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Multi-item fuzzy inventory model for deteriorating items in multi-outlet
under single management

Ajoy Kumar Maiti*

Department of Mathematics, Raja Narendra Lal Khan Women’s College, Paschim
Medinipur, India

(Received 30 May 2018; revised 31 July 2019; accepted 27 November 2019)

Multi-item inventory model with stock-dependent demand is developed in fuzzy
environment. Items are deteriorated in constant rate and are sold from different
outlets in the city under single management. Due to the impreciseness of
different parameters, objectives as well as constraints are imprecise in nature. As
optimization of fuzzy objectives as well as fuzzy constraints are not well defined,
the model is formulated as a multi-objective chance constrained programming
problem where optimistic/pessimistic return of the objectives with some degree of
possibility/necessity are optimized and constraints are satisfied with some degree
of necessity. The model is solved via Multi-Objective Genetic Algorithm
(MOGA) when crisp equivalent of the problem is available. In other cases, fuzzy
simulation process is proposed to check the constraints as well as to determine
the optimistic/pessimistic return of the objectives. The model is illustrated with
some numerical examples.

Keywords: possibility; necessity; fuzzy simulation; MOGA; inventory

1. Introduction

Most of the inventory determines optimal policies for single item, assuming that inven-
tory policy for single item does not influence the cost of inventory as well as profit of
the system. Instead of single item, many companies or enterprises or retailers are
motivated to store several items in their shops for more profitable business affair.
Another cause of their motivation is to attract the customers to purchase several
items from one show/shop. Multi-item inventory first introduced by Federgruen,
Groenevelt, and Tijma (1984) who found out that coordinated replenishments for mul-
tiple items can significantly reduce total inventory costs because placing orders for
multiple items in one replenishment order would reduce set up costs. Multi-item clas-
sical inventory models under different resource constraints such as available floor
space/shelf-space, capital investment, average number of inventory and so on are pre-
sented in the well-known books by Churchman, Ackoff, and Arnoff (1957), Silver and
Peterson (1985) and others. Padmanabhan and Vrat (1990) developed a multi-item
multi-objective inventory model of deteriorating items with stock-dependent
demand by goal programming method. Recently, researchers have started to realize
the complicated natures of the multi-item inventory systems. The demands for mul-
tiple inventory items might be correlated, affecting the optimal order policies for a
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multi-item inventory system (Liu and Yuan, 2000; Das, Roy, and Maiti, 2000; Bera
and Maiti, 2012; Maiti and Maiti, 2008; Yadav, Singh, and Gautam, 2016; Garai,
Chakraborty, and Roy, 2016, 2018a; Bera and Jana, 2017; Jana and Das, 2017; Chak-
raborty, Jana, and Roy, 2015; Tamjidzad and Mirmohammadi, 2018; Pakhira, Maiti,
and Maiti, 2018; Shenoy and Mal, 2019; Pervin, Roy, and Weber, 2019, etc.). When
one product is out of stock, the demand might be satisfied with other available pro-
ducts, requiring an inventory model for substitutable products (Yadavalli, Van
Schoor, and Udayabaskaran, 2006).

At the same time, multi outlets are one of the most important aspects for a success-
ful businessman/retailer, operating across various locations of city or different cities for
inventory management. Now-a-days, it is observed that businessman/retailer possesses
more than one outlet in a city or different cities to capture the market. So, to get more
profit, the retailer takes big challenge to open multi-outlet with multi deteriorating
items of homogeneous type items like fruits, vegetables, packaged products, etc.
where fruits like apple, orange, mango, graphs, etc. are sold from first retail outlet, veg-
etables like tomato, cabbage, cauliflower, etc. are sold from second retail outlet and so
on. Avery few considered this type of phenomena in the inventory management. Kar,
Bhunia, and Maiti (2001) solved two shop inventory model of deteriorating multi-
items with constraints on space and investment. Das and Maiti (2003) developed
inventory of a differential item from two shops under single management with
shortages and variable demand. So, in this existing literature, inventory of multi dete-
riorating items with multi-retail outlets under a single management has been con-
sidered in fuzzy environment where inventory parameters are fuzzy. None has
considered multi-item inventory models with different outlets under a single manage-
ment where objectives with some degree of possibility/necessity are optimized and con-
straints are satisfied with some degree of necessity.

In many companies, convenience goods and products are offered to the consumers
through the company controlled retail outlets. Examples of these products include
packaged products, fast foods, fruits, vegetables, etc. where the respective outlets are
situated in an important place like supermarkets, municipality markets, etc. In these
important places, it is almost impossible to have big show-rooms/shops due the scar-
city of space and high rent. They run the outlets with a limited storage space and
limited investment. Though inventory models with space and investment constraints
have been published by Kar et al. (2001), Maiti and Maiti (2006, 2007), Chou,
Julian, and Hung (2009), Garai et al. (2016), El-Wakeel and Al-yazidi (2016), Tamjidzad
and Mirmohammadi (2018) etc., a very few have considered multi-item inventory
models with different outlets under a single management.

It has been recognized that one’s ability to make precise statement concerning
different parameters of an inventory model with increasing complexities of the
environment are not defined. As a result, different inventory parameters, especially
the purchase cost of an item fluctuates throughout the year. So, purchase cost is
fuzzy in nature as well as selling price.

Normally, in inventory control systems, resource constraints are assumed determinis-
tic. In real life, when different inventory parameters are imprecise then constraints also
become imprecise. For example, at the beginning of a business, normally it is started
with afixed capital. But in course of business, to take some advantages like bulk transport,
sudden increase of demand, price discount, etc., decision of acquiring more items force
the investor to augment the previously fixed capital by some amount in some situations.
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This augmented amount is clearly fuzzy in nature in the sense of degree of uncertainty
(Dubois and Prade (1997)) and hence the total invested capital become imprecise in
nature.When purchase costs and investment capital are fuzzy then the resource constraint
becomes fuzzy in nature. As a fuzzy constraint represents a fuzzy event, it should be sat-
isfied with some predefined necessity (Dubois and Prade, 1983), according to company’s
requirement. Like the chance constraint programming approach, proposed by Mohon
(2000) inwhichminimumprobability level for satisfying each of the constraint in stochas-
tic environment, possibilistic constraints also may be defined as in Zadeh (1978), Dubois
and Prade (1983), Liu and Iwamura (1998a, 1998b). When purchase costs are fuzzy,
objective function (i.e. average profit) becomes fuzzy in nature. Since optimization of a
fuzzy objective is not well defined, one can optimize the optimistic/pessimistic returns
of the objectives with some degree of possibility/necessity according to requirement as
proposed by Liu and Iwamura (1998a, 1998b), Maiti and Maiti (2006, 2007), Maiti,
Maiti, and Maiti (2014), Garai et al. (2016, 2018b), etc.

