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3
Ideal and Technical Filters

Whether implicitly or explicitly, each of the musical examples I have described 
in the previous chapters addresses the issue of time. As the aesthetic organiza-
tion of sound waves that take place over time, music is by definition a temporal 
art form. Indeed, the temporality of sound has always been one of the pillars 
of musical creativity. As this book is centrally concerned to point out, though, 
technological sound reproduction introduced an inherent paradox: while it 
allows sound flows to be replicated almost identically, again and again, the 
procedures of capturing and replaying themselves also shape the sounds in the 
process. As both digitally captured and infinitely repeatable sonic documents 
and records of irreversible material decay, Basinski’s The Disintegration Loops 
encapsulates this contradiction. The musical substance of these pieces lies 
not in the initial loops, but rather in how the disintegrating magnetic coating 
affected, changed, and shaped their sonic contours in random, unexpected 
ways. Each time The Disintegration Loops are replayed— that is, each time 
the digital data are transduced back into electrical currents and then sound 
waves— this singular process of decay is heard again and again and again.

Similarly, The Caretaker’s Patience (After Sebald) turns the surface noise, 
needle scratch, crackles, hisses, and hums of an old Schubert recording into 
the main musical event. In a sonic accompaniment to W.G. Sebald’s literary 
meditations on time, memory, and melancholia, the piece emphasizes the un-
bridgeable distance between us as listeners and the faint, muffled, and distant 
voice and piano on the old recording. These come to us, at the thresholds of 
recognition, in layers of crackle and noise. Even the twenty seconds of pure 
tape noise that kick off Mark Hollis’s solo album makes the listener acutely 
aware that they are listening to a recording— to music that was committed 
to magnetic tape on a specific day in a specific room. Simultaneously with 
this, the noise creates a sense of intimacy that is not unlike “listening in” to 
a private phone call. In this way, “The Colour of Spring” seems to transport 
listeners back to the moment, sometime in the past, at which the music was 
recorded. We do not just hear Hollis sing, we hear him sing in a microphone, 
or rather, given that we are on the receiving end of the line, we hear him sing 
through a microphone and the long chain of further machines connecting us 
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with him. We pick up on the sonic markers indicating that technology has 
shaped these sounds, confirming that we listen not only through noise as it 
mixes with the signal and shapes it, but also to it.

The fact that noise and distortion are important in how we make sense of 
recorded sound is a result of what I call the noise resonance of sound media, 
which serves as a counterpart or conceptual foil to the myth of perfect fi-
delity. Based on a conceptual logic of noise reduction, this myth originated 
in the early days of recording technology before being consolidated by com-
munication engineers in the 1920s and ’30s and information theory in the 
1940s and ’50s. Although the conceptual logic of noise reduction assumes 
that it is possible to cleanly remove, suppress, or reduce noise, the previous 
chapter showed how dual- ended noise reduction systems only reduce what 
has already been framed as “noise,” and always affect the signal in the process. 
What is more, when it comes to digital systems, the reintroduction of noise 
in the form of dither to alleviate digitization’s structural limitations actually 
turns noise into a positive, maybe even fundamental element of the recording 
process. This recognition and reemergence of noise as a structural necessity 
problematizes the conceptual logic of noise reduction. In response to this, the 
idea of a noise resonance of sound reproduction disregards the myth of per-
fect fidelity. Instead of denying and repressing noise, it acknowledges the cru-
cial roles played by noise, distortion, and randomness for how listeners make 
sense of technologically reproduced sound and music.

The practice of dithering in particular accentuates the gap between con-
ceptual ideals of perfect reproduction and their physical implementation in 
technical media. Like the random noise produced by analog recording tech-
nologies, the quantization errors and aliasing effects of digitization highlight 
sound reproduction technologies’ fundamental limitations. They conform 
that, despite the many differences between them, analog and digital media 
ultimately adhere to the same general logic of signal transmission. Fleshing 
out the conceptual implications of a noise resonance of sound media in more 
detail, then, requires looking beyond the analog/ digital divide. In this chapter, 
I therefore trace some of the historical and theoretical (mathematical, phys-
ical, and discursive) foundations of technological sound reproduction. And as 
we will see, the theoretical principles of sound reproduction involve questions 
of temporality with which musical practice has also long been concerned.

