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Abstract—Reversibility is an important phenomena in nature
as well as in Computer Science. Obtaining plaintext back
from ciphertext can be modeled as one kind of reversibility.
Image restoration problem can be modeled as another kind
of reversibility. Cellular automata (CA) are lattices and that
are used as computation tools for modeling diverse complex
dynamical systems. The CA evolve from one configuration to
another over iterations using local transition rules. Number of
cells that are allowed to undergo the local transition or update
function in every time step varies from one kind of CA to
another. In probabilistic CA (PCA), cells are selected randomly
for update. Reversibility is one important issue in CA. Reversible
CA are those CA which comes back to the initial state for any
given inital state after some time steps. In this paper, we have
studied the reversibility of a PCA where maximum two cells are
selected randomly for possible updates in every time step. We
have introduced a new tool, reachable state graph to understand
the PCA reversibility dynamics and proposed a deterministic
algorithm to find if a rule is reversible for PCA of arbitrary size.

Index Terms—Cellular automata, Probabilistic cellular au-
tomata, Reversibility, Reachable state graph.

I. INTRODUCTION

Cellular automata (CA) are computational tools whose dy-
namics, though defined through simple local rules, is capable
of generating a rich set of global patterns and structures that
emerge without being designed a priori [6]. CA are often
applied to model real life systems involving a huge number of
locally interacting elements such as particles in physics [22],
molecules in chemistry [21], proteins in biology [3], and in
image processing [4].

CA is a grid of cells. Each cell is in one of a finite set of
possible states. A cell undergoes update function at every clock
tick. Update function may change the cell state depending on
states of the cell itself and it’s neighboring cells. If all the cells
of CA can change it’s state at the same time then the CA is
termed as synchronous CA. On the other hand, if only a set
of cells can change state in a time step, then the CA is said to
be asynchronous CA (ACA). In fully asynchronous CA, only
one cell is chosen randomly for possible update in a time step.
In α−Asynchronous CA, all cells undergo a transition with a
probability of α. In probabilistic CA (PCA), cells undergo
the transition probabilistically. So in PCA, the cell update is
done randomly [2]. We can view the fully asynchronous CA

as a kind of PCA where at max one cell is chosen randomly
for update. PCA are useful for modeling the systems where
stochastic nature of the phenomenon exists in the system [5].

If each cell of a CA follows the same rule for transition, then
the CA is referred as uniform CA. Otherwise, the CA is said
to be non-uniform. In our present work, we have considered
uniform PCA. If we consider two-way finite CA, then there is
no left neighbor of leftmost cell and similarly there is no right
neighbor of rightmost cell. If we consider these cells are 0,
then that CA is referred as null boundary CA. If we consider
that CA is circular, then the CA is referred as periodic CA.

Reversibility is an important feature found in nature and
in Computer Science [3], [20]. Getting plaintext back from
ciphertext can be modeled as one type of reversibility [18],
[19]. Image restoration problem can be modeled as another
type of reversibility [16], [17]. CA is reversible (or invertible),
if its global map is reversible. In other words, given any
particular CA configuration, if the CA evolves to this same
configuration after one or more time steps, then the rule
governing the CA is referred as reversible [13], [8], [14].
Reversibility of synchronous (and uniform) CA has been
studied in [7]. Existing literature on reversibility of ACA only
mentions the rules that can not be reversible [9]. There is no
discussion on the reversible rules for ACA (and PCA) in the
existing literature. This is due to the fact that PCA (and ACA)
dynamics is difficult to characterize. The only existing results,
that are available, is for fully asynchronous CA [11], [10].
This is the motivation behind our work.

Our Contribution: In this work, we have adventured a step
further from fully asynchronous CA. We consider that any
two cells are chosen randomly for possible update, and then
we study the dynamics of this kind of PCA to understand it’s
reversibility. We have introduced a new tool, reachable state
graph, to understand the PCA reversibility dynamics. We have
proposed a deterministic algorithm to find if a rule is reversible
for PCA of arbitrary size. We have also reported simulation
results for PCA reversibility.

