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Abstract The present study was conducted to assess soil

organic carbon (SOC) and other nutrients under different

land use patterns in the lateritic region at Medinipur Block

of Paschim Medinipur District, West Bengal, India. Sam-

ples were collected from different land use categories in 17

locations at soil depths of 0–19, 20–39, and 40–100 cm.

The physical and chemical properties of soil were mea-

sured and concentration of SOC, pH, electric conductivity

(EC), phosphorous (P) and potassium (K) were calculated

for each depth and land use category. Statistical analyses,

including simple correlation and principal component

analysis (PCA) were used to relate land use and SOC data

and other soil properties. The radial basis function (RBF)

method was employed to investigate the spatial pattern of

SOC. Spatial variability of SOC showed maximum con-

centration on the north west part and lowest concentration

in the northeast and central parts of the study area. The

maximum average value of SOC was highest at 0–19 cm

depth and declined with increasing depth. The observed

mean of SOC in the topsoil (0–19 cm) was highest in the

forest soils (0.69 %) and lowest in fallow land (0.41 %).

This study suggests a need for appropriate land use

strategies and sustainable soil management for improving

soil fertility in the study area.

Keywords Soil organic carbon � Radial basis function �
Soil depth � Land use � Soil management

Introduction

Recognizing the technicalities of SOC is significant for

decisive soil health, efficiency, and developing land control

policies as well as carbon dioxide fluxes in the atmosphere.

The conversion of land use/land cover (LULC) in south-

west West Bengal (India) has significantly increased in

order to meet growing demands for food and other prod-

ucts. Soil organic carbon (SOC) of an area determines the

soil quality and constitutes one of the largest reservoirs of

total global carbon stocks (Sheikh et al. 2011; Kumar et al.

2013). Commonly, it is noted that the carbon amassed in

soils is almost three times that in the aboveground biomass

and roughly two times that in the atmosphere (Post et al.

1990). Therefore, reinstatement of quality of soil via SOC

management has remained the chief concern for tropical

soils. The widespread use of chemical fertilizers adversely

affects structure and texture, decreasing microbial activity

and organic matter of soil (Das 2013; Zhuang et al. 2015).

Variation in soil organic matter as a function of land use

modification has been used to assess organic matter

dynamics and to estimate carbon stocks and also carbon

flux of the soil (Kalambukattu et al. 2013; Novara et al.

2013). Soil organic matter is the most important source and

a provisional sink for plant nutrients in cultivated soils

(Srinivasan et al. 2012).

The rapid decline of SOC by conversion of terrestrial

ecosystem is well known (Post and Kwon 2000). Variations
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in soil organic matter fractions as a function of land use

modification have been used to appraise organic matter

dynamics and to estimate carbon stocks (Ashagrie et al.

2007; Galdos et al. 2009). Soil organic matter is the most

important source of, and a provisional sink for, plant

nutrients in cultivated soils (Srinivasan et al. 2012). The

maintenance and buildup of the soil organic matter levels in

agricultural areas is a major challenge in the very weathered

soils of the tropical regions. This is due to different inputs of

organic residues and fertilizers, which influence soil

microbial activity and mineralization rates. Accordingly,

LULC, mostly deforestation and deserted farmlands have

become serious anxieties, as the insinuations for systems

concerning human livelihoods are enormous (Durán Zuazo

et al. 2013). Consequently, climatic factors, particularly

temperature and precipitation are the key factors of SOC

contents (Liu et al. 2011). However, balance of SOC can be

disturbed by LULC change in anticipation of a new equi-

librium is recognized within the altered ecosystem.

Recently, several studies have confirmed the brawny impact

of LULC types on SOC stores and their fractionation in

different ecosystem (Durán Zuazo et al. 2014; Ayoubi et al.

2011). Investigating the spatial distribution of SOC is

important for evaluating soil ecological functions and

understanding soil carbon sequestration processes. Spatial

Statistical approach appraise the autocorrelation usually

observed in geographical data, where data values from

locations close to each other are more analogous than data

values from locations far apart (Isaaks and Srivastava

1989). Several studies also evaluated Kriging, inverse dis-

tance weighting (IDW) and radial basis functions (RBF) in

soil science. Sarmadian et al. (2014) found that RBF

method provide more accurate results than krigging and

IDW interpolation technique. RBF methods predict values

that can vary above the maximum or below the minimum of

the measured values. The estimated values of the methods

are based on a mathematical function that minimizes overall

surface curvature, generating quite smooth surfaces

(Karydas et al. 2009).

