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Abstract 

 This paper deals with an inventory model for single 

deteriorating item during its seasonal time where 

lifetime of an item has an upper limit. Deterioration 

rate increases with time and depends on the duration 

of lifetime left. Demand of the item is price dependent 

and unit cost of item is time dependent. Unit cost is a 

decreasing function at the beginning of the season and 

an increasing function at the end of the season and is 

constant during the remaining part of the season. So, 

the inventory model is formulated to maximize the 

average proceeds out of the system from the imprecise 

planning horizon. As the optimization of fuzzy 

objective is not well defined, optimistic/pessimistic 

return of the objective function (using 

possibility/necessity measure of the fuzzy event) is 

optimized. A fuzzy simulation process is proposed to 

evaluate this optimistic/pessimistic return. A genetic 

algorithm (GA) is developed based on entropy theory 

where region of the search space gradually decreases 

to a small neighbourhood of the optima.  This is 

named as region reducing genetic algorithm (RRGA) 

and is used to solve this model when planning horizon 

is crisp.  As simulation based region reducing genetic 

algorithm, called fuzzy simulation based region 

reducing genetic algorithm (FSRRGA) is developed to 

solve the fuzzy objective value. The model is 

illustrated with some numerical examples and some 

sensitivity analyses have been performed. 

 

Keywords: Fuzzy planning horizon, Seasonal product, 

Inventory, Time dependent deterioration, Region 

Reducing Genetic Algorithm (RRGA), Fuzzy 

simulation. 

 

1. Introduction 
In general, planning horizon of many seasonal items 

fluctuate to some extend.  As for example, in India, 

winter starts with November and ends with February. 

But its duration is not always fixed. A little variability 

can be easily noticed over the years. Thus, planning 

horizon of seasonal products such as fruits, potato, 

onion, cabbage, cauliflower, food grains, etc. is a 

fuzzy variable instead of a fixed deterministic 

constant. For the seasonable item, it is normally 

observed that price of the item decreases with time at 

the beginning of the production season due to 

availability in the market and reaches to a minimum 

value. Price of the item remains constant at this 

minimum value during the major part of the season 

due to sufficient availability of the item in the market 

and towards the end of the season due to scarcity, cost 

again increases gradually and reaches its off season 

value. This price remains stable during the remaining 

part of the year. A considerable number of research 

works have been done for seasonal products by 

several researchers Zhou et al. (2004), Chen and 

Chang (2007), Panda et al. (2008), Banerjee and 

Sharma  (2010A, 2010B), Skouri and Konstantaras 

(2013), Tayal et. al. (2015), Krommyda et. al .(2017)  

etc. Recently, Mohanty et. al (2018) developed an 

trade credit inventory modeling of deteriorating items 

over random planning horizon due to fluaction of 

season.  

 In most of these research works, it is assumed that 

price of the item decreases with time or demand 

increases with time. But the above mentioned real life 

phenomenon of a seasonal product is overlooked by 

the researchers. Another shortcoming of these 

research work is the assumption that the duration of 

the season of such products as crisp value. Although, 

the duration of the season for an item is finite but it 

varies from year to year due to environmental 

changes. So, it is worthwhile to assume this duration 

as a fuzzy parameter. Occurrence of fuzzy seasonal 

time leads to optimization problem with fuzzy 

objective function. In the last two decades extensive 

research work has been done on inventory control 

problems in fuzzy environment (Lee et al. (1991),  

Lam and Wong (1996), Roy and Maiti (2000), 

Mondal and Maiti (2002), Kao and Hsu (2002),  Bera 

et al. (2012), Bera and Maiti (2012), Maiti et al. 
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(2014), De and Sana (2015), Garai et. al. (2016), Bera 

and Jana (2017), De and Mahata (2017) etc.  These 

problems considered different inventory parameters 

as fuzzy numbers which render fuzzy objective 

function. As optimization in fuzzy environment is not 

well defined some of these researcher transform the 

fuzzy parameters as equivalent crisp number or crisp 

interval and then the objective function is transformed 

to an equivalent crisp number/interval (Maiti and 

Maiti (2007),  Bera et al.(2012)). Some of the 

researchers (Mondal and Maiti, (2002)) set the fuzzy 

objective as fuzzy goal whose membership function 

as a linear/non-linear fuzzy number and try to 

optimize this membership function using Bellman 

Zadeh's principle (Bellman and Zadeh, 1970). Maiti 

and Maiti (2006) propose a technique where instead 

of objective function pessimistic return of the fuzzy 

objective is optimized. They use necessity measure on 

fuzzy event to determine this pessimistic return and 

propose fuzzy simulation process to find this return 

function.  Maiti (2008, 2011) proposes a technique 

where possibility/necessity measure of objective 

function (fuzzy profit) on fuzzy goal is optimized to 

find optimal decision. Recently, Manna et.al.(2016), 

Garai et. al. (2016) and others developed inventory 

models using possibility and necessity constraints for 

a given level of optimistic/pessimistic sense. All these 

studies transform the fuzzy objective of the problem 

to an equivalent crisp objective and solution of the 

reduced problem is taken as approximate solution of 

the fuzzy problem. But there exist always some error 

in such approximation. In present day competitive 

market, an erroneous inventory decision may invite a 

huge loss in business. So modeling of present day 

inventory control problems should be very realistic 

and a methodology is required which can deal with 

fuzzy objective function directly without reducing it 

to crisp form.  

Most of the seasonal products have finite lifetime and 

are deteriorating in nature (Mahata and  Goswami, 

(2010)). Rate of deterioration increases with time and 

actually depends on the length  of  lifetime left.  Rate 

of deterioration becomes 100% when age of product 

covers the lifetime. In the literature, there are several 

investigations for deteriorating items such as Jaber et 

al. (2009); Yadav et al. (2011); Sana (2011), Skouri 

and Konstantaras (2013), Chaudhury et. al. (2015), 

Tayal et. al. (2015, Dutta and Kumar (2015), 

Karmakar and Chaudhury(2014), Kumar and Rajput 

(2015), , Mohanty et. al (2018), Rastogi et. al. (2018) 

and others. Most of the inventory articles are 

developed with constant deterioration. But the 

deterioration mentioned earlier, deterioration 

increases with time as stress of units on others causes 

damage. According to the author’s best knowledge, 

very few articles have been published incorporating 

time varying deterioration (Sarkar (2011)). However, 

Janssen et. al. (2016) presented a review article on 

deteriorating items including this publication from 

2012 to 2015. 

Use of soft computing techniques for inventory 

control problems is a well established phenomenon. 