The first half of this chapter broaches the significance of time in relation 
to two physical uncertainty principles fundamental to communication en-
gineering and information theory. Following Abraham Moles’s classic book 
Information Theory and Esthetic Perception, I show how these principles entail 
compromises that limit the accuracy of any reproduction or representation, 
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because they require a tradeoff, first, between maximum dynamic range and 
maximum frequency range, and, second, between dynamic range and tem-
poral accuracy. In this way, they provide a physical foundation for Shannon’s 
conceptualization of noise as both a prerequisite for, and disturbance of, suc-
cessful signal transmission.1

Then, moving into the second half of the chapter, I  trace the limitations 
imposed by these uncertainty principles back further still, to mathematical 
Fourier analysis in the early nineteenth century. As I described in the previous 
chapter, Fourier analysis is a powerful analytical tool that can be used to rep-
resent any sound spectrum as a series of sine waves— elemental sounds with 
a single frequency. Crucially, in idealizing physical sound, Fourier analysis 
symbolically does away with noise and time altogether. The inevitable intro-
duction of noise in physical sound reproduction, then, marks a fundamental 
gap between the idealized, mathematical representations that underpin 
modern models of physical sound and sound media, and physical processes 
of technological reproduction that unfold in space and over time.

The Limits of Representation

According to the myth of perfect fidelity, the ultimate goal of technological 
sound reproduction is to produce perfect copies. Any distorting or disrupting 
effect should be prevented, reduced, or eliminated, for only when all random, 
transient, and unexpected events are expelled will we have complete control 
over the process of reproduction. Our capacities for attaining such absolute 
control and precision are fundamentally restricted, however, because the re-
production and representation of signals require compromises between in-
compatible extremes at the most elementary physical level. Like Werner 
Heisenberg’s well- known uncertainty principle in quantum mechanics, for-
mulated in 1927, the compromises or trade- offs entailed by two closely related 
uncertainty principles in signal processing limit the possible accuracy of any 
system.2 The first principle describes a relation of uncertainty between, on the 

 1 Moles, Information Theory, 5, 83– 87.
 2 Heisenberg’s uncertainty principle in quantum mechanics states that a subatomic particle cannot si-
multaneously have an exact location and exact momentum, which means that if we observe where the 
particle is, we do not exactly know when it is at that position. Conversely, if we know when the particle 
is observed, we cannot tell exactly where it is located. Regarding the relation between Heisenberg’s un-
certainty principle and the uncertainty principles in communication engineering and information theory 
discussed here, Kosko points out that even before the publication of Heisenberg’s uncertainty principle 
in 1927, “versions of this uncertainty trade- off appeared at Bell Laboratories and elsewhere” in the con-
text of signal processing. Kosko, Noise, 113. Indeed, Norbert Wiener shows that both Heisenberg’s un-
certainty principle and the uncertainty principles in communication engineering and information theory 
can be explained “through the same harmonic analysis.” Norbert Wiener, “Spatio- Temporal Continuity, 
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one hand, the system’s sensitivity to very faint (low- amplitude) signals and, 
on the other, the width of its frequency spectrum (its sensitivity to very high 
and very low sounds). The second indicates the relation between the system’s 
sensitivity to low- amplitude signals and its sensitivity to a signal’s duration.3 
In each case, as soon as the accuracy in one domain increases, it decreases in 
another; and vice versa. In this sense, both uncertainty principles require a 
trade- off between irreconcilable poles.

In the first trade- off (between minimum signal amplitude and max-
imum frequency range), the narrower the frequency bandwidth of a trans-
mission channel, the more sensitive it will be to low- amplitude signals. 
Conversely, the broader a channel’s bandwidth, the less sensitive it will be to 
low- amplitude signals. Thus, a signal with a broad frequency range will have 
a smaller dynamic range, whereas a system with a large dynamic range will 
have a narrower frequency range. The cause of this conundrum is the pres-
ence of noise. Despite information theory’s premise that noise and signals 
can be separated according to randomness (noise) and periodicity (signal), 
very faint signals are sometimes drowned out by background noise (the noise 
floor). Paraphrasing Einstein, Moles writes that this “background noise is due 
to the agitation of electrons in conductors,” meaning that it is present down to 
the level of elementary particles.4

To prevent signals from being drowned out by noise, their energy level can 
be raised— by amplification, for instance. However, given that this would am-
plify the noise floor too, all amplification eventually reaches a point at which 
noise will overtake signal entirely, rendering further amplification useless.5 
Alternatively, one can minimize background noise by cooling the equipment. 
Because the agitation of electrons is proportionate to temperature, there will 
be no movement of electrons and no noise at absolute thermodynamic zero. 
In practice, however, it is only possible to lower the temperature of audio 
equipment within reasonable, fairly restricted limits.

Narrowing the bandwidth of a channel presents a more practical way of 
increasing a system’s sensitivity to low amplitudes. It focuses its capacity 
on an increasingly small band of frequencies and filters out more and more 

Quantum Theory and Music,” in The Concepts of Space and Time: Their Structure and Their Development, 
ed. Milič Čapek (Dordrecht: D. Reidel Publishing Company, 1976), 545– 546. Even more so, mathematician 
Gerald Kaiser argues that, “contrary to some popular opinion,” the uncertainty principle “is a general pro-
perty of functions, not at all restricted to quantum mechanics.” Gerald Kaiser, A Friendly Guide to Wavelets 
(Boston: Birkhäuser, 1994), 52.