Intensive cultivation in dry land regions of Medinipur

block (Pashim Medinipur) has resulted in the decline of its

meager SOC pool at a fast rate exacerbated by climate

change-related desertification processes. Distribution of

different forms of SOC, phosphate and potash content in

surface soil of rice fields in West Bengal was reported by

Sarkar et al. (2013). As per the research report, it was found

that 63–73 % of inorganic P fraction of the total P in rice

soils as against 37 % in forest soil. No systematic study has

been conducted to assess the SOC pool in the lateritic zone

of West Bengal. Therefore, a pilot study was conducted to

analyze the soil properties and spatial distribution of SOC

under different land use using spatial statistical techniques.

Materials and methods

Outline of study area

The study was conducted in Medinipur of Paschim Medi-

nipur district in West Bengal (India). It is extended

between 22�2304500N–22�3205000N latitude and

87�0504000E–87�3100100E longitude covered with an area of

35,318.30 ha (Fig. 1). The land surface area of the block is

characterized by red lateritic cover, and flat alluvial and

deltaic plains (Bhunia et al. 2012). The maximum tem-

perature recorded in April is 43 �C and minimum tem-

perature is 9 �C in the month of December. The average

annual rainfall is about 1450 mm (Gayen et al. 2013).

Fig. 1 Location of the study area and sampling design with land use land cover of Medinipur block derived from Landsat Thematic Mapper data
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Soil sampling and analysis

Stratified random sampling was used in the field during

the post-monsoon season. Soil samples were collected at

17 sites under different land uses including agriculture

(6), scrubland (3), forest (3), grassland (3), and fallow

land (2) of the Medinipur block. A global positioning

system (GPS) was used to locate each sample site

(Fig. 1). In forest, the sampling was conducted in dense

forest, degraded forest and open forest areas. River/water

bodies, sand and urban regions were excluded from col-

lection. Undisturbed soil samples at depths of 0–19,

20–39, and 40–100 cm were collected with 5 soil cores

from each site and mixed by depth into a composite soil

sample. Soil samples were air dried and passed through a

2 mm sieve for laboratory analysis of soil texture, pH,

EC, P, K and SOC. Soil texture was measured using the

mechanical sieve, soil pH was measured with a pH-meter

(Model: ML 962), and SOC concentration was determined

by Walkely-Black wet oxidation method (Bao 2000). Soil

available P was determined by spectrophotometer, fol-

lowing wet digestion in concentrated H2SO4 (Bremner

1996). Potassium was determined by flame spectropho-

tometer following wet digestion in HF-HClO4 (Knudsen

et al. 1982).

Statistical analysis

Descriptive statistics of soil characteristics were analyzed.

Principal components analysis was performed to investi-

gate the interrelationship of pH, EC, P, K and SOC. Eigen-

values are the variances of the factors. PCA was used for

data reduction. Each factor tends to have either positive or

negative loadings of a large or small amount for any par-

ticular variable. Correlations between SOC and other soil

properties were estimated using SPSS 12.0 software and

MS Excel.

Spatial statistical analysis

Surface maps of SOC were prepared using the ‘Geosta-

tistical Analyst’ of ArcGIS 8.1 software package through

deterministic interpolation techniques. Deterministic

interpolation method, degree of smoothing (radial basis

functions, RBF) was used to generate the spatial distri-

bution of SOC. The RBF method is considered as an exact

interpolator where the surface passes through each mea-

sured sample value; projected values can fluctuate above

the maximum or below the minimum of the measured

sample values (Li et al. 2007). The RBF model is used to

predict the soil properties at unsampled locations. Earlier

studies suggest that RBF is the best method to interpolate

soil parameters and it is used to interpolate data points in

a group of multi-dimensional space (Pal et al. 2014). RBF

method is a family of five deterministic exact interpola-

tion techniques: thin-plate spline (TPS), spline with ten-

sion (SPT), completely regularised spline (CRS), multi-

quadratic function (MQ and inverse multi-quadratic

function (IMQ). RBF fits a surface through the measured

sample values while minimizing the total curvature of the

surface (Johnston et al. 2001). RBF is ineffective when

there is a dramatic change in the surface values within

short distances (ESRI, 2001, Xie et al. 2011). The most

widely used RBF that is CRS was selected in this study

(Arslan 2014).