In the present competitive market, the inventory/stock is decoratively displayed
through electronic media to attract the customers and thus to boost the sale. Levin,
Mclaughlin, Lamone, and Kottas (1972), Schary and Becker (1972), Wolfe (1968)
and others established the impact of product availability for simulating demand.
Mandal and Phaujder (1989), Datta and Pal (1988) and others considered linear
form of stock-dependent demand, i.e. D= c+ dq, where D, q represent demand and
stock levels respectively, c, d are two constants, so chosen to best fit the demand func-
tion, whereas Urban (1992), Giri, Pal, Goswami, and Chaudhuri (1996), Mandal and
Maiti (2000), Maiti andMaiti (2006, 2007) and others took the demand of the formD
= dqβ, where β is a constant. So, extensive research works in inventory control pro-
blems with stock-dependent demand have been reported (Yang, 2014; Kumar and
Kumar, 2016a, 2016b; Shukla, Tripathi, and Sang, 2017; Tripathi, Singh, and
Aneja, 2018; Garai, Chakraborty, and Roy, 2019, etc.).

In real-world problems, deterioration is also a natural phenomenon. There are
some physical goods which deteriorate with the progress of time during their
normal storage. In this area, a lot of research papers have been published by several
researchers, viz. Mandal and Phaujder (1989), Gupta and Agarwal (2000), Chang
(2004), Chang, Ouyang, and Teng (2003), Balkhi (1998, 2004), Maragatham and
Lakshmidevi (2014), Sharmila and Uthayakumar (2015), Muniappan, Uthayakumar,
and Ganesh (2015), Saha and Chakraborti (2012), Chakraborty et al. (2015), Kumar
and Kumar (2016a, 2016b), Pal, Sana, and Chaudhuri (2017), Rajan and Uthayaku-
mar (2017), Pervin et al. (2019) and others.

The main contributions of this paper are as follows:

. Generally, inventory parameters may be considered precisely but due to practi-
cal situation inventory parameters like the purchase cost, investment amount,
storage space are considered as fuzzy which are defuzzified using possibility/
necessity measures for a given level of optimistic/pessimistic sense.

. Though a considerable number of research papers have been publishedwith single
shop/selling point, much attention has not been paid for the situation where more
than one shops are run under a single management. So, the model is formulated
with multi-item multi-outlets for deteriorating items under single management.

. Average profits from different outlets give different objectives. So the problem
becomes multi-objective optimization problem.
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. Due to fuzziness of the different parameters, the model is formulated as a
multi-objective chance constrained programming problem where optimistic/
pessimistic return of the objectives with some degree of possibility/necessity is
optimized and constraints are satisfied with some degree of necessity.

. The models are solved by Multi-Objective Genetic Algorithm (MOGA) and
Fuzzy-Simulation based Multi-Objective Genetic Algorithm (FSMOGA) and
results are compared.

. Finally, the model is illustrated with some numerical examples and results are
verified through sensitivity analyses.

2. Possibility/necessity in fuzzy environment

Any fuzzy number ã of R (where R represents set of real numbers) with membership
function

mã:R � [0, 1] is called a fuzzy number. Let ã and b̃ be two fuzzy numbers with
membership functions mã(x) and mb̃(x) respectively. Then according to Zadeh
(1978), Dubois and Prade (1983) and Liu and Iwamura (1998a, 1998b):

pos(ã ∗b̃) = sup {min (mã(x), mb̃(y)), x, y [ R, x∗y}, (1)

where abbreviation pos represents possibility and * is any one of the relations
, , . , = , ≤ , ≥. Analogously, if b̃ is a crisp number, say, b, then

pos(ã ∗b) = sup {mã(x), x [ R, x ∗b}. (2)

The necessity measure of an event ã*b̃ is a dual of the possibility measure. The grade of
an event is the grade of impossibility of the opposite event and is defined as:

nes(ã∗b̃) = 1− pos(ã∗b̃), (3)

where the abbreviation nes represents the necessity measure and ã∗b̃ represents the
complement of the event ã*b̃.

If ã, b̃ [ R and c̃ = f (ã, b̃) where f :R×R � R is binary operation then, the
extension principle by Zadeh (1978), the membership function mc̃ of c̃ is given by

mc̃(z) = sup {min (mã(x), mb̃(y) ), x, y [ R and z = f (x, y), ∀z [ R}. (4)

2.1. Triangular Fuzzy Number (TFN)

ATFN ã = (a1 , a2, a3) (cf. Figure 1) has three parameters a1, a2, a3 where a1<a2<a3
and is characterized by the membership function mã(x), is given by

mã(x) =

x− a1
a2 − a1

, a1 ≤ x ≤ a2,

a3 − x
a3 − a2

, a2 ≤ x ≤ a3,

0, otherwise.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ (5)
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2.2. Parabolic Fuzzy Number (PFN)

A PFN ã = (a1, a2, a3) (cf. Figure 2) has three parameters a1, a2, a3 where a1<a2<a3
and is characterized by the membership function mã(x), is given by

mã(x) =
1− x− a1

a2 − a1

( )2

, a1 ≤ x ≤ a2,

1− a3 − x
a3 − a2

( )2

, a2 ≤ x ≤ a3,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(6)

2.3. a cut of a fuzzy number

a cut of a fuzzy number Ã in Rwith membership functionmÃ denoted byAa is defined
as the crisp set Aa = {x:mÃ(x) ≥ a, x [ R} where a [ [0, 1]Aa is a non-empty
bounded closed interval contained inR and it can be denoted byAa = [AL(a), AR(a)].