Several authors use Genetic Algorithm (GA) in 

different forms to find marketing decisions for their 

problems. Pal et al. (2009) uses GA to solve an EPQ 

model with price discounted promotional demand in 

an imprecise planning horizon. Roy et al. (2009) used 

a GA with varying population size to solve a 

production inventory model with stock dependent 

demand incorporating learning and inflationary effect 

in a random planning horizon.  Bera and Maiti (2012) 

used GA to solve multi-item inventory model 

incorporating discount.  Maiti et al. (2009) used GA 

to solve inventory model with stochastic lead time 

and price dependent demand incorporating advance 

payment. Mondal  et al. (2002) uses a dominance 

based GA to solve a production-recycling model with 

variable demand, demand-dependent fuzzy return 

rate. Combining the features of GA and PSO a hybrid 

algorithm PSGA is used by Guchhait et al. (2014) to 

solve an inventory model of a deteriorating item with 

price and credit linked fuzzy demand. All these soft 

computing techniques are not capable to deal with 

fuzzy objective directly. 

From the above discussion it is clear that there are 

some lacunas in fuzzy inventory models of 

deteriorating items, especially for seasonal products. 

In this research work an attempt has been made to 

reduce these lacunas. The aim of this research work is 

fourfold:  

 The aim of this research work is fourfold: 

 Firstly to model price of a seasonal product as 

a function f1(t) of time which decreases 

monotonically for a duration H1 at the 

beginning of the season and reaches a 

minimum value f1(H1). The price remains at 

this value f1(H1) during a period H2. Then it 

again follows an increasing function f2(t) and 

after a period H3  it reaches the off season 

value, i.e., f1(0)=f2( H1+H2+H3).  

 Secondly to model the season length 

(H1+H2+H3) as imprecise parameter. 

 Thirdly for such a realistic inventory model, 

rate of deterioration as increasing function of 

time which actually depends on the lifetime of 

the item. 
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 At length to introduce an approach which can 

deal with fuzzy optimization problem, without 

reducing the objective function to any 

deterministic form. 

 

Here, inventory model for a deteriorating seasonal 

product is developed whose demand depends upon 

the unit cost of the product. Unit cost of the product is 

time dependent. During the beginning of the period as 

availability of the item gradually increases, unit cost 

decreases monotonically with time and reaches a 

constant value when availability of the item becomes 

stable. Unit cost remains   constant until the items 

availability again decreases towards the end of the 

season. Then as availability decreases, unit cost 

gradually increases and reaches its value as it was at 

the beginning of the season and then the season ends. 

Here exponential increasing and decreasing rate of 

unit cost function is considered. Rate of deterioration 

 of the item increases with time and is of the form 
=[1/(1+R-t)], where R is the lifetime of the product, t 

is the  time passed after the arrival of the units in the 

inventory.  

Clearly as 1,  Rt , i.e., when t=R, all units in 

the inventory will be spoiled. It is assumed that time 

horizon of the season is fuzzy in nature. In fact three 

parts in which unit cost function can be divided are 

considered as fuzzy number. The model is formulated 

to maximize the total proceeds out of the system 

which is fuzzy in nature. As the optimization of fuzzy 

objective is not well defined, optimistic/pessimistic 

return of the objective function (using 

possibility/necessity measure of the fuzzy event) is 

optimized. A fuzzy simulation process is proposed to 

evaluate this optimistic/pessimistic return. A genetic 

algorithm (GA) is developed based on entropy theory 

where region of the search space gradually decreases 

to a small neighbourhood of the optima.  This is 

named as region reducing genetic algorithm (RRGA) 

and  simulation based region reducing genetic 

algorithm, called fuzzy simulation based region 

reducing genetic algorithm (FSRRGA) is developed 

to solve the fuzzy objective value. The models are 

illustrated with some numerical examples and some 

sensitivity analyses have been presented. 

 

2. Definitions and Preliminaries 
 

2.1 Possibility/Necessity in fuzzy 

environment 

Any fuzzy number %a  of    (where  represents set 

of real numbers) with membership function

: [0,1]a %  is  called a fuzzy number. Let a% 

and b%  be two fuzzy numbers with membership 

functions ( )a x% and ( )
b

x%  respectively. Then 

according to Zadeh(1978), Dubois and Prade 

(1983) and Liu andIwamura(1998a,1998b): 

( * ) sup{min( ( ), ( )), , , * } (1)a b
pos a b x y x y x y  %%

%%

 
where abbreviation pos represents 

possibility and * is any one of the relations 

, , , ,     . Analogously, if b% is a 

crisp number,say,b,then  

( * ) sup{ ( ), , * }apos a b x x x b %
%           

(2) 

The necessity measure of an event a%*b% is a 

dual of the possibility measure. The grade of 

an event is the grade of impossibility of the 

opposite event and is defined as: 

                                                

( * ) 1 ( * )nes a b pos a b % %% %                                

(3)      

where the abbreviation nes represents the 

necessity measure and *a b%%  represents the 

complement of the event  a%*b%. 

If a%,b% ( , )and c f a b  %% % where 

:f   is binary operation then, the 

extension principle by Zadeh(1978), the 

membership function c of c%
%is given by 

     

( ) sup{min( ( ), ( ) ), ,

( , ), } (4)

c a b
z x y x y and

z f x y z

   

  

%% %

    

2.2 Triangular Fuzzy Number (TFN) 

 A TFN  1 2 3( , , )a a a a%  (cf. Fig-1) has three 

parameters 1a , 2a , 3a  where 1a < 2a < 3a  and is 

characterized by the membership function ( )a x% , is 

given by 
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otherwise




  




  






%                           

(5)             

4. Optimization of fuzzy objective using 

    possibility/necessity measure 
A general single-objective unconstrained 

mathematical programming problem is of the 

following form: 

 

                  Max      ( , )f x   

             subject to x X                                 (6) 

where x is a decision vector, ξ is a vector of crisp 

parameters,  f(x, ξ) is the return function, X is the 

search space. In the above problem when ξ is a fuzzy 

vector%, then return function f (x, %) becomes 

imprecise in nature. In that case the statement 

maximize f (x, %) is not well defined. In that 

situation one can maximize the optimistic 

(pessimistic) return z corresponding to the objective 

function using possibility (necessity) measure of the 

fuzzy event {% | f (x, %) ≥ z} as suggested by Liu 

and Iwamura (1998a, 1998b), Maiti and Maiti (2006). 

So when ξ is a fuzzy vector one can convert the above 

problem (6) to the following equivalent 

possibility/necessity constrained programming 

problem (analogous to the chance constrained 

programming problem). 

