making problem which can be formulated as constrained/uncon-
strained non-linear optimization problem, there is a question: How it can be solved? Generally, most of the
optimization problems of different inventory system are non-convex or non-concave optimization problems.
In these problems, both local and global optimal solutions may exist. Then, special methods for global opti-
mization are needed in order to solve these problems. Global optimization methods can be divided into deter-
ministic and stochastic ones. Deterministic methods are usually based on some special assumptions on the
problem to be solved, whereas stochastic methods utilize randomness. Because of their general nature, sto-
chastic methods work even with discontinuous functions. Genetic algorithm (GA) represents this type of
method. It is a robust technique, based on the natural selection and genetic production mechanism. It pro-
cesses a group or population of possible solutions within a search space. This search is probability guided
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and stochastic, rather than deterministic or random searching which distinguish it from traditional methods.
The basic idea behind the genetic algorithms is to artificially imitate the evaluation process of nature. The
algorithms are based on the evaluation of a set of solutions, called a population. The population is upgraded
by genetic operators in each iteration (generation). At each iteration (generation), the population consists of a
number of individuals, i.e., possible solution of the problem. Typically, the population initialized by randomly
generated individuals.

When individuals are encoded using real numbers the corresponding methods are called real-coded genetic
algorithm. Each individual is a vector of variables where each variable is a real number. The suitability of an
individual is determined by the value of a so-called fitness function based on the objective function. The pop-
ulation of next generation is created by these genetic operators: selection, crossover and mutation.

The selection operation chooses some offspring for survival according to their genetic diversity and fitness.
The crossover operation generates offspring from two or more chosen individuals in the population by
exchanging their genetic materials. The offspring thus inherit some characteristics from each parent. The
mutation operation generates offspring by randomly changing one or several genes in an individual. Offspring
may thus possess different characteristics from their parents. Mutation prevents local searches of the search
space and increases the probability of finding global optima. Recently, GA has been successfully applied to
a wide variety of problems such as Travelling salesman problems [28], Scheduling problems [29], Numerical
Optimization [30], etc. Till now, only a very few researchers have applied it to solve the problem in the field
of inventory control system. Among them, one may refer to the work of Khouja et al. [31], Sarkar and Charles
[32], Mandal and Maiti [33], Pal et al. [34] among others.

In this research paper, we develop a multi-item two storage (OW and RW) multiple price breaks determin-
istic inventory model with a discount policy. The model is formulated as constrained non-linear mixed integer
model and is solved by real-coded genetic algorithm with advanced GA operators. Also, demand is a function
of selling price, time and frequency of advertisement. Shortages are not allowed, the stocks of RW are trans-
ported to OW in bulk-release fashion. Our objective is to determine the optimal shipments, lot-size of the OW
and RW, shipment size and maximum profit by maximizing the profit function. Numerical examples illustrate
that the above approaches are feasible and efficient.

2. Assumptions and notations

The following notations are used for the proposed model:

n number of items
W storage area or volume in RW
j any cycle of proposed inventory system (j = 1,2, . . .)

Parameters are used for the ith (i = 1,2, . . . ,n) item in the jth cycle (j = 1,2, . . .)

Qj,i initial inventory units (decision variable)
Wj,i storage capacity of OW
mj.i mark-up rate
wi storage area or volume required for each item (m2)
Tj,i total time period
Pj,i unit selling price
pj,i(=pj.i1,pj,i2, . . . ,pj,in) purchase cost per unit
L1-system single storage/warehouse system
L2-system two storage/warehouse system
Dj,i demand rate
Nj,i frequency of advertisement per replenishment
Hj,i, Fj,i(Fj,i > Hj,i) inventory carrying cost per unit per time in OW and RW, respectively
lj,i advertisement cost
ni number of shipments from RW to OW (decision variable)
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ki units to be transported in each shipment
tl,ji consumption period of lth ki units where l = 1,2, . . . ,ni

bi1,bi2, . . . ,bin�1 1st,2nd, . . . ,nth price breaks, respectively
C3j,i ordering cost per replenishment
Ctj,i transportation cost per unit from RW to OW
CAdj,i total advertisement cost per replenishment
Chj,i total holding cost per cycle

The inventory model is developed under the following assumptions:

(i) The horizon of the inventory system is infinite.
(ii) Shortages are not allowed.