The rest of this paper has been organized as follows. We
discuss the preliminaries and introduce the notations used in
this paper in section II. Existing works on irreversibility of
CA are discussed in the section III. Next, in section IV, we
construct the all possible states that a PCA state can evolve to
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after a state transition. Thereafter, we introduce the reachable
state graph, a tool used to analyze the dynamics of the PCA
in section V. The algorithm to check if the rule is reversible
is also described in this section. The simulation-based results
on reversible rules for PCA is reported in section VI. Finally,
we conclude the paper in section VII.

II. PRELIMINARIES

CA of length n is often denoted by n − CA. Elementary
CA (ECA, or sometimes just CA) is a 1-D CA where every
cell is in a binary state and a cell has just two neighbors -
left neighbor and right neighbor [1], [7]. So, in ECA the local
cell update function is a mapping f : {0, 1}3 → {0, 1}. This
function f is a rule that defines the local transformations:

c→ f(l, c, r), where l, c, r ∈ {0, 1}, and l, c, r denote left
neighbor, cell itself, and right neighbor respectively.

This (possible) change of cell is called a transition. We say that
a transition is active if f(l, c, r) = c̄ and transition is passive
if f(l, c, r) = c. If we see the truth table of the left neighbor,
the cell, and right neighbor, then the output column can be
one of the total 256 possibilities. We refer each of these 256
combinations of CA output as a rule. The rules are numbered
according to the decimal equivalent of 8-bit binary, in reverse,
of CA output column of the truth table. Hereafter, we use the
term CA to mean ECA with periodic boundary.

For CA, we can think of left neighbor cell, The local cell
itself, and right neighbor cell values together as a min term.
When this min term is combined with a CA rule − how does
the cell change or not − we refer that as rule min term (RMT)
[9]. This RMT is the key to CA dynamics insight. For any CA
rule, some RMTs are active (the cell value flips) and remaining
RMTs are passive (the cell value remains unchanged). For
example, the passive and active RMTs of rule 20 is shown in
Table I.

TABLE I
ACTIVE AND PASSIVE RMTS FOR RULE 20

Left neighbor cell Cell Right neighbor cell Update function Remark
l c r f(l, c, r)
0 0 0 0 RMT 0: passive
0 0 1 0 RMT 1: passive
0 1 0 1 RMT 2: passive
0 1 1 0 RMT 3: active
1 0 0 1 RMT 4: active
1 0 1 0 RMT 5: passive
1 1 0 0 RMT 6: active
1 1 1 0 RMT 7: active

To characterize all possible state transitions in subsequent
time steps, from any given state for a given rule, any CA state
can be represented as a set of different RMTs. For this, we
need to find out all the passive RMTs and active RMTs for
rules 0 - 255. For example, we show the active and passive
RMTs for CA rules 0-15 in the Table II.

TABLE II
ACTIVE AND PASSIVE RMTS FOR RULES 0-15

Rule Active RMTs Passive RMTs
0 2, 3, 6, 7 0, 1, 4, 5
1 0, 2, 3, 6, 7 1, 4, 5
2 1, 2, 3, 6, 7 0, 4, 5
3 0, 1, 2, 3, 6, 7 4, 5
4 3, 6, 7 0, 1, 2, 4, 5
5 0, 3, 6, 7 1, 2, 4, 5
6 1, 3, 6, 7 0, 2, 4, 5
7 0, 1, 3, 6, 7 2, 4, 5
8 2, 6,7 0, 1, 3, 4, 5
9 0, 2, 6, 7 1, 3, 4, 5
10 1, 2, 6,7 0, 3, 4, 5
11 0, 1, 2, 6,7 3, 4, 5
12 6, 7 0, 1, 2, 3, 4, 5
13 0, 6, 7 1, 2, 3, 4, 5
14 1, 6, 7 0, 2, 3, 4, 5
15 0, 1, 6, 7 2, 3, 4, 5

Next, we analyze any given CA state in terms of RMTs
present in that state. For example, given a periodic CA of
size four, any CA state can be characterized as a sequence of
different RMTs (or cyclic shifts of this sequence), and these
RMT sequence sets are listed in Table III.