Lemma 1: If ã = (a1, a2, a3) and b̃ = (b1 , b2, b3) are TFNswith 0 , a1 and 0 , b1
then

nes(ã . b̃) ≥ a iff
b3 − a1

a2 − a1 + b3 − b2
≤ 1− a.

Figure 1. Membership function of a triangular fuzzy number.

Figure 2. Membership function of a parabolic fuzzy number.
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Proof: We have nes(ã . b̃) ≥ a ⇒ {1− pos(ã ≤ b̃)} ≥ a ⇒ pos(ã ≤ b̃) ≤ 1− a

So, from Figure 3, it is clear that pos(ã ∗b̃) = d = b3 − a1
a2 − a1 + b3 − b2

and hence the

result follows.

Lemma 2: If ã = (a1, a2, a3) be TFN with 0 , a1 and b is a crisp number, then

nes(ã . b) ≥ a iff
b − a1
a2 − a1

≤ 1− a.

Proof: Proof follows from Lemma 1.

Lemma 3: If ã = (a1, a2, a3) be TFN with 0 , a1 and b is a crisp number, then

pos(ã . b) ≥ a iff
a3 − b
a3 − a2

≥ a.

Proof: Proof follows from formula (1) and Figure 4.

Figure 3. Comparison of two triangular fuzzy number.

Figure 4. Comparison of a TFN with a crisp number.
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3. Multi-objective optimization using possibility/necessity measure

A general multi-objective mathematical programming should have the following form:

Max fj(x, j) , j = 1, 2, . . . . . . , m,

Subject to gi(x, j) ≤ 0, i = 1, 2, . . . .., n,
(7)

where x is a decision vector, j is a vector of crisp parameters, fj(x, j) are return func-
tions, gi(x, j) are constraint functions, i = 1, 2,… , n. In the above problem, when j is a
fuzzy vector j̃ (i.e. a vector of fuzzy numbers), then return functions and constraint
functions gi(x, j̃) are imprecise in nature and can be represented by two fuzzy
numbers whose membership functions involve the decision variable x as a parameter
and can be obtained when membership functions of the fuzzy numbers in j̃ are known
(since fj and gi are functions of decision vector x and the fuzzy numbers in j̃). In that
case the statements maximize fj(x, j̃) as well as gi(x, j̃) ≤ 0 are not well defined. Since
gi(x, j̃) represents a fuzzy number whose membership function involves decision
vector x and for a particular value of x, one can measure the necessity of
gi(x, j̃) ≤ 0 using formula (3), so avalue x0 of the decision vector x is said to be feasible
if necessity measure of the event {j̃:gi(x0, j̃) ≤ 0} exceeds some predefined level ai in
pessimistic sense, i.e. if nes{gi(x0, j̃) ≤ 0} ≥ ai which is also written as
nes{j̃:gi(x0, j̃) ≤ 0} ≥ ai. If analytical form of membership function of gi(x, j̃) is avail-
able, then one can transform this constraint to an equivalent crisp constraint (cf.
Lemma 1 of §2). Otherwise to check this necessity constraint, one can follow simu-
lation process as proposed by Maiti and Maiti (2006).

Again since maximize fj(x, j̃) are not well defined one can find maximum value of
zj such that fj(x, j̃) ≥ zj. But fj(x, j̃) ≥ zj are also not well defined and so one can
measure their possibility/necessity in optimistic/pessimistic sense and if this possi-
bility/necessity measure exceeds some predefined level bj , i.e. if

pos/nes{f (x, j̃) ≥ z} ≥ b (which are also written as pos/nes{j̃:f (x, j̃) ≥ z} ≥ b) then
zj taken as optimistic/pessimistic return of the fuzzy objective fj(x, j̃) with degree of
optimism/pessimism bj . Since our aim is to maximize the objective functions, it is
worthwhile to maximize the optimistic/pessimistic returns zj and so one can find x
for which zj are maximum. When analytical form of membership functions of
fj(x, j̃) are available one can transform pos/nes{j̃:f (x, j̃) ≥ z} ≥ b to equivalent
crisp constraints, otherwise values of j are randomly generated from bj cut set of
fuzzy vector j and x is found from search space to maximize zj as described in the
next section (see Algorithm 2 and Algorithm 3 in §3.1).

So, when j is a fuzzy vector j̃ then one can convert the above problem (7) to the
following chance constrained programming problems in optimistic and pessimistic
sense respectively.

max zj, j = 1, 2, . . . ., m

subject to pos{j̃:fj(x, j̃) ≥ zj} ≥ bj , j = 1, 2, . . . ., m

pos{j̃:gi(x, j̃) ≤ 0} ≥ ai, i = 1, 2, . . . .., n

(8)
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max zj, j = 1, 2, . . . ., m

subject to nes{j̃:fj(x, j̃) ≥ zj} ≥ bj, j = 1, 2, . . . ., m

pos{j̃:gi(x, j̃) ≤ 0} ≥ ai, i = 1, 2, . . . .., n,

(9)

where ai, i = 1, 2,… , n, and bj, j= 1, 2,… , m are predetermined confidence levels for
fuzzy constraints and fuzzy objectives, respectively, pos/nes{.} denotes the possibility/
necessity of the event in {.}. So a point x is feasible if and only if the necessity measure
of the set {j̃:gi(x0, j̃) ≤ 0} is at least ai, i = 1, 2,… , n. For each fixed feasible solution
x, the objective value zj should be the maximum that the objective function fj(x, j̃)
achieves with at least possibility/necessity bj, j = 1, 2,… , m.

3.1. Fuzzy simulation

The basic technique of chance constrained programming in a fuzzy environment is to
convert the necessity constraints to their respective deterministic equivalents accord-
ing to predetermined confidence level. However, the procedure is usually very hard
and only successful for some special cases (cf. Lemma 1). Maiti and Maiti (2007)
propose fuzzy simulation process to check feasibility of a solution x of the problems
(8) and (9). The algorithm is presented below.

Algorithm 1:Algorithm to check nes{gi(x, j̃) ≤ 0} ≥ ai, i= 1, 2,… , n, for a particular
value of decision vector x, for problem (8) and (9).