(iii) Lead time is zero.
(iv) The rate of replenishment is infinite.
(v) The selling price Pj,i is determined by mark-up mj,i over the purchase cost pj,i, i.e.,
P j;i ¼ mj;ipj;i: ð1Þ
(vi) If the lot-size Qj,i is less than the storage capacity of OW, the entire lot size is kept in OW. This type of
inventory system is assumed as L1-system. Otherwise, first OW is filled up completely and excess amount
will be stored in RW. In this case, an additional transportation cost is incurred for special despatch of
goods to RW. This system is known as L2-system.

(vii) The storage capacity of OW (existing storage) is Wj,i units and that of RW is limited.
(viii) The demand rate Dj,i(Pj,i, t,Nj,i) is dependent linearly on the unit selling price Pj,i, time t and non-linearly

on frequency of advertisement, i.e.,
Dj;iðP j;i; t;Nj;iÞ ¼ ðai � biP j;i þ citÞN ai
j;i; ð2Þ
where ai, bi, ci and ai are non-negative constants.
(ix) The advertisement cost is lj,i (0 < lj,i < 1) fraction of the total selling price per jth cycle.
(x) The inventory holding cost Hj,i, Fj,i(Fj,i > Hj,i) are xi and yi percentages of the unit purchasing cost in OW

and RW, respectively.
(xi) The purchasing multi-price break for AUD system is as follows:
pj;i ¼

$pj;i1; 0 < Qj;i < bi1;

$pj;i2; bi1 6 Qj;i < bi2;

$pj;i3; bi2 6 Qj;i < bi3;

� � �
� � �
$pj;in; Qj;i P bin�1;

8>>>>>>>><
>>>>>>>>:

ð3Þ
where pj,i1 > pj,i2 � � � > pj,in, i = 1,2, . . . ,n.
(xii) The items of RW are transferred to OW in ni shipments of which ki(ki < Wj,i) are to be transported in

each shipment.
(xiii) The transportation cost of ki units from RW to OW in each shipment is
a0i þ b0iðki � SiÞ; ð4Þ
where Si(<ki) is the maximum number of units which can be transported under a fixed charge a0i and for
every additional unit after Si, a variable charge b0i is to paid.

(xiv) t0l;ji (l = 1,2, . . . ,ni) is the consumption period of the 1st lki units, i.e.,
t0l;ji ¼
Xl

r¼1

tr;ji; where t01;ji ¼ t1;ji:
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Under the above assumptions two cases may arise:

Scenario 1: Qj,i > Wj,i.
Scenario 2: Qj,i 6Wj,i.

Scenario 1: In this scenario, the purchase quantity Qj,i is greater than the capacity of the existing storage Wj,i.
So, our problem becomes L2-system, which is described and analyzed in the Section 3. Scenario 2: In this sce-
nario, the purchase quantity Qj,i is less than/equal to the capacity of the existing storage Wj,i. As our model is
two-storage inventory problem but this scenario violates the feasibility of the two-storage concept. So, we
reject scenario 2.

3. Model description and analysis

Initially, a company purchases Qj,i units of ith item of which Wj,i units are kept in OW and (Qj,i �Wj,i)
units are kept in RW. The stocks of OW are used to meet the customer’s demand until the stock level of
OW drops to (Wj,i � ki) units at the time of t1,ji. At this stage, ki(ki 6Wj,i) units are transported from RW
to OW to restore the inventory into original level and to meet the further customer’s demand. This process
is continued until the stock of RW is fully exhausted. After the last shipment, only Wj,i units are used to meet
the customer’s demand during the interval ðtni;ji; T j;iÞ. A pictorial representation of the system is given in Fig. 1.

Now, our problem is to determine the optimal values of ni, Qj,i such that the average profit for this model is
maximized and also to determine the corresponding values of ki and Tj,i.