                                     

/ { : ( , ) }

Max z

subject to pos nes f x z

x X

   



% %        

(7)                 
where  β is the predetermined confidence level for 

fuzzy objective, pos{.} nes{.}denotes the possibility 

(necessity) of the event in {.}. Here the objective 

value z should be the maximum that the objective 

function f (x, %) achieves with at least possibility 

(necessity) β, in optimistic (pessimistic) sense. 

 

4.1 Fuzzy simulation 
The basic technique to deal problem (7) is to convert 

the possibility/necessity constraint to its deterministic 

equivalent. However, the procedure is usually very 

hard and successful in some particular cases (Maiti 

and Maiti, 2006). Liu and Iwamura (1998a,1998b) 

proposed fuzzy simulation process to determine 

optimum value of z for the problem (7) under 

possibility measure of the event {% | f (x, %) ≥ z}. 

Following Liu and Iwamura (1998b) two algorithms 

are developed to determine z in (7) and are presented 

below. 

Algorithm 1 Algorithm to determine z, for 

problem (6) under possibility measure of the event{

% | f (x, %) ≥ z} 

1. Set z = −∞. 

2. Generate ξ0 uniformly from the β cut set of fuzzy 

vector %. 

3. If z < f(x, ξ0) then set z = f(x, ξ0). 

4. Repeat Steps 2 and 3, N times, where N is a 

sufficiently large positive integer. 

5. Return z. 

6 End algorithm. 

We know that nes{% | f (x,
 
%) ≥ z} ≥ β ⇒ pos{% | f 

(x,
 
%) < z} < 1−β . Now roughly find a point ξ0 from 

fuzzy vector ξ, which approximately minimizes   f. 

Let this value be z0 and ε be a positive number. Set z 

= z0 − ε and if pos{% | f (x,
 
%) < z} < 1−β then 

increase  z with ε. Again check pos{% | f (x,
 
%) < z} 

< 1−β and it continues until pos{% | f (x,
 
%) < z} ≥ 

1−β . At this stage decrease value of ε and again tries 

to improve z.  
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When ε becomes sufficiently small then we stop and 

final value of z is taken as value of z. Using this 

criterion, Algorithm 2 is developed. 

Algorithm 2 Algorithm to determine z, for 

problem (6) under necessity measure of the event 

{% | f (x,
 
%) ≥ z} 

1. Set z = z0 − ε, F = z0 − ε, F0 = z0 − ε. 

2 .Generate ε0 uniformly from the 1 − β cut set of 

fuzzy vector%. 

3 .If f (x,
 0

%) < z. 

4 . then go to Step 10. 

5. End If 

6. Repeat Step 2 to Step 5 N times  

7. Set F = z. 

8. Set z = z + ε. 

9. Go to Step 2. 

10. If(z = F)  //In this case optimum value of z < z0 − ε 

11. Set z = z0 − ε, F = F − ε, F0 = F0 − ε. 

12. Go to Step 2 

13. End If 

14. If (ε < tol) 

15. go to Step 20 

16. End If 

17. ε = ε/N 

18. z = F + ε 

19. Go to Step 2. 

20. Output F. 

 

5.  Fuzzy simulation-based region 

    reducing genetic algorithm 
GAs are exhaustive search algorithms based on the 

mechanics of natural selection and genesis (crossover, 

mutation, etc.) and have been developed by Holland, 

his colleagues and students at the University of 

Michigan (Goldberg (1989)). Because of its 

generality and other advantages over conventional 

optimization methods it has been successfully applied 

to different decision making problems (Zegordi et 

al.(2010), Simon et al.(2011), Das et al., (2012), 

Maiti et. al. (2014) and others ). Generally a GA 

starts with a single population (Goldberg (1989), 

Michalewicz (1992)), randomly generated in the 

search space. Consequently they are easily trapped 

into local optima of the objective function. This 

difficulty is mainly due to the premature loss of 

diversity of the population during the search. To 

overcome this difficulty, Bessaou and Siarry (2001) 

propose a GA where initially more than one 

population of solutions are generated. Genetic 

operations are done on every population a finite 

number of times to find a promising zone of optimum 

solution. Finally a population of solutions is 

generated in this zone and genetic operations are 

performed on this population a finite number of times 

to get a final solution. Again the convergence towards 

the global optima of a GA, operating with a constant 

probability of crossover pc, is ensured if the 

probability of mutation pm(k) follows a given 

decreasing law, in function of the generation number 

k (Davis and Principe, 1991). Following Bessaou and 

Siarry (2001) a GA is developed using them entropy 

generated from information theory, where promising 

zone is gradually reduces to a small neighbourhood of 

the optimal solution. In the algorithm any possibility 

constraint on objective function is checked via fuzzy 

simulation technique. This algorithm is named as 

FSRRGA and is used to solve our models. The 

algorithm is given below: 

 

Algorithm 3     FSRRGA algorithm 

1. Initialize probability of crossover pc and     

probability of mutation pm. 

2. Set iteration counter T = 0. 

3. Generate M sub-populations of solutions, each of 

order N  (i.e., each sub-population contains N  

solutions), from search space of optimization problem 

under consideration, such that the    diversity among 

the solutions of each population is maintained. 

Diversity is maintained using the entropy originating 

from information theory [cf., § 5.1-(b)]. Solutions for 

each of the  population are generated randomly from 

the search space in such a way that the constraints of 

the problem are satisfied. Possibilistic constraints are 

checked using the algorithms of Section 4.1. Let P1, 

P2, … ,PM be these populations. 

4.Evaluate fitness of each solution of every 

population. 

5. Repeat 

     A.  Do for each sub-populations Pi. 

           a.Select N solutions from Pi for mating pool 

using Roulette-wheel selection                     

process (Michalewicz, 1992) (These N 

solutions may not be distinct. Solution with 

higher fitness value may be selected more 

than once). Let this set be Pi 
1
. 

            b.Select solutions from Pi 
1
, for crossover and 

mutation depending on pc and pm                                   

respectively. 

            c. Make crossover on selected solutions for 

crossover. 

           d. Make mutation on selected solutions for 

mutation. 

            e. Evaluate fitness of the child solutions. 
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            f.Replace the parent solutions with the child 

solutions. 

            g.  Replace Pi with Pi 
1
 

    B. End Do 

    C. Reduce probability of mutation pm. 

6.Until number of generations < Maxgen1, where 

Maxgen1 represents the maximum number 

ofgenerations to be made on initial populations. 