We know that nes{gi(x0, j̃) ≤ 0} ≥ ai ⇒ pos{gi(x, j̃) . 0} ≤ 1− ai, i = 1, 2,
. . . . . . , n. Using these criteria required algorithm is developed as below:

1. Set i = 1.
2. Generate j0, uniformly from the 1− ai cut set of fuzzy vectors j̃.
3. If gi(x, j0) . 0 go to step 7.
4. Repeat steps 2 to 3, N times.
5. Set i = i + 1, if i ≤ n go to step 2.
6. Return feasible.
7. Return infeasible.
8. End algorithm.

Again as stated earlier if analytical form of membership function of fj(x, j̃) is available
then only one can determine value of zj s in problems (8) and (9). However, in this case
also, the procedure is usually very hard and only successful for some special cases (cf.
Lemma 2, Lemma 3). To deal with the difficulties in evaluation of zj s, following two
simulation Algorithms are proposed for problems (8) and (9) respectively.

Algorithm 2: Algorithm to determine zj, j= 1, 2,… , m, for problem (8).
1. Do for j = 1, 2,… , m.
2. Set zj = −1 i.e. a large negative number.
3. Generate j0 uniformly from bj cut set of fuzzy vector j̃.
4. If zj , fj(x, j0) then zj = fj(x, j0).
5. Repeat steps 3 and 4, N times, where N is a sufficiently large positive integer.

Journal of Management Analytics 51



6. End Do
7. Return zj, j = 1, 2,… , m.
8. End algorithm.

Algorithm 3: Algorithm to determine zj, j= 1, 2,… , m for problem (9).
We know that nes{j̃:fj(x, j̃) ≥ zj} ≥ bj ⇒ pos{j̃:fj(x, j̃) , zj} , 1− bj . Now

roughly find a point j0 from fuzzy vector j̃, which approximately minimizes fj. Let
this value be z0 and 1 be a positive number. Set zj = z0 − 1 and if
pos{j̃:fj(x, j̃) , zj} , 1− bj then increase zj with 1. Again check pos{j̃:fj(x, j̃) ,

zj} , 1− bj and it continues until pos{j̃:fj(x, j̃) , zj} ≥ 1− bj . At this stage decrease
value of 1 and again try to improve zj. When 1 becomes sufficiently small then we stop
and final value of zj is taken. Using this criterion, required algorithm is developed as
below:

1. Do for j = 1, 2,… , m.
2. Initialize z0 and 1.
3. Set zj = z0 − 1, Fj = z0 − 1, F0 = z0 − 1
4. Generate j0 uniformly from the 1− b cut set of fuzzy vector j̃.
5. If fj(x, j̃0) , zj
6. then go to step 12.
7. End If
8. Repeat step 4 to step 7 N times.
9. Set Fj = zj.
10. Set zj = zj + 1.
11. Go to step 4.
12. If (zj = Fj) // In this case optimum value of zj , z0 − 1.
13. Set zj = zj − 1, Fj = Fj − 1, F0 = F0 − 1.
14. Go to step 4
15. End If
16. If (1 , tol)
17. go to step 22
18. End If
19. 1 = 1/N
20. zj = Fj + 1
21. Go to step 4
22. End Do
23. Output Fj, j = 1, 2,… , m.

It is not possible to find an optimum solution of problem (8) or (9) using any tra-
ditional gradient based optimization technique or using any soft computing algorithm
(MOGA, Multi Objective Simulated Annealing (MOSA), etc.) until the necessity con-
straints are converted to equivalent crisp constraints and analytical expressions of zj
are available. In almost all real-life problems, it is not possible to convert the necessity
constraints to their crisp equivalents and it is very hard to get analytical expressions for
zjs. In that case with the help of above algorithms any soft computing algorithm
(MOGA, MOSA, etc.) can be used to solve the above problem (8) or (9). In this
paper, MOGA is used for this purpose and since the above fuzzy simulation process
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is used to check the constraints in these situations as well as zj are determined, the cor-
respondingMOGA is called FSMOGA. In the next section, anMOGA is discussed to
solve (8) and (9) with the help of above algorithms. This algorithm is named as
FSMOGA.

4. Fuzzy simulation based multi-objective genetic algorithm (FSMOGA)

Genetic Algorithms are exhaustive search algorithms based on the mechanics of
natural selection and genesis (crossover, mutation, etc.) and have been developed by
Holland, his colleagues and students at the University of Michigan (c.f. Goldberg,
1989; Michalewicz, 1992, etc.). Because of its generality and other advantages over
conventional optimization methods, it has been successfully applied to different
decision making problems. There are several approaches using genetic algorithms to
deal with the multi-objective optimization problems. The better known ones include
the plain aggregation approach, the population-based non-pareto approach, the
pareto-based approach and Niche induction approach by Deb (2001, 2002). Proposed
multi-objective genetic algorithm has been developed following Deb, Pratap, Agarwal,
and Meyarivan (2002) with the help of fuzzy simulation process to check the problem
constraints and has the following two important components.

(a) Division of a population of solutions into subsets having non-dominated sol-
utions: Consider a problem having M objectives and take a population P of feasible
solutions of the problem of size N. We like to partition P into subsets F1, F2,… .,
Fk, such that every subset contains non-dominated solutions, but every solution of
Fi is not dominated by any solution of Fi+1, for i = 1, 2, … , k−1. To do this for
each solution, x, of P, calculate the following two entities.

(i) Number of solutions of P which dominate x, let it be hx.
(ii) Set of solutions of P that is dominated by x. Let it be Sx.

The above two steps require O (MN2) computations. Clearly F1 contains every sol-
ution x having hx = 0. Now for each solution x [ F1, visit every member y of Sx and
decrease hy by 1. In doing so if for any member y, hy = 0, then y[ F2. In this way, F2 is
constructed. The above process is continued to every member of F2 and thus F3 is
obtained. This process is continued until all subsets are identified.

For each solution x in the second or higher level of non-dominated subsets, hx can
be at most N−1. So each solution x will be visited at most N−1 times before hx
becomes zero. At this point, the solution is assigned a subset and will never be
visited again. Since there is at most N−1 such solutions, the total complexity is O
(N2). So overall complexity of this component is O(MN2).

(b) Determine distance of a solution from other solutions of a subset:
To determine distance of a solution from other solutions of a sub set following

steps are followed:

(i) First sort the subset according to each objective function values in ascending
order of magnitude.