The total demand during the planning horizon (0, Tj,i) is Qj,i then
Qj;i ¼
Z T j;i

0

Dj;i dt ¼
Z T j;i

0

ðai � biP j;i þ citÞN ai
j;i dt ) N ai

j;iciT 2
j;i þ 2N ai

j;iðai � biP j;iÞT j;i � 2Qj;i ¼ 0; ð5Þ
which corresponds the feasible solution
T j;i ¼
�N ai

j;iðai � biP j;iÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2ai

j;i ðai � biP j;iÞ2 þ 2Qj;iN
ai
j;i

q
ciN ai

j;i

: ð6Þ
Fig. 1.
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The demand in the interval ð0; t0l;jiÞ is lki (l = 1,2, . . . ,ni) then
lki ¼
Z t0l;ji

0

ðai � biP j;i þ citÞN ai
j;i dt;
which implies
N ai
j;icit02l;ji þ 2N ai

j;iðai � biP j;iÞt0l;ji � 2lki ¼ 0; ð7Þ
which gives only the real solution
t0l;ji ¼
�N ai

j;iðai � biP j;iÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2ai

j;i ðai � biP j;iÞ2 þ 2lcikiN ai
j;i

q
ciN ai

j;i

for l ¼ 1; 2; . . . ; ni: ð8Þ
Thus,
tl;ji ¼ t0l;ji � t0l�1;ji ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2ai

j;i ðai � biP j;iÞ2 þ 2lcikiN ai
j;i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2ai

j;i ðai � biP j;iÞ2 þ 2ðl� 1ÞcikiN ai
j;i

q
ciNj;i

: ð9Þ
Again the relation between Qj,i and ki as
Qj;i ¼ niki þ W j;i;

ki ¼ ðQj;i�W j;iÞ=ni:
ð10Þ
4. The inventory cost function

The total cost in the jth cycle consists of the following components:
(a) Transportation cost (Ctj,i), (b) Advertisement cost (CAdj,i), (c) Holding cost (Chj,i), (d) Purchase cost

(pj,i), (e) Set-up cost (C3j,i).

(a) Transportation cost: The transportation cost for transferred the items/goods from RW to OW in ni ship-
ments is given by
Ctj;i ¼ ni½a0i þ b0iðki � SiÞ� for ki > Si;

¼ nia0i; otherwise:
ð11Þ
(b) Advertisement cost: The total advertisement cost per replenishment is
CAdj;i ¼ lj;iQj;iP j;iN j;i: ð12Þ
(c) Holding cost: The inventory time units in RW is
Xni

l¼1

½Qj;i � W j;i � ðl� 1Þki�tl;ji:
The holding cost of the items in RW in the jth cycle is
F j;i

Xni

l¼1

½Qj;i � W j;i � ðl� 1Þki�tl;ji: ð13Þ
Between (l � 1)th and lth (l = 1,2, . . . ,ni) shipments, i.e., during the interval ðt0l�1;ji; t
0
l;jiÞ, ki units in OW are

used to meet the customer’s demand for the period tl,ji.
So the holding cost El,ji for these items in OW are given by
El;ji ¼ H j;i

Z t0l;ji

t0
l�1;ji

ðt � t0l�1;jiÞDj;i dt: ð14Þ
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The total of all such holding cost is
Xni

l¼1

El;ji ¼ N ai
j;iHj;i

Xni

l¼1

fðai � biP j;i � cit0l�1;jiÞðt02l;ji � t02l�1;jiÞ=2þ ciðt03l;ji � t03l�1;jiÞ=3

� ðt0l;ji � t0l�1;jiÞt0l�1;jiðai � biP j;iÞg: ð15Þ
As the quantity (Wj,i � ki) units is kept unused in OW for a period t0ni ;ji, the holding cost for these quantities
is H j;iðW j;i � kiÞt0ni;ji.

When the last shipment, i.e., nith ki units arrives in OW, the on hand inventory in OW becomes Wj,i which is
cleared during the interval ðt0ni;ji; T j;iÞ.