TABLE III
4-CELL CA STATES AND ITS RMT SEQUENCE SET

CA configuration RMT sequence
(left, cell, right, fourth cell) set of CA state
(0,0,0,0) or it’s cyclic shift {0}
(0,1,0,0) or it’s cyclic shift {0, 1, 2, 4}
(0,1,1,0) or it’s cyclic shift {1, 3, 4, 6}
(0,1,0,1) or it’s cyclic shift {2, 5}
(0,1,1,1) or it’s cyclic shift {3, 5, 6, 7}
(1,1,1,1) or it’s cyclic shift {7}

The state transition behaviors of different CA states having
same RMT sequence set are identical.

III. EXISTING WORKS

Wolfram studied the reversible rules for uniform syn-
chronous CA. Then researchers characterized the reversibility
(and irreversibility) of nonlinear CA, ACA, and fully asyn-
chronous CA.

A. Reversibility of Synchronous CA

Wolfram identified total 16 reversible rules for n-CA [7],
shown in the Table IV.

TABLE IV
REVERSIBLE CA RULES

15, 45, 51, 75, 85, 89, 101, 105,
150, 154, 166 , 170, 180, 204, 210, 240.

B. Reversibility of non-uniform CA

Das and Sikdar have noted the reversibility of non-uniform
CA with null boundary [12]. They reported total 62 rules as
reversible, as given in the Table V.
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TABLE V
REVERSIBLE RULES FOR NON-UNIFORM NULL BOUNDARY CA

15, 23, 27, 30, 39, 43, 45, 51, 53, 54, 57, 58, 60, 75, 77, 78,
83, 85, 86, 89, 90, 92, 99, 101, 102, 105, 106, 108, 113, 114,
120, 135, 141, 142, 147, 149, 150, 153, 154, 156, 163, 165,
166, 169, 170, 172, 177, 178, 180, 195, 197, 198, 201, 202,
204, 210, 212, 216, 225, 228, 232, 240

C. Irreversibility of Asynchronous CA

Sarkar, Mukherjee, and Das made the first attempt to study
reversibility of ACA [9]. They reported the irreversible rules
for periodic ACA and the irreversible rules for null-boundary
ACA separately. These irreversible rules for periodic ACA
and null-boundary ACA are listed in Table VI and Table VII
respectively.

TABLE VI
IRREVERSIBLE RULES FOR PERIODIC BOUNDARY ACA

0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 64, 66, 68, 70, 72, 74,
76, 78, 80, 84, 88, 92, 141, 143, 157, 159, 173, 175, 189,
191, 197, 199, 205, 207, 213, 215, 221, 223, 229, 231, 237,
239, 245, 247, 253, 255

TABLE VII
IRREVERSIBLE RULES FOR NULL BOUNDARY ACA

0, 4, 13, 15, 29, 31, 45, 47, 61, 63, 69, 71, 77, 79, 85, 87, 93,
95, 101, 103, 109, 111, 117, 119, 125, 127, 141, 143, 157,
159, 160, 168, 170, 173, 175, 189, 191, 197, 199, 205, 207,
213, 215, 221, 223, 224, 229, 231, 232, 234, 237, 239, 240,
245, 247, 248, 250, 253, 255

They concluded that, reversible ACA rules will not belong
to this rule set. But they could not deterministically report the
reversible rules for ACA.

D. Reversibility of Fully Asynchronous CA

Reversibility of fully asynchronous CA has been studied in
[11] and [10]. These works pointed that, some rules exhibit
reversibility sometimes but not always, and some rules are
reversible always. These class of rules which are always
reversible are classified as recurrent rules. Total 46 recurrent
rules have been identified for fully asynchronous CA, and are
listed in the Table VIII.