7.Select optimum solutions from each sub-

populations and S* be the best among these solutions. 

8.  Select a neighbourhood V(T) of S* 

9.  Repeat 

        a. Generate a population of solutions of size N in 

V(T). Let it be P. 

         b. Evaluate fitness of each solutions. 

         c. Initialize probability of mutation pm. 

         d. Repeat 

             (i)Select N solutions from P for mating pool 

using Roulette-wheel selection process. 

Let this set be P
1
. 

             (ii)Select solutions from P
1 

for crossover and 

mutation depending on pc and pm   

                        respectively. 

             (iii)Make crossover on selected solutions for 

crossover. 

             (iv) Make mutation on selected solutions for 

mutation. 

            (v) Evaluate fitness of the child solutions. 

            (vi) Replace the parent solutions with the 

child solutions. 

             (vii) Replace P with P
1
. 

             (viii) Reduce probability of mutation pm. 

        e. Until number of generations < Maxgen2, 

where Maxgen2 represents the maximum                    

number of generations to be made on this 

population. 

         f. Update S* by the best solution found. 

         g. Reduce the neighbourhood V(T). 

         h. Increment T by 1. 

10. Until  T < Maxgen3, where Maxgen3 represents 

the maximum number of times for which  the search 

space to be reduced. 

11. Output S
*
. 

5.1 FSRRGA procedures for the 

      proposed model 
a. Representation A ‘K-dimensional real vector’ Xli 

= (xli1, xli2, .... xliK) is used to represent i
th
 solution in 

l
th
 population, where xli1, xli2, .... xliK represent 

different decision variables of the problem such that 

constraints of the problem are satisfied. 

   

b. Initialization At this step M sub-populations, each 

of size N are randomly generated in the search space 

in such a way that diversity among the solutions of 

each of the populations is maintained and the 

constraints of the problem are satisfied. Possibility 

constraints are checked using the algorithms of 

Section 4.1. Let Xl1, Xl2, ... XlN, are the solutions of l
th

 

population Pl, l = 1, 2, ...M. Diversity can be 

maintained using the entropy originating from 

information theory. Entropy of j
th
 variable for the l

th 

population Pl can be obtained by the formula: 

                                                          

1 1

( ) log( )
N N

j l ik ik

i k i

E P p p
  

   

where ikp represents the probability that the value of 

j
th
 variable of i

th
 solution (xlij) is different from the 

one of the j
th

 variable of the k
th
 solution (xlkj) and is 

determined by the formula: 

                                                     

1
lij lkj

ik

j j

X X
p

U L


 


 

Where [Lj, Uj] is the variation domain of the j
th

 

variable. The average entropy E(Pl) of the l
th

 

subpopulation Pl is taken as the average of the 

entropies of the different variables fo the population, 

i.e., 

                                                      

1

1
( ) ( )

K

l j l

j

E P E P
k 

   

It is clear that if Pl is made-up of same solutions, then 

E(Pl) vanishes and more varied the solutions, higher 

the value of E(Pl) and the better is its quality. So to 

maintain diversity, every time a new solution is 

randomly generated for Pl from the search space, the 

entropy between this one and the previously 

generated individuals for Pl is calculated. If this value 

is higher than a fixed threshold E0, fixed from the 

beginning, the current chromosome is accepted. This 

process is repeated until N solutions are generated. 

Following the same procedure all the sub-populations 

Pl, 

l = 1, 2, ..M are generated. This solution sets are taken 

as initial sub-populations. 

c. Fitness value  Value of the objective function due 

to the solution Xij (j
th
 solution in i

th
 population), is 

taken as fitness of Xij. Let it be f(Xij). Objective 

function is calculated using Algorithm 2 of Section 

4.1. 

d. Selection process for mating pool The following 

steps are followed for this purpose: 

   1.  For each population Pi, find total fitness of  
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      the population 

1

( )
N

i ij

j

F f X


  

   2. Calculate the probability of selection prij of  

     each solution Xij by the formula  

                    prij = f(Xij)/Fi. 

   3. Calculate the cumulative probability qrij for   

      each solution Xij by the formula  

                    
0

j

ij ik

k

qr pr


  

  4. Generate a random number ‘r’ from the 

      range [0, 1]. 

  5. If r < qri1 then select Xi1 otherwise select  

     Xij(2≤ j ≤ N) where qrij−1 ≤ r < qrij. 

  6.  Repeat Step 4 and 5 N times to select N 

      solutions for mating pool. Clearly one  

      solution may   be selected more than once. 

  7. Selected solution set is denoted by Pi
1
 in the  

      proposed FSRRGA algorithm. 

e. Crossover 

   1.  Selection for crossover  For each solution of Pi
1
 

generate a random number r from the range  [0, 1]. If 

r < pc then the solution is taken for crossover, where 

pc is the probability of crossover. 

   2. Crossover process  Crossover taken place on the 

selected solutions. For each pair of coupled solutions 

Y1, Y2 a random number c is generated from the 

range [0, 1] and Y1, Y2 are replaced by their 

offspring’s Y11 and Y21 respectively where Y11 = cY1 

+ (1 – c)Y2, Y21 = cY2 + (1 – c)Y1. 

f. Mutation 

    1. Selection for mutation For each solution of Pi
1
 

generate a random number r from the range [0, 1]. If 

r< pm then the solution is taken for mutation, where 

pm is the probability of          mutation. 

    2. Mutation process  To mutate a solution Xli = 

(xli1, xli2, .... xlik) select a random integer r in  the range 

[1, k]. Then replace xijr by randomly generated value 

within the boundary of r
th
          component of Xij. 

g. Reduction process of pm  Let pm(0) is the initial 

value of pm. pm(T) is calculated by the formula pm(T) 

= pm(0)exp(–T/α), where α is calculated so that the 

final value of pm is small enough (10
−3

 in our case). 

So,  
3

(0)
1/ log

10

mp
Maxgen



 
  

 
for the 

population Pi, i=1,2,….M and   

3

(0)
2 / log

10

mp
Maxgen



 
  

 
 for the population 

P(T) in the promising zone. 

h. Reduction process of neighbourhood  V(0) is the 

initial neighbourhood of S*.  V(T) is calculated by the 

formula V(T) = V(0)exp(–T/α), where α is calculated 

so that the final neighbourhood is small enough(10
−2

 

in our case). So 
2

(0)
3 / log

10

V
Maxgen



 
  

 
 

6. Assumptions and notations for the 

    proposed model 
The following notations and assumptions are used in 

developing the model. 

6.1 Notations 

 ch            holding cost per unit/unit time. 