The holding cost for these units is
Hj;i

Z T j;i

t0ni ;ji

ðt � t0ni;ji
ÞDj;i dt ¼ N ai

j;iHj;i

Xni

l¼1

fðai � biP j;i � cit0ni ;jiÞðT 2
j;i � t02ni;jiÞ=2þ ciðT 3

j;i � t03ni;jiÞ=3

� ðT j;i � t0ni;jiÞt0ni ;jiðai � biP j;iÞg: ð16Þ
The total holding cost (Chj,i) is the sum of equations (13)–(16).
Thus, the profit function is
max Z ¼ hSales revenuei � hPurchase costi � hHolding costi � hSet-up costi � hTransportation costi
� hAdvertisement costi:
Now, the average profit for the two-storage system over (0,Tj,i) is given by
max ZðQ; nÞ ¼ max
Xn

i¼1

ZiðQj;i; niÞ ¼
Xn

i¼1

½Qj;iP j;i � Qj;ipj;i � Chj;i � C3j;i � Ctj;i � CADj;i�=T j;i: ð17Þ
The above profit function Zi is a function of two variables Qj,i and ni of which ni is discrete variables and Qj,i

is continuous variable. Our objective is to determine the values of continuous and discrete variables by max-
imizing the profit function Zi(Qj,i,ni).

Hence, our problem is
max
Xn

i¼1

ZiðQj;i; niÞ

s:t:
Xn

i¼1

wiðQj;i � W j;iÞ 6 W : ð18Þ
The above problem (18) is a non-linear mixed integer maximization problem. It is a formidable task to
prove that the problem (18) is either concave or not. Hence, to find out the global solution, one can use
any well-known soft computing method. In this paper, we shall use real-coded GA to find out the global solu-
tion (best found solution).

5. Genetic algorithm

Genetic algorithms are heuristic search process for optimization that resembles natural selection. In most
cases, they can find the global optimum solution with a high probability. They mimic the process of natural selec-
tion and is based on Darwin’s survival of the fittest principles. In this algorithm, a population of individuals
(potential solutions) undergo a sequence of unary (mutation type) and higher order (crossover type) transforma-
tions. These individuals select the next generation. This new generation contains a higher proportion of the char-
acteristics possessed by the ‘good’ members of the previous generation and in this way good characteristics are
spread over the population and mixed with other good characteristics. After a few numbers of generations, the
program either converges or is terminated and the best individual is taken as the optimal solution. It is generally
accepted that any Genetic Algorithm to solve a problem must have the following basic components:
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• Values of parameters (population size, probabilities of applying genetic operators, etc.) of Genetic
Algorithms.

• Chromosome representation.
• Initial population production.
• Evaluation function rating solutions in terms of their fitness.
• Selection process.
• Genetic operators (crossover and mutation) that alter the genetic composition of parents during repro-

duction.

The coding of real-coded Genetic Algorithm (RCGA) is shown in Fig. 2.
5.1. Parameters of GA

Now, we have to set the different parameters on which GA depends. All these parameters are the popula-
tion size (POPSIZE), probability of crossover (PCROS), probability of mutation (PMUTE), maximum num-
ber of generation (MAXGEN). About the population size of GA, there is no clear indication how large it
should be. If the population is too large, there arises some difficulties in storing of the data. But if the popu-
lation size is too small, there may not be enough populations for good crossover. In our present study, we have
taken the following values of parameters:
POPSIZE ¼ 100; PCROS ¼ 0:8; PMUTE ¼ 0:1; MAXGEN ¼ 15:
5.2. Chromosome representation

A main problem in applying a GA is to design an appropriate chromosome representation of solutions of
the problem with genetic operators. Traditional binary vectors used to represent the chromosome are not
effective in many highly physical non-linear problems. As our proposed model is highly non-linear containing
two different types of variables (discrete and continuous); to mitigate this difficulty, a real number represen-
tation is used here. A real row matrix Vj,i = [Vj,i1,Vj,i2] is used to represent a chromosome where Vj,i1 and Vj,i2

represent Qj,i and ni (i = 1,2, . . . ,n) and (j = 1,2, . . . ,POPSIZE), respectively.
begin