Validation

Cross-validation technique was adopted for evaluating

the performance of RBF interpolation methods. The

sample points were arbitrarily divided into two datasets,

with one used to train a model and the other used to

validate the model. To reduce variability, the training

and validation sets must cross-over in successive rounds

such that each data point is able to be validated against.

The root-mean-squared-error (RMSE) and the goodness

of prediction were calculated as measures for accuracy

and effectiveness respectively for all the produced topsoil

prediction maps. The smallest RMSE values determine

the suitability of a prediction model when its value tends

to zero.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

ð0i � SiÞ2

N

v

u

u

u

t

ð1Þ

where, 0i is observed value and Si is the predicted value, N

is the Number of samples.

Result and discussion

Soil organic carbon (SOC)

A relatively wide range of variation of SOC was observed

at different soil depths (Table 1). Average SOC values for

the whole study for the 0 –19, 20 –39 and 40–100 cm

depths were 0.50, 0.47, and 0.43 % respectively. The

higher soil organic carbon, phosphate and potash content in

surface soil of rice fields in West Bengal state mean value

of SOC was found at 0–19 cm and decreased with

increasing depth with variation from 0.08 to 0.99 %.

However, the highest value (±0.39) of standard deviation

of SOC was recorded at 20–39 cm. The coefficient of

variation (CV %) of SOC was high at 0–39 cm and low at

40–100 cm depth.
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Carbon stocks in the soil are affected by the accumu-

lation and decay of organic matter in forest areas. Among

the different horizons, forests had the highest and average

SOC value in the upper horizon of soil (Table 1) and this

amount decreased with increasing soil depth. Maximum

average of SOC (0.69 %) was found in the top soil at

0–19 cm depth. The storage of carbon among the entire

forest category under consideration was significantly

higher in the top layer (P\ 0.03). Briefly, a concentration

of carbon sink was found in the 0–39 cm depth in all the

forest soil samples in the study site. Storage of SOC in

upper soil layer has been associated with the growth of root

systems (Pillon 2000; Shit et al. 2010).

Soil pH

Assessment of pH of soils related to different land use

types is shown in Table 2. The average value of soil pH in

the different horizons in the forest region varies from 4.2 -

6.9 indicating a moderate to slightly acidic nature

(Table 2). Acidity increased as the depth of subsoil

increased, which may be attributed to carbon dioxide from

decomposing organic matter and root respiration dissolving

in soil water to form a weak organic acid. The increase in

soil pH on upper soil horizons of agricultural land may be

attributed to soil submergence during the rice-growing

period and use of the urea form of fertilizer. In grassland

regions, soil pH varied from 6.01 to 6.31. In the upper

horizon (0–19 cm depth), soils are slightly acidic in char-

acter whereas the acidity decreases with increasing depth.

Moreover, average soil pH in shrub land regions varied

from 5.83 (0–19 cm) to 6.17 (40–100 cm). Decrease of soil

pH from the agricultural land might be due to exhaustion of

basic cations or higher microbial oxidation that creates

organic acids causing lower soil pH (Chauhan et al. 2014).

Electrical conductivity (EC)

Electrical Conductivity is increased by cropping, irrigation,

and application of fertilizer and compost into land. The

highest average value of EC (0.28 ± 0.11 dSm-1) was

recorded at a depth of 20–39 cm (Table 2). Range of mean

EC of soils in forest, agricultural land and grassland was

0.23–0.28, 0.18–0.19 and 0.24–0.27 dSm-1 respectively.

In shrub land, EC increased in trend with depth and varied

between 0.20 and 0.37 dSm-1. This may be accredited to

Table 1 Summary statistics

from the classical analysis of

soil organic carbon (SOC, %)

content in different soil horizons

Soil depth (cm) N Mean Median Min Max SD CV (%) Skewness Kurtosis

0–19 17 0.50 0.58 0.02 0.82 0.32 64.297 0.25 1.30

20–39 17 0.47 0.52 0.05 0.87 0.39 81.79 0.02 1.59

40–100 17 0.43 0.45 0.08 0.99 0.32 75.06 0.11 0.81

N number of samples, min minimum, max maximum, SD standard deviation, CV coefficient of variation