H             time horizon. 

( )p t         purchase cost per unit. 

( )s t      selling price per unit. 

( )t         deterioration rate 

C0             ordering cost. 

 Q(Ti)       order quantity at t=Ti. 

 q(t)         inventory level at time t. 

Z           total profit from the planning horizon H. 

D(t)       Demand per unit time. 

1 2 3, ,n n n  number of replenishment made during 

             (0,H1),(H1,H1+H2), (H1+H2, H1+H2+H3)  

                respectively. 

1 2 3, ,m m m  mark up of purchasing cost during  

               (0,H1),(H1,H1+H2),(H1+H2,H1+H2+H3)  

                respectively. 

R              maximum lifetime of the product. 

1t            first cycle length over the time 

               interval (0, H1). 
/

1t          initial cycle length over the time  interval  

            (H1+H2, H1+H2+H3) .   

Ti         Total time elapses upto and including i
th
  

   cycle ( i=1,2,…….. 1 2 3n n n  ) 

6.2 Assumptions 
(i) Inventory system involves only one item. 

(ii) Time horizon(H) is finite and H=H1+H2+H3. 

(iii) Shortages are not allowed. 

(iv) Unit cost, i.e., purchase price p(t) is a function of 

t and is of the form 
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1

1 1 2

3

1

1 1 2

( )

1 2 1 2 3

0

( )

ct

cH

cH t H H

H

be for t H

p t be for H t H H

Ae for H H t H H H





 


 


   

     

 
  

              where A= 1cH
be


 

(v) Selling price s(t) is mark-up m of p(t) and m  

     takes the values m1, m2 and m 3during (0,H1), 

     (H1, H1+H2) and (H1+H2, H1+H2+H3) i.e.  

      s(t)=m[=m1, m2,m3] p(t). 

(vi)Demand is a function of selling price s(t) and  

     is of the form        

         D(t)= 0 01

1
[ ( )] [ ( )]

D DD
where D

s t p t m  
  ,   D0>0 

(vii)  The lead time is zero. 

(viii) Deterioration rate ( )t is a function of time 

where 
1

1
( )

1 j

t
R T t





  

 where R is the maximum 

lifetime of the product. This form of deterioration 

comes from the fact that as (t-Tj-1) R, ( )t  1  

i.e.  rate of deterioration tends to 100%. 

(ix) Ti is the total time that elapses up to and 

including the i-th cycle (i=1,2,….,n1+n2+n3) where 

n1+n2+n3 denotes the  total number of replenishment 

to be made during the interval (0, H1+H2+H3) and 

T0=0. 

(x) n1 is the number of replenishment to be made 

during (0,H1) at t=T0, T1,……,
1 1nT  So, there are n1 

cycles in this duration. As purchase cost decreases 

during this session, so demand increases. Hence, 

successive cycle length must decrease. Here,  is the 

rate of reduction of successive cycle length and t1 is 

the first cycle length. So, i-th cycle length ti=t1-(i-1)

 .          

                                       

11 1 1

1

( 1)
, 1,2,....., . ,

2

i

i j n

j

i i
T t it i n Clearly T H




    

 

                                        

1 1

1 1 1

1 1 1

1 1

( 1)
,

2

2( )

( 1)

n n
Thus n t H

n t H

n n






 


 


                                  

(8) 
Here, t1 is decision variable. 

(xi) n2 be the number of replenishment to be made 

during (H1, H1+H2). Since purchase cost is constant,   

demand is also constant during this interval. So, all 

the sub-cycle length in this interval is assumed as 

constant. Replenishment are done at    

                    

1 1 1 2 1 1

2

1 1 2

2

, ,........, ( 1) , 1,2,...,n n n n n j n

H
t T T T where T T j j n

n
       

 

(xii) n3 is the number of replenishment to be made 

during (H1+H2, H1+H2+H3). During this interval, 

purchase cost increases, as a result demand decreases. 

So, the duration of placing of order gradually 

increases. Here, 
 
be the rate of increase of cycle 

length. Let t1
/
 be the initial cycle length. Then i-th 

cycle length ti
/
=t1

/
+(i-1)  . 

/

3

/

1 3, ( 1) .nThus t t n     Orders are made at 

1 2 1 2 1 2 31,.......... 1, ,n n n n n n nt T T T      Where     

1 2 1 2

1 2 3

/ /

1 2 1

1

1 2 3

( 1)

2

,

i

n n i n n j

j

n n n

i i
T T t H H it

Clearly T H H H

  



 


     

  



 

                                     

)1(

)(2

2/)1(

33

1
/

33

321331
/

321








nn

tnH

HHHnntnHH





     (9) 

A wavy bar (~) is used with this symbol to represent 

corresponding fuzzy numbers when required. 
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7. Model development and analysis 
In the development of the model, it is assumed that at 

the beginning of every j-th cycle [Tj-1, Tj], an amount 

Q1j units of item is ordered. As lead time negligible, 

replenishment of an item occurs as soon as order is 

made. Item is sold during the cycle and inventory 

level reaches zero at time t=Tj. Then order for next 

cycle is made. Here, selling price is a markup of initial 

purchase cost for each cycle. The inventory situation 

and the purchase cost are shown in Fig-2 and Fig-3. 

7.1 Formulation of the model in crisp 

environment 
This part is formulated in three phases. 

7.1.1 Formulation for first phase ( i.e., 

10 Ht  )  Duration of j-th ( 11 nj  ) cycle is 

[Tj-1 , Tj] where 2/)1(11  jjjtT j   at the 

beginning of the cycle inventory level is Q1j. So, the 

governing differential equation of the model in the 

presence of deterioration of the item during 

jj TtT 1
 is given by   

   jDqt
dt

tdq
 )(

)(
                              (10)   

where

 1

1

1
j

j
cT

D
D

m be



 and 

1

1
( )

1 j

t
R T t





  

 

Solving the above differential equation using the 

initial condition at t=Tj, q(t)=0, we get  

1

1

1

1
( ) (1 ) log

1

j

j j

j j

R T t
q t R T t D

R T T







   
     

    

   

(11) 

   

When 1,jt T 

1

1

1
1 ( ) (1 ) log

1
j j j

j j

R
Q q T R D

R T T




 
        

     

                                                                       (12)

 

So, the holding cost for jth ( 11 nj  ) cycle, jH1

is given by dttqcH

j

j

T

T

hj 




1

)(1  

                                                 

    2 2

1

2

1

1
1 1

4

(1 ) 1
log

2 1

j j

h j

j j

R T T R

c D
R R

R T T





 
     