TABLE VIII
RECURRENT RULES FOR FULLY ASYNCHRONOUS CA

33, 35, 38, 41, 43, 46, 49, 51, 52, 54, 57, 59, 60, 62, 97, 99,
102, 105, 107, 108, 113, 115, 116, 118, 121, 123, 131, 134,
139, 142, 145, 147, 148, 150, 153, 155, 156, 158, 195, 198,
201, 204, 209, 211, 212, 214

E. Reversibility of α−Asynchronous CA

Pattanayak and Dhal have reported simulation based results
on reversibility of α−Asynchronous CA in [15]. They have
noted the reversible rules of α−Asynchronous CA for different
CA sizes and different update probabilities.

IV. MODELING PROBABILISTIC CA STATE TRANSITIONS

Any CA state can be expressed as a set of RMT sequences.
Now, we study the effect of choosing maximum two cells
randomly for transitions. Our goal is to identify RMT sequence
set of the resultant CA. For this, we first determine the current
state’s RMT sequence set. Then depending on whether a RMT
is passive or active for a rule, the transition to another state
will be decided. For example, we take a PCA of length four,
and select any two cells randomly for possible update. The
initial PCA state is any of the six possible RMT sequence
set, as mentioned in Table III. For each of these six cases, we
note the resultant PCA state depending on the passive or active
RMTs of each member in RMT sequence set in the next.

A. RMT sequence {0}
First, take the CA state with RMT sequence {0}. For any

CA rule, RMT 0 will be either passive or active. If RMT 0 is
passive (P), then the RMT sequence of resultant CA will be
{0} only. If RMT 0 is active (A), then RMT sequences of the
resultant CA will be either RMTs {1,3,4,6} or RMTs {2,5}
only. This is shown in the Table IX.

TABLE IX
POSSIBLE RMT SEQUENCES OF RESULTANT CA STATE WHEN INPUT RMT

SEQUENCE IS {0}

RMT 0 RMT sequence of Resultant CA state
P {0}
A {2, 5}, {1, 3, 4, 6}

B. RMT {7}
Now, consider the PCA state with RMT sequence {7}. For

any CA rule, RMT 7 will be either passive or active. If RMT
7 is passive, then the RMT sequence of resultant CA will be
{7} only. If RMT 7 is active, then RMT sequences of the
resultant CA will be either RMTs {1,3,4,6} or RMTs {2,5},
as shown in the Table X.

TABLE X
RESULTANT CA STATE FOR INPUT RMT SEQUENCE {7}

RMT 7 RMT sequence of resultant CA state
P {7}
A {2, 5}, {1, 3, 4, 6}

C. RMT sequence {2, 5}
Next, take the PCA state with RMT sequence {2, 5}. For

any CA rule, RMT 2 and RMT 5 will be either P P, or P A, or
A P, or A A. RMT sequences of the resultant CA after update
of any two cells is shown in the Table XI.

D. RMT sequence {0, 1, 2, 4}
If we take the RMT sequence {0,1,2,4}, then for any CA

rule, RMT 0, RMT 1, RMT 2, and RMT 4 will be either
passive or active. So there will be total sixteen possibilities.
Careful inspections of all possible resultant CA state’s RMT
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TABLE XI
RESULTANT CA STATE FOR INPUT RMT SEQUENCE {2, 5}

RMT 2 RMT 5 RMT sequence of
Resultant CA state

P P {2, 5}
P A {2, 5}, {3, 5, 6, 7}, {7}
A P {0}, {2, 5}, {0, 1, 2, 4}
A A {0}, {1, 3, 4, 6}, {7}

sequences after state transition corresponding to these sixteen
possibilities will be as per the Table XII.