  Initialize the parameters of GA 

    t← 0 [ t  represents the number of current generation ] 

    initialize p(t)  [  p(t) represents the population at t th generation  ] 

    evaluate p(t) 

        while ( not terminate condition ) 

          { 

 t ← t +1 

 select  p(t) from p( t-1) 

alter ( crossover and mutate ) p(t) 

evaluate p(t) 

upgrade the result, if possible 

          } 

print the best found result 

end

Fig. 2. Coding of RCGA.
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5.3. Initialization

Here, the parameter POPSIZE denotes the number of chromosomes and these chromosomes are initialized
randomly. Usually, it is difficult for complex optimization problems to produce feasible chromosome explic-
itly. The population generation techniques proposed in our present model are as follows:
In GA, POPSIZE number of chromosomes V1,i,V2,i, . . . ,VPOPSIZE,i are generated randomly within the
boundary of the component where each solution satisfies the resource constraints of the problem. This
set of chromosomes is taken as initial population.
5.4. Evaluation function

To evaluate the value of the objective function Z(Q,n) due to the potential solution Vj,i = [Vj,i1,Vj,i2] where
(j = 1,2, . . . ,POPSIZE) and (i = 1,2, . . . ,n), purchase cost of Qj,i is taken as pj,i1 per unit if 0 < Qj,i < bi1,pj,i2

per unit if bi1 6 Qj,i < bi2 and so on for the nth price break pj,in per unit if Qj,i P bin�1 for i = 1,2, . . . ,n [c.f.
Eq. (3)]. Following this, holding costs, advertisement cost, revenue and time period for the items are also cal-
culated. The value of the objective (profit) function due to the chromosome Vj,i is taken as fitness value of Vj,i

and it is denoted by eval(Vj,i).

5.5. Selection

The purpose of selection is, of course, to emphasize the better individuals in the population for recombi-
nation in hopes that their offspring will in turn have even higher fitness. Selection has to be balanced with var-
iation from crossover and mutation: too strong selection means that sub-optimal highly fit individuals will
take over the population, by reducing the diversity needed for further change and progress; too weak selection
will result in too-slow evolution. Here, we adopt well-known Roulette Wheel scheme. The selection process is
as follows:

(i) Find the total fitness of the population F ¼
PPOPSIZE

j¼1 evalðV j;iÞ.
(ii) Find the probability pj of selection for each chromosome Vj,i by the formula pj = eval(Vj,i)/F.

(iii) Find cumulative probability qj for each chromosome Vj,i using the formula
qj ¼
Xj

i�1

pi:
(iv) Generate a random number r in [0,1].
(v) If r < q1 then select the first chromosome V1,i otherwise select the jth chromosome Vj,i(2 6 j 6 POPSIZE)

such that qj�1 < r 6 qj.
(vi) Repeat (iv) and (v) POPSIZE times and obtain POPSIZE numbers of chromosomes.

5.6. Crossover operation

The exploration and exploitation of the solution space is made possible by exchanging genetic information
of the current chromosomes. We define a parameter PCROS of a genetic system as the probability of cross-
over. Then the probability gives us the expected number PCROS * POPSIZE of chromosomes which under-
goes the crossover operation. Crossover operates on two parent solutions at a time and generates offspring
solutions by recombining both parent solution features. After selection of chromosomes for new population,
crossover, namely arithmetic crossover operation is used and is defined as a linear combination of two con-
secutive selected chromosomes. In our problem, each chromosome Vj,i has two genes Vj,i1 and Vj,i2 which rep-
resent continuous and discrete variables, respectively. Different steps of crossover operation are given below:
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(i) Find the integral value of PCROS * POPSIZE and store it in N.
(ii) Generate a random real number r in (0, 1).

(iii) Select two consecutive chromosomes Vl,i1 and Vk,i2 randomly among population for crossover if
r < PCROS.