 
   

         

  

Thus, the total holding cost during (0, H1), HOC1, is 

given by 



1

1

11
n

j

jHHOC          (13) 

Total purchase cost during (0, H1), PC1, is given by                                                                

 


















































1

1

1

1

1

1

1

)(
1

1
log)1(

)(11

n

j

j

jj

j

n

j

jj

Tp
TTR

R
DR

TpQPC

 

(14) 

          where 
1)( 1


  jcT

j beTp  

Total ordering cost during (0  ,H1), OC1, is given   by 

 



1

1

21 11
n

j

joo QccOC                              (15) 

        where Q1j is given by  (12) 

Selling price for j-th ( 11 nj  ) cycle SP1j, is given 

by 




j

j

T

T

jjj dtDTpmSP

1

)(1 11

 
                                                                                                                    

= )()( 111   jjjj TTDTpm  

Total selling price during (0, H1), SP1, is given by





1

1

11
n

j

jSPSP                                           (16) 

7.1.2. Formulation of second phase (i.e., 

211 HHtH  )  In the second phase, the 

purchase price of an item remains constant. So, the 

demand of customer is taken as constant. During of  j-

th ( )211 nnjn   cycle is  [Tj-1 , Tj]. The 
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governing differential equation of the model of 

deteriorating item during 
jj TtT 1
 is given by  

       jDqt
dt

tdq
 )(

)(
                               (17) 

where

 1

2

1

cH
j

bem

D
D


 and 

tTR
t

j 


11

1
)(  

Solving the above differential equation using the 

initial condition t=Tj, q(t)=0, we get  

1

1

1

1
( ) (1 ) log

1

j

j j

j j

R T t
q t R T t D

R T T







   
     

    
  (18)

  

When 1,jt T 

1

1

1
2 ( ) (1 ) log

1
j j j

j j

R
Q q T R D

R T T




 
    

      

(19)                                                                     

 

So, the holding cost for j-th ( 211 nnjn  ) 

cycle,
jH 2 , is given by  dttqcH

j

j

T

T

hj 




1

)(2  

                                                 

    2 2

1

2

1

1
1 1

4

(1 ) 1
log

2 1

j j

h j

j j

R T T R

c D
R R

R T T





 
     

 
   

         

  

Thus, the total holding cost during (H1, H1+H2), 

HOC2 is given by 





21

1 1

22
nn

nj

jHHOC             (20) 

Total purchase cost during (H1, H1+H2), PC2, is given 

by                                                                       

1 2

1

1 2

1

1

1

1

1 1

2 2 ( )

1
(1 ) log ( )

1

n n
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j n

n n
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j n j j
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
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


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   

  
         





(21)

 

                    where 1)( 1

cH

j beTp


   

Total ordering cost during (H1, H1+H2), OC2, is given 

by  





21

1 1

21 22
nn

nj

joo QccOC               (22) 

                  where Q2j is given by  (19) 

Selling price for j-th ( 211 nnjn  ) cycle SP2j, 

is given by 




j

j

T

T

jjj dtDTpmSP

1

)(2 12  

                                                                                                          

= )()( 112   jjjj TTDTpm  

Total selling price during (H1, H1+H2), SP2, is given 

by 





21

1 1

22
nn

nj

jSPSP                             (23) 

7.1.3. Formulation of third phase (i.e., 

32121 HHHtHH  ) In the second 

phase, duration of j-th ( )32121 nnnjnn   

cycle is   ],[ 1 jj TT  where

/

1 2 1 2 1 1 2 1 2( ) ( )( 1) / 2jT H H j n n t j n n j n n           

 and at the beginning of cycle inventory level is Q3j . 

So, instantaneous state q(t) of deteriorating item 

during 
jj TtT 1
 is given by         

                                               jDqt
dt

tdq
 )(

)(


                                   
(24) 
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D
D  ,

tTR
t

j 


11

1
)(  and 1H

A be


  

Solving the above differential equation using the 

initial condition t=Tj, q(t)=0, we get 

1

1

1

1
( ) (1 ) log

1

j

j j

j j

R T t
q t R T t D

R T T







   
     
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 When 1,jt T 

1

1

1
3 ( ) (1 ) log

1
j j j

j j

R
Q q T R D

R T T




 
    

    
(26) 

So,the holding cost for j-th (

32121 nnnjnn  ) cycle, jH 3 , is given by 

                    

1
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j
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j h
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

   
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Thus, the total holding cost during (

32121 HHHtHH  ), HOC3,   

   is given by 





21

1 1

33

nn

nj

jHHOC

                     

(27)   

Total purchase cost during (

1 2 1 2 3H H t H H H     ), PC3, is given by                                                                       
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     where 
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Total ordering cost during (

32121 HHHtHH  ), OC3, is given by 

 
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


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21 1

21 33

nnn

nnj

joo QccOC

                               

(29)                                                                           

where Q3j is given by (26) 

Selling price for j-th ( 32121 nnnjnn  ) 

cycle , SP3j is given by 




j

j

T

T

jjj dtDTpmSP

1

)(3 13  

                                                                                                          

= )()( 113   jjjj TTDTpm  

Total selling price during (

32121 HHHtHH  ), SP3, is given by 

      





321

21 1

33

nnn

nnj

jSPSP                                       (30) 

Thus, total profit Z, for this model over the planning 

horizon ( 321 HHH  ),  is given by 

Z=(SP1+SP2+SP3)-(PC1+PC2+PC3)-

(HOC1+HOC2+HOC3)-(OC1+OC2+OC3)(31) 

 

8. Mathematical model in crisp  

     environment 
   According to the above discussion, as lifetime of the 

product is R, so, no cycle should exceed R which 

implies 
3

/

1 2 2, / , .nt R H n R t R    Therefore, the 

problem reduces to determine the decision variables
/

1 1 1, 2 3 1 2 3, , , , , ,t t m m m n n and n . The problem becomes  

                       Maximize Z 

                subject to 
3

/

1 2 2, / , .nt R H n R t R    (32) 

This constrained optimization problem is solved using 

proposed RRGA for crisp objective function. 