Table 2 Characteristics of soil

nutrients in different land use

categories (mean and standard

deviation)

LC� Dep� SOC

(%)

pH

–

EC

dSm-1
P

(kg/hector)

K

(kg/hector)

Ag 0 0.47 (0.12) 5.7 (0.42) 0.18 (0.03) 500.8 (2.53) 210.6 (63.64)

Ag 20 0.41(0.26) 5.85 (0.21) 0.18 (0.01) 500.0 (2.54) 196.2 (89.1)

Ag 40 0.19 (0.48) 6.10 (0.14) 0.19 (0.05) 496.0 (9.19) 263.0 (86.5)

Gr 0 0.55 (0.51) 6.08 (0.53) 0.24 (0.05) 500.8 (2.07) 160.38 (92.4)

Gr 20 0.43 (0.51) 6.28 (0.59) 0.25 (0.07) 500.7 (3.5) 171.4 (77.2)

Gr 40 0.40 (0.38) 6.31 (0.48) 0.27 (0.10) 499.9 (1.80) 84.15 (51.4)

Fo 0 0.69 (0.23) 6.28 (0.29) 0.24 (0.05) 502.0 (1.46) 189.3 (70.89)

Fo 20 0.61 (0.35) 6.07 (0.27) 0.28 (0.11) 501.4 (1.85) 193.3 (86.3)

Fo 40 0.42 (0.26) 6.05 (0.29) 0.23 (0.04) 502.0 (1.47) 216.0 (57.4)

Sc 0 0.50 (0.1) 5.83 (0.38) 0.20 (0.04) 500.21(2.07) 255.36 (28.61)

Sc 20 0.35 (0.38) 5.90 (0.20) 0.21 (0.02) 501.4 (2.07) 197.28 (88.17)

Sc 40 0.31 (0.37) 6.17 (0.06) 0.37 (0.23) 501.4 (2.07) 183.0 (78.46)

Fa 0 0.41 (0.23) 6.10 (0.1) 0.26 (0.04) 501.4 (2.07) 202.8 (76.1)

Fa 20 0.37 (0.52) 6.03 (0.15) 0.22 (0.03) 502.0 (1.15) 163.93 (50.04)

Fa 40 0.13 (0.30) 5.93 (0.23) 0.21 (0.04) 501.0 (2.07) 160.0 (117)

� Land cover: Ag agriculture, Fo forest, Gr grassland, Sc scrub, Fa fallow
� Depth range: 0 = 0–19 cm, 20 = 20–39 cm, 40 = 40–100 cm
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variation of water content, salinity level, temperature and

cation exchange capacity (CEC) (Doerge 1999). The low

EC values of surface layer soils as compared to lower

depths is probably due to leaching of salts from surface to

subsurface layers because of poor internal drainage (Gu-

rumurthy et al. 2009; Shit et al. 2010).

Phosphorous (P) and Potassium (K)

Phosphorous and K are essential nutrients for tree growth

and significant variation among different land uses was

found. The lowest value of P (501.40 kg/ha ± 1.85) is

recorded at a depth of 20–39 cm among the horizons in the

study area. The amounts of available P are slightly higher

in the forest in comparison to agricultural land, grassland,

shrub and fallow land (Table 2). The result corroborates

the findings of Emiru and Gebrekidan (2013). In forest

region, the amount of K is increased with depth. Moreover,

the value of K was maximum at 40-100 cm depth in

agricultural land while the lowest value of K was observed

at 20–39 cm depth (196.20 kg/ha). The total amount of K

was the highest in the top organic layer and decreased

gradually with increasing depth in the grassland, shrub and

fallow land (Table 2). In grassland, the value of K varied

from 160.38 kg/ha (0–19 cm depth) to 84.15 kg/ha

(40–100 cm depth); whereas, in the shrub land the amount

of K varied from 255.36 kg/ha (0–19 cm depth) to 183 kg/

ha (40–100 cm depth). The value of K significantly

increased with depth of the sub-soil horizon (P\ 0.004).

The consistent decrease of available K from soil might

have also caused low content of K in the pasture land and

other cultivated land use systems (Wakene 2001).