(iv) Generate a random number c in the interval (0, 1).
(v) Produce the offsprings X and Y as
X ¼ c � V l;i1 þ ð1� cÞ � V k;i2;

Y ¼ c � V k;i2 þ ð1� cÞ � V l;i1:
(vi) Select two integer chromosomes Vl,i2 and Vk,i2. If Vl,i2 > Vk,i2 and generate a random integer number g
between 0 and Vl,i2 � Vk,i2. Then produce X 0 = Vk,i2 + g and Y 0 = Vl,i2 � g.

(vii) Repeat steps (i)–(vi) for N/2 times.

If the feasible set is convex, this arithmetical crossover operation ensures that both children are feasible if
both parents are. However, in many cases, the feasible set is not necessarily convex or hard to verify convexity.
So we must check the feasibility to each child. If both children are feasible, then we replace the parents by
them. If not, we keep the feasible one if it exists, and then re-do the crossover operator by generating the ran-
dom number c until two feasible children are obtained or a given number of cycles is finished.

5.7. Mutation operation

This operation is responsible for fine tuning capabilities of the system. it is applied to a single chromosome.
Here, we shall use uniform and non-uniform mutations for discrete and continuous variable, respectively. The
action of non-uniform mutation depends on the age of the population. If the chromosome Vk,i is selected for
this mutation and domain of Vk,i is [lk,i,uk,i], then the reduced value of Vk,i is given by
V k;i ¼
V k;i þ Dðt; uk;i � V k;iÞ if a random digit is 0;

V ik � Dðt; V k;i � lk;iÞ if a random digit is 1:

�

where k 2 [1,2] and D(t,y) returns a value in the range [0, y].
In our study, we have taken
Dðt; yÞ ¼ a random integer between ½0; y� for discrete variable

¼ y½1� rð1�t=T Þb� for a continuous variable;
where r is a random number in [0, 1], T = MAXGEN, t = represents the current generation and b is the
constant.

6. The algorithm of AUD for multi-price break

The quantity Q�j;i which maximizes the average total profit for the above model can be determined by the
following procedure which is similar to that proposed by Wee [35]:

Step 1. Starting with the lowest unit cost (in our case pj,in),
Step 1.1. calculate the optimal ni and Qj,i values using the proposed procedure;
Step 1.2. calculate the respective ki from Eq. (9) and check if Qj,i is valid quantity;
Step 1.3. continue until the first valid ordered quantity, Qj,i is obtained and calculate the optimum

Z(Qj,i,ni).
Step 2. Calculate the optimal net profit for all price break quantities larger than Qj,i say Zbik+1, . . . ,Zbin�1.
Step 3. Compare Z(Qj,i,ni), Zbik+1, . . . ,Zbin�1 and select Q�j;i, n�i and k�i corresponding to the maximum of these

values.
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7. Numerical examples

To illustrate the developed model, an example has been considered. Though the values of the model param-
eters have not been selected from any case study, the values considered here are feasible. Here, we have con-
sidered two items and four-price break. The input values are given in Table 1 and optimum results are
displayed in Table 2.
Table 1
Different parametric values for proposed model (input data)

i ai bi ci Wj,i (Units) Si (Units) mj,i xi (%) yi (%) lj,i C3j,i ($) ai Nj,i a0i ($) b0i ($)

1 120 0.4 5 75 10 1.5 18 12 0.02 15 0.5 2 13 0.4
2 110 0.6 4 35 12 1.6 20 15 0.03 13 0.3 2 15 0.5

w1 = 2.5 m2, w2 = 2 m2, W = 160 m2.