TABLE XII
CA STATE FOR INPUT RMT SEQUENCE {0, 1, 2, 4}

RMT 0 RMT 1 RMT 2 RMT 4 RMT sequence
of Resultant CA state

P P P P {0, 1, 2, 4}
P P P A {0, 1, 2, 4}, {1, 3, 4, 6}
P P A P {0}, {0, 1, 2, 4}
P P A A {0}, {0, 1, 2, 4}, {1, 3, 4, 6}
P A P P {0, 1, 2, 4}, {1, 3, 4, 6}
P A P A {0, 1, 2, 4}, {1, 3, 4, 6},

{3, 5, 6, 7}
P A A P {0}, {0, 1, 2, 4}, {1, 3, 4, 6}
P A A A {0}, {0, 1, 2, 4}, {1, 3, 4, 6},

{3, 5, 6, 7}
A P P P {2, 5}, {0, 1, 2, 4}
A P P A {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6},{3, 5, 6, 7}
A P A P {0}, {2, 5}, {0, 1, 2, 4}
A P A A {0}, {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
A A P P {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6},{3, 5, 6, 7}
A A P A {2, 5}, {1, 3, 4, 6},

{3, 5, 6, 7}
A A A P {0}, {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
A A A A {0, 1, 2, 4}, {3, 5, 6, 7}

E. RMT sequence {1, 3, 4, 6}
Similarly, when PCA state is of RMT sequence {1, 3, 4,

6}, then the resultant CA state’s RMT sequences after update
of any two cells will be as per the Table XIII.

F. RMT sequence {3, 5, 6, 7}
In the same way, when the PCA state has the RMT sequence

{3, 5, 6, 7}, then the resultant CA state’s RMT sequences after
update of any two cells will be as per the following Table XIV.

V. IDENTIFYING REVERSIBLE PCA RULES

Once we obtain the possible RMT sequences of the resultant
PCA state for all the input RMT sequences, we are ready to
study the PCA state transitions graphically.

A. Reachable State Graph

Now, in attempt to understand the dynamics of transitions
of PCA states under different rules, we propose a new tool,
reachable state graph. We build reachable state graph for every
rule for a particular CA length. In this graph, the vertex set is
the set of possible RMT sequences, and edge set is the directed
edges from one vertex to another. The directed edges from a

TABLE XIII
CA STATE FOR INPUT RMT SEQUENCE {1, 3, 4, 6}

RMT 1 RMT 3 RMT 4 RMT 6 RMT sequence of
Resultant CA state

P P P P {1, 3, 4, 6}
P P P A {0, 1, 2, 4}, {1, 3, 4, 6}
P P A P {1, 3, 4, 6}, {3, 5, 6, 7}
P P A A {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6},{3, 5, 6, 7}
P A P P {0, 1, 2, 4}, {1, 3, 4, 6}
P A P A {0}, {0, 1, 2, 4}, {1, 3, 4, 6}
P A A P {0, 1, 2, 4}, {1, 3, 4, 6},

{3, 5, 6, 7}
P A A A {0}, {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
A P P P {1, 3, 4, 6}, {3, 5, 6, 7}
A P P A {0, 1, 2, 4}, {1, 3, 4, 6},

{3, 5, 6, 7}
A P A P {1, 3, 4, 6}, {3, 5, 6, 7}, {7}
A P A A {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6},{3, 5, 6, 7}, {7}
A A P P {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6},{3, 5, 6, 7}
A A P A {0}, {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
A A A P {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}, {7}
A A A A {0}, {2, 5}, {1, 3, 4, 6}, {7}

TABLE XIV
CA STATE FOR INPUT RMT SEQUENCE {3, 5, 6, 7}

RMT 3 RMT 5 RMT 6 RMT 7 RMT sequence of
Resultant CA state

P P P P {3, 5, 6, 7}
P P P A {2, 5}, {3, 5, 6, 7}
P P A P {1, 3, 4, 6}, {3, 5, 6, 7}
P P A A {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
P A P P {3, 5, 6, 7}, {7}
P A P A {2, 5}, {3, 5, 6, 7}, {7}
P A A P {0, 1, 2, 4}, {1, 3, 4, 6},