The results of PCA showed that the first four PCs with

eigenvalue C 1 accounted for 75 % of the total variance

(Table 3). Two factor of PCA was extracted. Within each

PCA, the variable with the highest factor loading was

selected as the most important contributor and strong

relationship with the other variables. Results showed SOC

has a positive load on K, whereas pH, P, and EC have a

negative load on the first factor at a depth of 0–19 cm

depth. For the second factor, it was found that pH, K and

EC has a high positive load, while P has a lesser negative

load. At a depth of 20–39 cm depth, P and K have negative

load on SOC and positive load was found for pH and EC.

However, the load has less in second factor for each vari-

able except K. In the 40–100 cm depth, results demon-

strated that SOC has a positive load on P and K; whereas,

pH and EC have negative load. In second factor, pH has

positive load and K has negative load in the study area.

Spatial distribution of SOC

The spatial distribution of SOC is shown in Fig. 2. The

results showed small pockets of highest SOC in the central

and extreme north-west corner at 0–19 cm depth (Fig. 2a)

that corresponds to forest cover. The eastern and north-east

corner of the study site has the minimum value of SOC as it

is covered by fallow land. Most of the study area has

medium values of SOC with mean error and RMSE values

of 0.02 and 0.15 respectively. The analysis suggests that

mainly in the topsoil (0–19 cm depth) the geographical

allocation patterns of SOC were extremely variable due to

small scale variations in input, redistribution, and stabi-

lization. The root-mean-square-error of the predictive

model was 0.16 with the mean error of 0.007 of the pre-

dicted map of SOC at 20–39 cm depth (Fig. 2b). The

central part of the study area is portrayed with medium

value of SOC. The SOC prospect map at 40–100 cm depth

was shows in Fig. 2c. The maximum SOC value was in the

north-west part of the study site and small pocket was also

observed in the northern part of the study site. The lowest

value of SOC was observed in the central and north-east

part of the Medinipur block with mean error and RMSE

values are 0.07 and 0.18 respectively (Table 4). However,

this study showed that the overall spatial distribution of the

Table 3 Principal component analysis to select the soil indicators as

the minimum data set from studied soil samples (n = 51)

Soil depth (cm) Component PC 1* PC 2*

0–19 Eigenvalue 2.146 1.909

Variability (%) 42.92 38.18

Cumulative (%) 42.92 81.09

Variables

pH -0.804 0.529

P -0.756 -0.059

K 0.834 0.505

EC -0.388 0.763

20–39 Eigenvalue 3.393 0.947

Variability (%) 67.86 18.93

Cumulative (%) 67.86 86.79

Variables

pH 0.927 -0.296

P -0.751 0.194

K -0.777 0.451

EC 0.955 0.291

40–100 Eigenvalue 2.24 1.788

Variability (%) 44.89 35.77

Cumulative (%) 44.89 80.65

Variables

pH -0.307 0.947

P 0.983 0.175

K 0.473 -0.604

EC -0.824 -0.037

* Sign indicates load of variable either positive or negative on factor
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SOC in each layer of the study area was observed in pat-

ches or speckles and coefficient of variation of the SOC

each layer was moderate variability.

Conclusion

Variation in land use systems and soil depth cause less-

ening in SOC and other soil nutrients responsible for soil

productiveness and lead to soil degradation. The results

derived through the RBF interpolation method were satis-

factory for SOC prediction map. Agricultural land use led

to a decrease in total soil organic carbon, but the value was

higher than in the fallow land. Our results also portrayed

that the forest region had ability for raising SOC to sub-

stantial levels while fallow land did not, possibly due to

runoff and grazing in the study area. Consequently, the

spatial variability of SOC portrayed the central and north-

eastern part of the study site as having the lowest level of

SOC. Therefore, care should be taken to retain SOC in the

north-eastern part of the study site. As the regional econ-

omy is based upon agriculture, local people depend on

sustainable management of soil resources to support crops

and pasture production. This means the organic carbon and

other nutrients misplaced through agricultural uses should

be refilled and put back into the system to retain nutrient

stability. The amount of P and K among different land use

categories were varied and insignificant in the lower soil

layer in comparison to the surface soil layer which might

be due to the surface soil layer being affected by different

management practices.

A major limitation of the study is the small number of

samples. However, the present study suggests the need for

more comprehensive evidence and extended similar infor-

mation for better monitoring and enhanced understanding

of the impact of such changes in land use. The information

derived in the study suggests the need to plan appropriate

land use strategies and sustainable soil management and

cultivation practices to combat the enduring soil degrada-

tion and improve soil fertility in the study area.
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