(ii) For each objective function, the boundary solutions are assigned an infinite
distance value (a large value).
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(iii) All other intermediate solutions are assigned a distance value for the objec-
tive, equal to the absolute normalized difference in the objective values of
two adjacent solutions.

(iv) This calculation is continued with other objective functions.
(v) The overall distance of a solution from others is calculated as the sum of indi-

vidual distance values corresponding to each objective. Since M independent
sorting of at most N solutions (in case the subset contains all the solutions of
the population) are involved, the above algorithm has O(MNlogN) compu-
tational complexity.

Using the above two operations proposed multi-objective genetic algorithm takes the
following form:

1. Set probability of crossover pc and probability of mutation pm.
2. Set iteration counter T = 1.
3. Generate initial population set of solution P(T ) of size N.
4. Select solution from P(T ) for crossover and mutation.
5. Made crossover and mutation on selected solution and get the child set C(T ).
6. Set P1 =P(T)UC(T)//Here U stands for union operation.
7. Divide P1 into disjoint subsets having non-dominated solutions. Let these sets be F1,
F2, … , Fk.
8. Select maximum integer n such that order of P2 (=F1UF2U…UFn) ≤ N.
9. If O(P2) < N sort solutions of Fn+1 in descending order of their distance from other
solutions of the subset. Then select firstN −O(P2) solutions from Fn+1 and addwith P2,
where O(P2) represents order of P2.
10. Set T =T + 1 and P(T ) = P2.
11. If termination condition does not hold go to step 4.
12. Output: P(T )
13. End algorithm

MOGAs that use non-dominated sorting and sharing are mainly criticized for their

. O(MN3) computational complexity

. non-elitism approach

. the need for specifying a sharing parameter to maintain diversity of solutions in
the population.

In the above algorithm, these drawbacks are overcome. Since in the above algorithm
computational complexity of step 7 is O(MN2), step 9 is O(MNlogN) and other steps
are≤O(N), so overall time complexity of the algorithm is O(MN2). Here the selection
of new population after crossover and mutation on old population is done by creating
a mating pool by combining the parent and offspring population and among them,
best N solutions are taken as solutions of new population. By this way, elitism is intro-
duced in the algorithm. When some solutions from a non-dominated set Fj (i.e. a
subset of Fj) are selected for new population, those are accepted whose distance com-
pared to others (which are not selected) are much i.e. isolated solutions are accepted.
In this way taking some isolated solutions in the new population, diversity among the
solutions is introduced in the algorithm. Different procedures of the aboveMOGA are
discussed in the following section.
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4.1. Procedures of the proposed MOGA

(a) Representation: A ‘K dimensional real vector’ X = (x1, x2,… . xK) is used to
represent a solution, where x1, x2,… , xK represent different decision variables
of the problem such that constraints of the problem are satisfied.

(b) Initialization: N such solutions X1, X2, X3,… , XN are randomly generated by
random number generator from the search space such that eachXi satisfies the
constraints of the problem. This solution set is taken as initial population P(1).
Also set pc= 0.3, pm= 0.2, T= 1.

(c) Crossover:
(i) Selection for crossover: For each solution of P(T ) generate a random

number r from the range [0, 1]. If r< pc, then the solution is taken for
crossover.

(ii) Crossover process: Crossover taken place on the selected solutions. For
each pair of coupled solutions Y1, Y2 a random number c is generated
from the [0, 1] and offsprings Y11 and Y21 are calculated by Y11 = cY1

+ (1−c)Y2, Y21 = cY2 + (1−c)Y1.
(d) Mutation:

(i) Selection for mutation: For each solution of P(T ) generate a random
number r from the range [0, 1]. If r< pm then the solution is taken for
mutation.

(ii) Mutation process: To mutate a solution X = (x1, x2, x3,… , xK) select a
random integer r in the range [1, K ]. Then replace xr by randomly gener-
ated value within the boundary of rth component of X.

(e) Division of P(T ) into disjoint subsets having non-dominated solutions: Follow-
ing the discussions of the previous section the following algorithm is devel-
oped for this purpose.

For every x [ P(T) do
Set Sx=F, where F represents null set
hx = 0
For every y [ P(T) do
If x dominates y, then

Sx= SxU{y}
Else if y dominates x then

hx = hx + 1
End if

End for
If hx = 0 then

F1 = F1U{x}
End If

End For
Set i = 1
While Fi = F do

Fi+1 =F
For every x [ Fi do

For every y [ Sx do
hy = hy − 1
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If hy = 0 then
Fi+1 = Fi+1 U{y}

End If
End For

End For
i= i + 1
End While
Output: F1, F2, … , Fi−1.

(f) Determine distance of a solution of subset F from other solutions: Following
algorithm is used for this purpose

Set n = number of solutions in F
For every x [ F do

xdistance = 0
End For

For every objective m do
Sort F, in ascending order of magnitude of mth objective.
F[1] = F[n] =M, where M is a big quantity.

For i = 2 to n−1 do
F[i]distance = F[i]distance + (F[i + 1].objm − F[i − 1].objm)/( f max

m − f m
min)

End For
End For

In the algorithm F[i] represents ith solution of F, F[i].objm represent mth objective
value of F[i]. fmax

m and fmin
m represent the maximum and minimum values of mth

objective function.

5. Assumptions and notations for the proposed models

The following notations and assumptions are used in developing the models.

5.1. Notations

This model is developed for ith (i = 1,) outlet and jth item throughout the paper.

N number of deteriorating items
M number of outlets
Wi storage area of ith outlet
l deterioration rate
INV maximum investment amount
Tij cycle length
Qij order quantity
Q0ij stock level above which stock has no effect on demand
qij(t) inventory level at time t
Dij demand rate per unit time
aij , bij( . 0) parameters of demand
Aij storage area per unit
T1ij time when inventory level reaches Q0ij
c pij purchase cost per unit
csij selling price per unit
c0ij ordering cost per cycle
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chij holding cost per unit
Zij average profit.
Fi average profit from ith outlet
Pi/Ni optimistic/pessimistic return of the average profit Fi with degree of optimisim/

pessimism bi
a1, a2 confidence levels for investment and space constraints respectively.