 

9. Mathematical model in fuzzy 

environment 
As discussed in introduction section, in real life phase 

intervals H1, H2 and H3 are imprecise in nature i.e 

21

~
,

~
HH and 3

~
H respectively, then the  profit 

function Z reduces to the fuzzy number Z
~

 whose 

membership function is a function of the decision 

variables t1, t1
/
, m1, m2, m3, n1, n2 and  n3. Also the 

last cycle length 3
/

nt  becomes imprecise 3
/~

nt . So, 

the problem reduces to fuzzy optimization problem 

 

                      Maximize  Z
~

                     (33) 

            subject to   RtRnHRt n  3
/

221

~
,/

~
,

                            
 

 

If  21

~
,

~
HH and 3

~
H  are considered as TFNs (H11, 

H12 ,H13),   (H21, H22 ,H23) and (H31, H32 ,H33) 

respectively, then Z
~

 becomes a TFN (Z1, Z2, Z3), 

where Zi=value of Z for H1=H1i, H2=H2i, H3=H3i, 

i=1,2,3. In this case 3
/~
nt also becomes a TFN (

,31
/

nt ,32
/

nt 33
/
nt ) .So it is an obvious assumption 

that fuzzy constraints should necessarily hold. The 

problem reduces to  

                      Maximize Z% 

subject to 
/

1 23 2 33, / , nt R H n R t R            (34)    
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 Since optimization of fuzzy number is not well 

defined one can optimize the optimistic (pessimistic) 

return of the fuzzy objective Z% with some degree of 

possibility (necessity) 1 2( )  as described in §2.1. 

Accordingly, in optimistic sense the problem reduces 

to 

Maximize z1 

subject to  1 1pos Z z    

    and  
/

1 23 2 33, / , nt R H n R t R             (35) 

and in pessimistic sense the problem reduces to 

Maximize z1 

subject to 
 1 2

1 2. ., { } 1

nes Z z

i e pos Z z





 

                 
 

       and 
/

1 23 2 33, / , nt R H n R t R          (36) 

This constraint optimization problem is solved using 

proposed FSRRGA.      

 

10. Numerical Experiments
 

10.1 Results obtained for crisp  

        environment  

To illustrate the model following hypothetical set of 

data is used. This data set is taken for items like rice, 

potato, wheat, onion, cabbage, cauliflower, etc, 

whose demand exists in the market throughout the 

year. When new crops come in the market, then its 

price gradually decreases during some weeks (say 

H1) and reaches a lowest level. This minimum price 

prevails for few weeks (say H2). Then again it 

gradually increases during few weeks (say H3) and 

reaches its normal value. This normal price prevails 

remaining part of the year. For an item like potato, 

values of H1, H2 and H3 are about 5 weeks, 15 weeks, 

7 weeks in the state of West Bengal, India. Normal 

price of the item throughout the year is about $3 for a 

10 kg bag. Lowest price of it in the season is about 

$2 for a 10 kg bag. Keeping this real situation, 

following data set is fixed to illustrate the model in 

crisp environment. In the data set 10 kg of the item is 

considered as one unit item, one week is considered 

as unit time and costs are represented in $. 

  b=10, c=0.2, H1=5(weeks), H2=(15 weeks), 

H3=7(weeks), D0=1500,  =2.5, ch=0.5, c01=10, 

c02=0.5, R=3. 

For the above parametric values, results are obtained 

via RRGA and presented in Table-1. 

Table-1Results for crisp model via RRGA 
 

n1 n2 n3 m1 m2 m3 t1 t/
1 Profit($) 

3 13 4 2.432 2.380 2.577 2.051 1.408 280.981 

 
For above parametric values, results are obtained for 

different values of   and presented in Table-2. It is 

observed that as  increases, profit decreases due to 

decrease of demand which agrees with reality. It is 

also found that as   increases for same values of n1, 

n2 and n3, t1 increases but t
/
1decreases. Moreover, m1, 

m2 and m3 also decrease with increase of  . It happens 

because as   increases demand decreases in each 

cycle and demand is minimum when purchase cost is 

maximum. According to assumption, purchase cost is 

maximum in first and last cycle of the whole planning 

horizon. As demand decreases length of first and last 

cycle increases as a result t1 increases and t
/
1 

decreases. Again as demand decreases due to increase 

of   to keep the demand high markup of selling price 

m1, m2 and m3 also decreases. From the table-2, it has 

been seen that the parameter 
 
is highly sensible. The 

observation is more practical and hence realistic one.  

 

Table-2 Results for crisp model due to different   

via RRGA 

 
  n1 n2 n3 m1 m2 m3 t1 t/

1 Profit($) 

2.40  4 14 4 2.372 2.400 2.641 1.573 1.434 407.980 

2.42 4 14 4 2.358 2.386 2.628 1.567 1.432 379.800 

2.44 4 14 4 2.345 2.372 2.614 1.562 1.427 353.961 

2.45 4 14 4 2.331 2.359 2.602 1.558 1.423 342.311 

2.46 3 13 4 2.463 2.402 2.620 2.058 1.422 320.955 

2.48 3 13 4 2.448 2.388 2.588 2.052 1.416 299.105 

2.50 3 13 4 2.434 2.373 2.573 2.047 1.412 278.648 

2.52 3 13 4 2.421 2.360 2.560 2.041 1.409 258.864 

 
For the above parametric values, results are obtained 

for different values of R and presented in Table-3. It is 

observed that as R increases profit increases. It 

happens because increase of R, i.e., increase of 

lifetime of the product, decreases rate of deterioration 

which in turn increases profit. 

 

Table-3 Results for crisp model due to different R 

 
R n1 n2 n3 m1 m2 m3 t1 t/

1 Profit($) 

2.70 3 13 4 2.487 2.411 2.653 2.029 1.430 267.983 

2.80 3 13 4 2.472 2.398 2.629 2.036 1.423 272.680 

2.90 3 13 4 2.454 2.387 2.606 2.043 1.417 277.804 

3.00 3 13 4 2.436 2.375 2.581 2.049 1.412 281.379 

3.10 3 13 4 2.416 2.365 2.569 2.054 1.404 286.675 

3.20 3 13 4 2.389 2.354 2.549 2.061 1.397 289.172 

3.30 3 13 4 2.377 2.343 2.521 2.065 1.391 294.784 

3.40 3 13 4 2.365 2.335 2.497 2.071 1.384 296.226 
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10.2 Results obtained for fuzzy 

         environment  

To illustrate the proposed inventory models, following 

input data are considered. In this case also 

hypothetical data set is used and source of this data 

has been discussed for crisp model. For crisp model it 

was considered that unit price of the item decreases 

during the period H1=5 weeks, but in reality it is about 

5 weeks which is fuzzy in nature. Due to this reason 

here H1 is considered as TFN (4.75, 5, 5.2). Following 

the same argument other parameters are fixed and the 

data set are presented below. In the data set fuzzy 

numbers are considered as TFN types. 

b=10, c=0.2, 1

~
H =(4.75, 5, 5.2), 

2

~
H =(14.5,15, 15.4), 

3

~
H =(6.8, 7, 7.3), D0=1500,  =2.5, ch=0.5, c01=10, 

1 20.9, 0.1   , c02=0.5, R=3. 