Table 2
Optimum results for proposed model

i Q�j;i n�i T �j;i k�i Z* ($)

1 112.3776 3 0.6983 12.4592 827.8730
2 58.7623 2 11.8812

Table 3
Sensitivity analysis of the proposed model

Changing of parameters i �20% �10% �5% 5% 10% 20%

Wj,i Dni 1 Infeasible Infeasible Infeasible �33.33 33.33 0
2 Infeasible Infeasible Infeasible 0 0 0

DZ Infeasible Infeasible Infeasible �6.2596 �6.5332 �3.9502
Dki 1 Infeasible Infeasible Infeasible 99.5674 �11.2933 30.8805

2 Infeasible Infeasible Infeasible �30.5289 �30.1957 �26.6088
DTj,i Infeasible Infeasible Infeasible 14.0806 12.5352 23.1800

mj,i Dni 1 Infeasible 0 0 0 0 0
2 Infeasible 0 0 0 0 0

DZ Infeasible �53.8234 �26.8181 26.6315 53.0762 105.4056
Dki 1 Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000

2 Infeasible �0.0002 �0.0002 �0.0002 �0.0002 �0.0002
DTj,i Infeasible �0.6842 �0.3436 0.3445 0.6920 1.3943

ai Dni 1 0 0 0 0 0 0
2 0 0 0 0 0 0

DZ �19.0684 �9.1599 �4.4853 4.2949 8.3978 16.0239
Dki 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 �0.0002 �0.0002 �0.0002 �0.0002 �0.0002 �0.0002
DTj,i 26.0869 11.5662 5.4718 �4.9408 �9.4215 �17.2370

bi Dni 1 0 0 0 0 0 0
2 0 0 0 0 0 0

DZ 1.6836 0.8418 0.4209 �0.4209 �0.8418 �1.6839
Dki 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 �0.0002 �0.0002 �0.0002 �0.0002 �0.0002 �0.0002
DTj,i �1.3585 �0.6842 �0.3436 0.3445 0.6920 1.3943

ci Dni 1 0 0 0 0 0 0
2 0 0 0 0 0 0

DZ �0.3379 �0.1687 �0.0842 0.0842 0.1682 0.3360
Dki 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 �0.0002 �0.0002 �0.0002 �0.0002 �0.0002 �0.0002
DTj,i 0.3033 0.1508 0.0749 �0.0762 �0.1514 �0.3011
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For the 1st item For the 2nd item

pj;1 ¼

$15:00; 0 < Qj;1 < 50;

$14:00; 50 6 Qj;1 < 75;

$13:25; 75 6 Qj;1 < 150;

:$12:00; Qj;1 P 150:

8>>><
>>>:

pj;2 ¼

$12:00; 0 < Qj;2 < 25;

$11:25; 25 6 Qj;2 < 70;

$10:50 70 6 Qj;2 < 100;

$9:75; Qj;2 P 100:

8>>><
>>>:
8. Sensitivity analysis

The earlier numerical example is used to study the effect of under or overestimation of various parameters
on optimal cycle length, maximum net profit, optimal number of shipments from RW to OW and optimal
units transported in each shipment of the inventory system. Here, we employ DT j;i ¼ ðT 0j;i � T j;iÞ=T j;i�
100%, DZ = (Z 0 � Z)/Z · 100%, Dni ¼ ðn0i � niÞ=ni � 100% and Dki ¼ ðk0i � kiÞ=ki � 100% as a measure of sen-
sitivity, where ni, ki, Z and Tj,i are the true values and n0i, k0i, Z 0 and T 0j;i the estimated values. The sensitivity
analysis is shown by increasing or decreasing the parameters by 5%, 10% and 20%, taking one or more at a time
and keeping the others at their true values. The results are presented in Table 3, which are self-explanatory.
9. Conclusion

Here, for the first time, a multi-item two-storage inventory model with AUD has been formulated with a
resource constraint and successfully solved by real-coded GA with crossover and mutation for integer and
non-integer variables, developed for this purpose. Due to the complexities, till now, none has attempted this
type of multi-item discounted problem with space constraint by conventional price-break methodology.
Though the model has been illustrated with only four price breaks, the GA developed here can be easily
extended to include more than four price-break points. Similarly, the present methodology can be easily
applied to the inventory problems with several resource constraints like limitation on budgetary costs, etc.
in addition to the space constraint illustrated in this paper. Moreover, the present GA can also applied to
other types of inventory models with variable demand, fixed time horizon, etc. along with quantity discount
formulated in fuzzy, probabilistic or fuzzy-probabilistic environments.
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