5.2. Assumptions

(i) The model is developed forM outlets,N deteriorating items and ni items are

sold from this outlet. So,
∑M
i=1

ni = N.
(ii) Lead time is zero.
(iii) Shortages are not allowed.
(iv) Time horizon of the inventory system is infinite.
(v) The demand Dij is linearly depend upon the stock level of the item and is of

the form

Dij = aij + bijQ0ij , Q0ij , qij ≤ Qij

aij + bijqij , qij ≤ Q0ij

{
(vi) Selling price csij is the mark-up of purchase cost, i.e. csij =mcpij.
(vii) Ordering cost c0ij linearly depends on order quantity and is of the form

c0ij = c0ij1 + c0ij2Qij

(viii) The holding cost chij is multiple of purchase cost, i.e. chij = hijcpij .

6. Model development and analysis

In the development of the model, it is assumed that the business man possesses M
outlets and N items are sold from these outlets. For jth item in ith outlet a cycle
starts with an inventory level Qij. Demand is stock dependent and when inventory
level of the item reaches zero an order Qij for next cycle is made.

6.1. Formulation for the jth item in ith outlet

Depending upon the order quantity Qij, two cases may arise (i) Case I: Qij . Q0ij ;
(ii) Case II: Qij ≤ Q0ij

6.1.1. Case I (Qij . Q0ij)

The instantaneous state qij(t) is given by the following differential equation:

dqij(t)
dt

= −(aij + bijQ0ij)− lqij(t), Q0ij , qij(t) ≤ Qij

−(aij + bijqij(t))− lqij(t), Q0ij ≥ qij(t) ≥ 0

{
(10)

with the boundary conditions qij(0) = Qij , qij(T1ij) = Q0ij , qij(Tij) = 0.
Solving (10) we get

T1ij = 1
l
log

aij + bijQ0ij + lQij

aij + bijQ0ij + lQ0ij

∣∣∣∣
∣∣∣∣, (11)
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Tij = T1ij + 1
bij + l

log
aij + (bij + l)Q0ij

aij

∣∣∣∣
∣∣∣∣, (12)

qij(t) =
1
l
[(aij + bijQ0ij + lQij)e−lt − (aij + bijQ0ij)], 0 , t ≤ T1ij

1
bij + l

[{aij + (bij + l)Q0ij}e−(bij+l)(t−T1ij ) − aij], T1ij ≤ t ≤ Tij .

⎧⎪⎪⎨
⎪⎪⎩ (13)

Sales revenue in [0 , Tij ] is Spij = csijSij where Sij is given by

Sij =
∫T1ij

0

(aij + bij Q0ij) dt +
∫Tij

T1ij

(aij + bij qij) dt

= (aij + bij Q0ij)T1ij + aijl

(bij + l)2
log

aij + (bij + l)Q0ij

aij

∣∣∣∣
∣∣∣∣+ bijQ0ij

bij + l
. (14)

Holding cost in [0,Tij ] is chijHij where Hij is given by

Hij =
∫Q0ij

Qij

−qij
aij + bijQ0ij + lqij

dqij +
∫0
Q0ij

−qij
aij + (bij + l)qij

dqij

= − (aij + bij Q0ij)

l2
log

aij + bijQ0ij + lQij

aij + (bij + l)Q0ij

∣∣∣∣
∣∣∣∣+ 1

l
(Qij −Q0ij)

+ Q0ij

bij + l
− aij

(bij + l)2
log

aij + (bij + l)Q0ij

aij

∣∣∣∣
∣∣∣∣.

(15)

6.1.2. Case II (Qij ≤ Q0ij)

The instantaneous state qij(t) is given by the following differential equation:

dqij(t)
dt

= −(aij + bijqij(t))− lqij(t) (16)

with the boundary conditions qij(0) = Qij , qij(Tij) = 0.
Solving (16) we get

Tij = 1
bij + l

log
aij + (bij + l)Qij

aij

∣∣∣∣
∣∣∣∣ (17)

qij(t) = 1
bij + l

[{aij + (bij + l)Qij}e−(bij+l)t − aij ]. (18)
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Sales revenue in [0 , Tij ] is Spij = csijSij where Sij is given by

Sij =
∫Tij

0

(aij + bij qij) dt

= aijl

(bij + l)2
log

aij + (bij + l)Qij

aij

∣∣∣∣
∣∣∣∣+ bijQij

bij + l
. (19)

Holding cost in [0 , Tij ] is chijHij where Hij is given by

Hij =
∫0
Qij

−qij
aij + (bij + l)qij

dqij

= Qij

bij + l
− aij

(bij + l)2
log

aij + (bij + l)Qij

aij

∣∣∣∣
∣∣∣∣. (20)

Combining both the cases average profit from jth item in ith outlet Zij is given by

Zij = [csijSij − cpijQij − chijHij − (c0ij1 + c0ij2Qij)]/Tij

= [{mSij −Qij − hijHij}c pij − (c0ij1 + c0ij2Qij)]/Tij .
(21)

Average profit Fi from ith outlet is given by

Fi =
∑ni
j=1

Zij . (22)

6.2. Crisp model in mathematical form

From the above discussion, the problem reduces to the following multi-objective con-
strained optimization problem as

Model 1: Maximize Fi, i = 1, 2, . . . . . . ., M (23)

Subject to
∑M
i=1

∑ni
j=1

Qijc pij ≤ INV

∑ni
j=1

QijAij ≤ Wi, i = 1, 2, . . . ., M.

6.3. Fuzzy models in mathematical form

In the real world, purchase cost (cpij), investment amount (INV), warehouse space (Wi)
are normally imprecise, i.e. vaguely defined in some situations. So we take cpij, INV,Wi

are fuzzy numbers, i.e. as c̃pij, ĨNV , W̃ i respectively. Then, due to this assumption, Fi
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become fuzzy number F̃ i and constraints in (23) also become imprecise in nature. Then
as discussed in Section 3, the statement Maximize F̃ i and constraints in (23) are not
well defined. In this case following Section 3, one can maximize an optimistic (pessi-
mistic) return value Pi (Ni) for the objective function F̃ i with some degree of optimism
(pessimism) bi and the fuzzy constraints are satisfied with degree of pessimism
a1 and a2 for investment and space constraints respectively. So in this case, the
problem reduces to the following multi-objective chance constrained programming
problems in optimistic and pessimistic senses respectively.