For the above parametric values, results are obtained 

via FSRRGA in optimistic and pessimistic sense and 

presented in Table-4 and 5.  

 

Table-4 

Table-4 Results for fuzzy model via FSRRGA in 

optimistic sense 
n1 n2 n3 m1 m2 m3 t1 t/

1 Profit ($) 

3 13 4 2.422 2.370 2.577 2.051 1.408 311.242 

 

Table-5 

Table-5 Results obtained for fuzzy model via 

FSRRGA in pessimistic sense 
n1 n2 n3 m1 m2 m3 t1 t/

1 Profit ($) 

4 13 4 2.430 2.380 2.587 2.156 1.439 245.644 

From the Tables 6 and 7, it is observed that as the 

degree of acceptability ( 1 ) for optimistic sense 

increases, the profit decreases and the increase of 

degree of acceptability ( 2 ) for pessimistic sense 

brings down, the profit also decreases. All these 

observations agree with reality. 

Table-6 Sensitivity analysis in optimistic sense 

 

1  n1 n2 n3 m1 m2 m3 t1 t/
1 Profit 

($) 

0.92  3 13 4 2.422 2.370 2.577 2.051 1.408 310.560 

0.94 3 13 4 2.422 2.370 2.577 2.051 1.408 309.614 

0.96 3 13 4 2.422 2.370 2.577 2.051 1.408 308.664 

0.98 3 13 4 2.422 2.370 2.577 2.051 1.408 307.714 

1.00 3 13 4 2.422 2.370 2.577 2.051 1.408 306.774 

       

Table-7 Sensitivity analysis in pessimistic sense 

 

2  n1 n2 n3 m1 m2 m3 t1 t/
1 Profit 

($) 

0.12 4 13 4 2.430 2.380 2.587 2.156 1.439 244.804 

0.14 4 13 4 2.430 2.380 2.587 2.156 1.439 243.974 

0.16 4 13 4 2.430 2.380 2.587 2.156 1.439 243.144 

0.18 4 13 4 2.430 2.380 2.587 2.156 1.439 242.304 

0.20 4 13 4 2.430 2.380 2.587 2.156 1.439 241.494 

 
For the above parametric values, results are obtained 

for different values of  and presented in Table-8 . In 

this case also same trend of result is obtained as found 

in crisp model. 

 

Table-8 

Table-8 Results for fuzzy model due to different 
 

via FSRRGA 

 
  n1 n2 n3 m1 m2 m3 t1 t/

1 Profit 

($) 

2.40  4 14 4 2.307 2.405 2.653 1.569 1.421 446.593 

2.42 4 14 4 2.294 2.391 2.637 1.571 1.417 416.973 

2.44 4 14 4 2.281 2.378 2.620 1.576 1.415 388.757 

2.46 3 13 4 2.458 2.406 2.607 2.040 1.413 359.851 

2.48 3 13 4 2.444 2.394 2.591 2.044 1.409 334.977 

2.50 3 13 4 2.431 2.380 2.577 2.050 1.407 311.285 

2.52 3 13 4 2.416 2.368 2.564 2.058 1.405 288.713 

 
For the above parametric values, results are obtained 

for different values of R and presented in Table-6. As 

expected in this case also same trend of result is 

obtained as in crisp model, i.e., profit increases with 

increase of R, which agrees in reality. 

 

Table-9 Results due to different R for fuzzy model 

via FSRRGA 

 
R n1 n2 n3 m1 m2 m3 t1 t/

1 Z($) 

2.90 3 13 4 2.494 2.392 2.652 2.046 1.411 306.583 

3.00 3 13 4 2.431 2.380 2.577 2.050 1.407 311.285 

3.10 3 13 4 2.412 2.369 2.555 2.055 1.402 315.735 

3.20 3 13 4 2.394 2.359 2.537 2.059 1.394 319.966 

3.30 3 13 4 2.379 2.350 2.520 2.062 1.390 323.993 

3.40 3 13 4 2.364 2.340 2.502 2.066 1.387 327.826 

3.50 3 13 4 2.351 2.376 2.486 2.071 1.379 330.440 

 

10. Conclusion 
Here, a real-life inventory model for deteriorating 

seasonal product is developed whose demand depends 

upon the unit cost of the product in fuzzy 

environment. Unit cost of product is time dependent. 

Lifetime of each item is finite and rate of deterioration 

depend on the age of the item. Unique contribution of 

the paper is fourfold: 

     The model is developed for such items like 

food grains, pulses, potato, onion etc., whose 

stable demand exists in the market throughout 
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the year but it fluctuates for a part of the year 

when they are produced in the field. Here 

modeling is done for such products during 

their season of grown. These items are 

normally stored in cold storage and when 

bought in the market items are fully 

deteriorated after a finite time R, which is 

considered here as lifetime of the product. For 

the best of author’s knowledge none have 

considered this type of inventory model. 

     Here for the first time unit cost of an item 

is modeled following real life situation, which 

gradually decreases with time during grown 

of the item in the field, then it retains the 

lowest value for a period and again gradually 

increases with time to normal price of the 

year. Though it is found for above mentioned 

items in every year, inventory practitioners 

overlooked this real life phenomenon. 

     It is assumed that time horizon of the 

season is fuzzy in nature. For the first time 

season of an item is considered as a 

combination of three imprecise intervals. In 

fact three parts in which unit cost function can 

be divided are considered as fuzzy numbers, 

which agree with reality. 

     As optimization of fuzzy objective is not 

well defined, optimistic/pessimistic return of 

the objective function (using 

possibility/necessity measure of the fuzzy 

event) is optimized. A fuzzy simulation based 

region reducing genetic algorithm is proposed 

to evaluate this fuzzy objective value. 

 At length, though the model is formulated in fuzzy 

environment, demand or lifetime/deterioration of the 

product is not considered as imprecise in nature, 

though it is appropriate for these types of products. In 

fact, consideration of fuzzy demand or deterioration 

the inventory model leads to fuzzy differential 

equation for formulation of the model. Using 

proposed solution approach one cannot consider 

imprecise demand which is the major limitation of the 

approach. So, further research work can be done 

incorporating fuzzy demand and or deterioration in 

the imprecise planning horizon. Though the model is 

presented in crisp environment and fuzzy, it can be 

formulated in stochastic, fuzzy-stochastic 

environment. 
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