{3, 5, 6, 7}
P A A A {0}, {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
A P P P {1, 3, 4, 6}, {3, 5, 6, 7}
A P P A {0, 1, 2, 4}, {1, 3, 4, 6},

{3, 5, 6, 7}
A P A P {1, 3, 4, 6}, {3, 5, 6, 7}, {7}
A P A A {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}, {7}
A A P P {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
A A P A {0}, {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}
A A A P {2, 5}, {0, 1, 2, 4},

{1, 3, 4, 6}, {3, 5, 6, 7}, {7}
A A A A {0}, {2, 5}, {1, 3, 4, 6}, {7}

vertex will go to different vertices or to itself depending on the
random selection of two cells for local transitions. Number of
out-bound edges from a vertex is the number of active RMTs
in the RMT sequence set vertex. For example, if we consider a
vertex corresponding to RMT sequence set {1, 3, 4, 6} where
RMT 1, RMT 4 are passive, and RMT 3, RMT 6 are active
then degree of out-bound edges for this vertex is two. If all the
RMTs of a vertex are passive, then degree of out-bound edges
for this vertex is zero. Now, if the degree of in-bound edges of
this vertex is more than zero, and degree of out-bound edges
is zero, then this vertex is a sink vertex. That is, if the PCA
reaches to this state, it will never go out of this state. In other
words, presence of sink vertex in a reachable state graph makes
sure that the rule is not reversible. Similarly if in-degree of a
vertex is zero and out-degree of it is more than zero, then we
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refer it as a transient vertex. That is if PCA makes a transition
from a transient state then it will never be able to reach this
state again. So presence of transient vertex in the graph also
cancels out a rule to be reversible. Also we may get oscillating
vertices of two or more vertices, where if PCA reaches in any
constituent vertex, the PCA will oscillate forever among these
oscillating vertices. If the reachable state graph has neither
sink vertex, nor transient vertex, nor oscillating vertices, then
the CA is bound to come back to the initial state. However, the
time steps required can be sufficiently large. That is, absence
of sink vertices, transient vertices, and oscillating vertices in
a reachable state graph confirms a rule to be reversible.

For example, the reachable state graph of 4-PCA for rule
19 is shown in the Fig. 1.

{1, 3, 4, 6}

{0}
{7}

{2, 5}

{0, 1, 2, 4} {3, 5, 6, 7}

Fig. 1. Reachable state graph of 4-PCA for rule 19

Here, six vertices represent the RMT sequence sets
{1, 3, 4, 6}, {0}, {7}, {2, 5}, {0, 1, 2, 4}, and {3, 5, 6, 7}. Here,
both unidirectional edges and bidirectional edges are present.
The edges without arrow represent bidirectional edges. This
reachable state graph is connected. We see that, there is
neither a sink vertex nor a transient vertex. That is, if we
start from any vertex, then we are bound to comeback to
that vertex. However, the number of time steps required to
comeback to the initial state can be sufficiently large and may
not be predetermined due to the randomness involved in the
transitions. Therefore, rule 19 is reversible for 4-PCA.

As another example, the reachable state graph of 4-PCA for
rule 47 is shown in the Fig. 2.

{1, 3, 4, 6}

{0}
{7}

{2, 5}

{0, 1, 2, 4} {3, 5, 6, 7}

Fig. 2. Reachable state graph of 4-PCA for rule 47

Here, it can be seen that, there is no sink vertex, but the
vertex {0} is a transient vertex. That is, if the initial state is
{0}, then the PCA will never reach back to this state, as there
is no incoming edge to this vertex. So, rule 47 is not reversible
for 4-PCA.

B. Algorithm to Find Reversible Rule

Having constructed the reachable state graph for a rule,
we are in a position to deterministically find out if a given
PCA is reversible or not. Now, we propose the deterministic
algorithm to check if a given rule, r is reversible for n-PCA
of an arbitrary size, and given below in Algorithm 1.