Model 2: Maximize Pi, i = 1, 2, . . . . . . ., M (24)

Subject to

pos{F̃ i ≥ Pi} ≥ bi

nes{
∑M
i=1

∑ni
j=1

Qijc̃ pij ≤ ĨNV} ≥ a1

nes{
∑ni
j=1

QijAij ≤ W̃ i} ≥ a2 , i = 1, 2, . . . , M

Model 3: Maximize Ni, i = 1, 2, . . . . . . ., M (25)

Subject to

nes{F̃ i ≥ Ni} ≥ bi

nes{
∑M
i=1

∑ni
j=1

Qijc̃ pij ≤ ĨNV} ≥ a1

nes{
∑ni
j=1

QijAij ≤ W̃ i} ≥ a2, i = 1, 2, . . . , M

If purchase cost c̃pij , investment amount ĨNV and outlet capacity W̃ i are TFNs
with components (cpij1, cpij2, cpij3), (INV1, INV2, INV3) and (Wi1, Wi2, Wi3) respectively
then according to formula (4) Z̃ij becomes TFN with components (Zij1, Zij2, Zij3)
where

Zijk = [{mSij −Qij − hijHij}c pijk − (c0ij1 + c0ij2Qij)]/Tij , k = 1, 2, 3.

Then F̃ i becomes TFN with components (Fi1, Fi2, Fi3) where Fik =
∑ni
j=1

Zijk, k = 1, 2, 3.

Also the quantity
∑M
i=1

∑ni
j=1

Qij c̃pij becomes TFN (R1, R2, R3) where

Rk =
∑M
i=1

∑ni
j=1

Qijc̃pijk, k = 1, 2, 3. Then using the lemmas of Section 3, the problems
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(24) and (25) reduce to following crisp multi-objective constrained optimization pro-
blems (26) and (27) respectively.

MaximizePi, i = 1, 2, . . . ,M (26)

Subject to

Fi3 − Pi

Fi3 − Fi2
≥ bi

R3 − INV1

INV2 − INV1 + R3 − R2
≤ 1− a1

∑ni
j=1

QijAij −Wi1

Wi2 −Wi1
≤ 1− a2, i = 1, 2, . . . ., M

and Maximize Ni, i = 1, 2, . . . , M

(27)

Subject to

Ni − Fi1

Fi2 − Fi1
≥ bi

R3 − INV1

INV2 − INV1 + R3 − R2
≤ 1− a1

∑ni
j=1

QijAij −Wi1

Wi2 −Wi1
≤ 1− a2, i = 1, 2, . . . ., M.

So when fuzzy parameters are TFN type then problems (24) and (25) can be trans-
formed to equivalent crisp problems and can be solved via MOGA. But if the par-
ameters are of PFN type then sum of two PFNs is not a PFN so in that case
problems (24) and (25) cannot be transformed to equivalent crisp problems. In that
case problems can be solved using FSMOGAwith the help of simulation algorithms
in Section 3.1.

7. Numerical illustration

7.1. Crisp model

To illustrate the crisp model (23), the following example 1 is given below.

Example 1: A businessman sells five items (N= 5) from two outlets (M = 2). From
the first outlet, three types of fruits (i.e. apple, orange, mango) are sold and two types
of vegetables (i.e. cauliflower, tomato) are sold from second outlet. For this problem,
demand of these items is stock dependent which is shown in assumption (v), selling
price is the mark-up (m= 1.5) purchase cost (i.e. cp11 =$ 9.5, cp12 = $10.5, cp13 =
$8.5, cp21 =$ 9, cp22 =$ 8), items deteriorated with the constant rate l = 0.02, the
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storage space for two outlets respectively are W1= 60 sq. ft and W2= 35 sq ft. In this
problem, holding cost (hij) has been decided according to the assumption (viii) and the
ordering cost (c0ij) is linearly dependent on order quantity (Qij) which is defined
according to assumption (vii). Here, the businessman invested maximum amount
(INV) $1550 and all other parametric values has been presented in Table 1. Now, the
problem is to find the optimum order quantity to get maximum profit.

Solution: In this problem, the input parameters are given in Table 1. This problem
cannot be solved analytically. So, MOGA is applied to obtain the pareto optimal sol-
ution which has been presented in Table 2.

It is observed that pareto optimality of a solution does not imply total profit
(F1+F2) from the system is maximum, which agrees with reality.

7.2. Fuzzy model

For illustration of the fuzzy models (24) and (25) following examples (Example 2 and
Example 3) are used.

Example 2: Suppose the businessman starts business in an important place like
supermarkets or municipality markets from where he runs two outlets for selling of
fruits (i.e. apple, orange, mango, etc.) and vegetables (cabbage, tomato, cauliflower,
etc.). Due to scarcity of space and high rent, it is impossible to have big showroom/
shop. So, the businessman runs the outlets within the limited storage space and
limited investment. But he store more at a time due to the customers demand which
leads purchase cost (cpij), investment amount (INV), warehouse space (Wi) becomes
imprecise, i.e. vaguely defined in some situations. So we take cpij, INV, Wi are fuzzy
numbers, i.e. as c̃pij , ĨNV , W̃ i respectively. Then, due to this assumption, Fi become
fuzzy number F̃ i and constraints in (23) also become imprecise in nature. Then as dis-
cussed in Section 3, the statement Maximize F̃ i and constraints in (23) are not well

Table 1. Common input data for different examples.

Outlet (i) Item ( j) aij bij hij c0ij1 c0ij2 Aij Q0ij

1 1 5 2.5 0.15 50 0.5 0.5 10
2 10 2.2 0.15 50 0.5 0.45 10
3 12 2.0 0.15 50 0.5 0.55 10

2 1 14 1.8 0.15 50 0.5 0.35 10
2 8 2.1 0.15 50 0.5 0.45 10

Table 2. Results of Example 1 (Model 1) via MOGA.