Algorithm 1 Algorithm FindReversiblePCA
Input: PCA size n, Rule number r.
Output: True, if r is reversible. False, otherwise.

1) Construct the valid RMT sequence sets S for n-PCA.
2) For each set si ∈ S, construct destination RMT se-

quences set table.
3) Construct directed reachable state graph G for r.
4) If a sink vertex is present in G Then

Return False
Else If a transient vertex is present in G Then

Return False
Else If oscillating vertices are found in G Then

Return False
Else

Return True
End If

VI. SIMULATION-BASED RESULTS

Here, we report our observations based on our simulations.
We have simulated the PCA using C programming language.
The simulation is done using gcc compiler in Ubuntu platform.
We have done simulations for PCA of sizes 4, 5, 6, 7, 8, 9,
and 10. We list out all the reversible rules for PCA of lengths
ranging from 4 to 10 that we have obtained through simulation
in Table XV.
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TABLE XV
REVERSIBLE RULES FOR PCAS OF DIFFERENT SIZES

PCA Reversible Rules Remarks
size
4 19, 27, 35, 37, 39, 43, 46, 49, 51, 53, Total 32 rules

55, 57, 59, 60, 62, 83, 91, 99, 102,
113, 115, 118, 119, 131, 139, 142,
145, 153, 195, 204, 209, 212

5 19, 23, 27, 30, 35, 37, 39, 41, 43, 46, Total 42 rules
49, 51, 53, 55, 57, 59, 60, 62, 83, 86,
91, 97, 99, 102, 105, 107, 113, 115,
116, 118, 121, 131, 135, 139, 142,
145, 149, 153, 195, 204, 209, 212.

6 19, 27, 33, 35, 39, 41, 43, 46, 49, 51, Total 35 rules
53, 55, 57, 59, 60, 62, 83, 97, 99, 102,
105, 107, 113, 115, 116, 118, 121,
123, 131, 139, 145, 153, 195, 204,
209.

7 19, 23, 27, 30, 33, 35, 37, 39, 41, 43, Total 40 rules
46, 49, 51, 53, 55, 57, 59, 60, 62, 83,
91, 97, 99, 102, 105, 107, 113, 115,
116, 118, 121, 123, 131, 139, 145,
149, 153, 195, 204, 209.

8 19, 27, 33, 35, 37, 39, 43, 46, 49, 51, Total 34 rules
53, 55, 57, 59, 60, 62, 83, 91, 97, 99,
102, 107, 113, 115, 116, 118, 123,
131, 139, 145, 153, 195, 204, 209.

9 19, 23, 33, 35, 39, 41, 43, 46, 49, 51, Total 29 rules
55, 57, 59, 62, 83, 97, 99, 102, 107,
113, 115, 118, 121, 123, 131, 145,
195, 204, 209

10 19, 27, 33, 35, 37, 39, 41, 43, 46, 49, Total 37 rules
51, 53, 55, 57, 59, 60, 62, 83, 91, 97,
99, 102, 105, 107, 113, 115, 116, 118,
121, 123, 131, 139, 145, 153, 195,
204, 209.

This result confirms with our findings through structural
analysis of PCA by reachable state graph. We see here that,
the number of rules that are reversible varies with PCA size.
For example, for 4-PCA, total thirty two rules are reversible,
whereas it is forty two for 5-PCA. We see that, following
twenty two rules are always reversible for all the reported
PCA sizes: rule 19, 35, 39, 43, 46, 49, 51, 55, 57, 59, 62, 83,
99, 102, 113, 115, 118, 131, 145, 195, 204, and 209.

VII. CONCLUSION

In this work, we study the reversibility of PCA when
maximum two cells are chosen randomly for update. We
demonstrate how the reversible rules can be identified de-
terministically with the help of our proposed reachable state
graph. The algorithm for finding whether a rule is reversible
for a given PCA has been proposed. We have noted down
the reversible rules as per our simulation result. This result
matches with the PCA structural analysis through reachable
state graph.
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