Q11 Q12 Q13 Q21 Q22 F1 F2 F1+F2

36.21 37.84 29.64 30.80 34.33 140.77 72.47 213.23
36.84 34.40 28.05 35.06 35.22 137.16 76.49 213.64
36.71 33.08 35.93 28.74 35.89 143.44 71.06 214.50
34.11 31.08 36.82 32.75 36.10 140.60 75.26 215.86
36.77 31.26 32.48 35.73 34.02 139.30 76.19 215.48
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defined. In this case following Section 3, one can maximize an optimistic (pessimistic)
return value Pi (Ni) for the objective function F̃ i with some degree of optimism (pessi-
mism) bi and the fuzzy constraints are satisfiedwith degree of pessimism a1 and a2 for
investment and space constraints respectively. So in this case the problem reduces to
the following multi-objective chance constrained programming problems in optimistic
and pessimistic senses respectively. Now the problem is to find the optimum profit in
optimistic and pessimistic sense.

Here it is assumed that c̃ pij = (c pij1, c pij2, c pij3), ĨNV=(INV1, INV2, INV3),
W̃ i = (Wi1, Wi2, Wi3) as TFNs with

cp111 = 9, cp112 = 9.5, cp113 = 10, cp121 = 9, cp122 = 10.5, cp123 = 11, cp131 = 8,

cp132 = 8.5, cp133 = 9.5, cp211 = 8.5, cp212 = 9, cp213 = 10.5, cp221 = 7.5, cp222 = 8,

cp223 = 9, INV1 = $1500, INV2 = $1550, INV3 = $1600, W11 = 50, W12 = 60,

W13 = 65, W21 = 30, W22 = 35, W23 = 40, a1 = 0.5, a2 = 0.5.

In this case problem (24), (25) can be transformed into corresponding crisp
problem (26), (27) respectively. Problem (26) is solved for b1 = 0.9, b2 = 0.9 and
(27) is solved for b1 = 0.1, b2 = 0.1 via MOGA and results are presented in
Table 3 and Table 4 respectively.

In this case problem (24), (25) are also directly solved via FSMOGA and results are
presented in Table 3 and Table 4 respectively. It is observed that results obtained by
both the techniques are almost same.

Table 4. Results of Example 2 in model 3.

Method Q11 Q12 Q13 Q21 Q22 N1 N2

MOGA 33.08 30.78 35.21 30.31 30.06 135.93 67.65
31.77 31.32 33.67 35.08 27.17 134.31 68.61
31.85 33.00 31.71 34.42 27.95 134.19 69.07
28.46 31.94 31.35 35.12 32.77 129.59 73.92

FSMOGA 29.64 29.14 35.44 33.23 32.36 131.22 72.27
30.88 30.61 32.53 36.59 28.78 131.86 71.31
32.01 29.31 35.67 30.45 32.35 133.76 69.71
31.67 30.30 35.21 31.37 30.95 134.29 69.52

Table 3. Results of Example 2 in model 2.

Method Q11 Q12 Q13 Q21 Q22 P1 P2

MOGA 27.84 32.27 29.97 36.96 31.98 132.47 78.08
30.60 34.38 32.82 31.48 29.01 139.85 71.51
34.14 33.50 31.21 34.08 25.26 140.59 69.10
31.68 37.63 32.27 29.42 26.34 142.25 66.28

FSMOGA 35.91 26.89 32.35 35.51 29.06 135.50 74.66
36.03 28.96 32.78 33.54 28.15 138.73 72.34
30.60 34.38 32.82 31.48 29.01 139.85 71.51
31.18 36.85 32.39 29.78 27.54 141.51 68.18
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Example 3: Here it is assumed that c̃ pij = (c pij1, c pij2, c pij3) as PFNs with
c p111 = 9, cp112 = 9.5, c p113 = 10, c p121 = 9, cp122 = 10.5, c p123 = 11, cp131 = 8,

c p132 = 8.5, c p133 = 9.5, cp211 = 8.5, c p212 = 9, c p213 = 10.5, c p221 = 7.5, c p222 = 8,

c p223 = 9, a1 = 0.5, a2 = 0.5.
All other parameters are same as Example 2.

In this case problem (24), (25) cannot be reduced to equivalent crisp problem and
so are solved via FSMOGA only and results are presented in Table 5 and Table 6
respectively.

8. Practical implications

Let a businessman/retailer sell fruits (i.e. apple, orange, mango, etc.) and vegetables
(cauliflower, cabbage, tomato, etc.) from two outlets situated in the place like super-
markets or municipality markets. To sell more items, he stocked more items in two
outlets in order to get maximum profit. Here each item has different demand rate
depending upon displayed stock level and the space used for two outlets are about
60 sq ft and 35 sq ft. which appears in an imprecise sense. The businessman/retailers
decide how much order quantity be stocked at two outlets so that the profit will be
maximum? For such real-life problem, present model has been implemented and
solved by MOGA and FSMOGA. So, this model gives the managerial insight to
the decision maker.

9. Conclusion and future research work

For the first time deteriorating multi-item inventory model is developed with multi-
outlet facilities under a single management. The model is formulated as a multi-
objective chance constrained programming problem in fuzzy environment. An
approach is proposed where instead of objective functions optimistic/pessimistic

Table 5. Results of Example 3 in model 2.

Method Q11 Q12 Q13 Q21 Q22 P1 P2

FSMOGA 31.23 32.65 31.74 31.31 29.10 142.68 77.21
27.76 28.86 32.06 35.42 32.51 135.43 83.33
26.51 28.03 32.44 36.39 33.11 133.08 84.31
26.26 27.93 32.42 36.66 33.42 132.61 84.67

Table 6. Results of Example 3 in model 3.

Method Q11 Q12 Q13 Q21 Q22 N1 N2

FSMOGA 31.82 38.14 30.24 26.75 27.57 130.24 58.28
31.27 32.43 30.81 29.35 32.55 126.63 66.38
28.82 33.67 30.37 30.71 32.46 124.77 67.84
26.61 32.23 30.03 32.67 34.87 120.54 71.23
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returns of the objective functions are optimized. Also a simulation approach is pro-
posed to determine these optimistic/pessimistic returns in fuzzy environment. So,
from the economical point of view, the proposed model will be useful to the business
houses in the present context as it gives better inventory control system. Further exten-
sion of this model can be done considering some realistic situation like quantity
discount policy. Also, the present MOGA can be applied to other inventory models
with price dependent demand, probabilistic demand, time-dependent demand, fixed
time horizon, etc., along with quantity discount formulated in stochastic and fuzzy-
stochastic environments.
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