 3 Moles, Information Theory, 83– 87.
 4 Moles, Information Theory, 84.
 5 Moles, Information Theory, 85.
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noise. Still, gradually narrowing a filter’s focus increases the risk that it will 
also filter out frequencies belonging to the signal itself. For example, imagine 
removing the noise from a 78- rpm recording of an orchestral symphony. The 
frequency range of a symphony orchestra (like that of most music) is gener-
ally quite broad. Accordingly, filtering out parts of the spectrum that are most 
heavily affected by “unwanted” noise will almost certainly also affect some 
higher and lower frequencies belonging to the “wanted” signal. As the filter 
narrows, increasingly large portions of music are lost, up to the point where 
essential musical information— the low rumble of timpani, for instance, or 
the high- pitched string section— disappears. Hence, a smaller frequency 
range increases sensitivity toward low- amplitude signals, but decreases the 
frequency range. The risk here, then, is that of throwing out the baby (signal) 
out with the bathwater (noise).

The symbolic limit case— the most extreme, idealized manifestation— of 
this conundrum would be an ideal noise filter that narrows bandwidth to just 
a single frequency, blocking or filtering out all frequencies but one, irrespec-
tive of whether they are deemed noise or signal.6 By that point, all characteris-
tics of the signal, in terms of its unique frequency spectrum and development 
over time, would have disappeared. The music’s spectral richness would be 
reduced to a single frequency, which would convey just as little information 
as the noise in the amplification scenario. Indeed, although such a filter would 
confirm that a signal is there, all of its spectral and temporal specificities would 
have been stripped away, leaving no way of knowing what the signal was. This 
single frequency would be entirely noiseless, but all information about what 
kind of message was transmitted (is it symphonic music, a speech, rock per-
formance, or field recording?) would be lost. This signal would only provide a 
single bit of information: that it is either present or not.7

Hence, neither signal amplification nor noise reduction gets around having 
to find a tradeoff between sensitivity to low- amplitude signals and repro-
ducing a broader frequency range. Where no filter is applied, the frequency 
band is limited by physical background noise, which drowns out all signals 
below a minimum amplitude threshold. Although the energy level of low am-
plitude signals can be amplified, too much amplification will raise the noise 
floor to a level at which it threatens to overtake the signal entirely. Conversely, 
installing a noise filter to narrow the frequency spectrum and reduce the 
noise floor introduces the risk of losing part of the signal itself. Taken to an 
extreme, only a single frequency would remain. The first uncertainty principle 

 6 Moles, Information Theory, 87.
 7 Moles, Information Theory, 85.
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(as summarized in Text Box 3.1) thereby shows that the physical presence of 
noise down to the most elementary level fundamentally limits the maximum 
capacity of any transmission channel. The wider a channel’s bandwidth, the 
more noise it admits and the less sensitive it is to low- amplitude signals; the 
greater its sensitivity to low- amplitude signals, the more noise (and eventu-
ally signal too) will be filtered out and the more the frequency spectrum will 
narrow.

The second uncertainty principle follows directly from the first. In addition 
to frequency spectrum and dynamic range, it also involves signal duration. 
As such, it further accentuates the physical limitations described previously. 
Moles introduces the relation between the two principles with a thought ex-
periment, describing a device that seemingly solves the first trade- off between 
low- amplitude signals and frequency range.8 Imagine a machine consisting 
of a great many ideal filters of the type described earlier, each solely attuned 
to a different, single frequency. Hypothetically, this machine would enable 
the transmission of all these frequencies without any interfering background 
noise. It is, however, both logically inconsistent and physically impossible.

First, determining which frequencies each of the filters should process 
requires unambiguous information about the signal’s frequency spectrum 
and the noise that should be removed. And yet, this information is not avail-
able prior to the filtering operation itself:  indeed, if it were, one would not 
need Moles’s hypothetical machine to separate signal from noise. This means, 
Moles argues, that the problem of determining which frequencies belong to 
the signal and which to the noise remains, because the transmission of a com-
plete signal would require infinitely many filters.9 Second, and even more 
fundamentally, the very concept of a filter attuned to a single frequency is 
physically impossible. Because nothing in the world happens instantaneously, 

Box 3.1 The First Uncertainty Principle

 • Abraham Moles: “Error in amplitude × error in frequencies = constant”a

 • System is more sensitive to lower amplitudes  =  narrower bandwidth  =  less 
noise = narrower frequency spectrum

 • Broader bandwidth  =  more frequencies transmitted  =  more noise  =  system 
less sensitive to lower amplitudes

 8 Moles, Information Theory, 87.
 9 Moles, Information Theory, 87.

 a Moles, Information Theory, 85.
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any real sound reproduction system will require a minimum amount of time 
to process a signal. This means that a filter requires a minimum response 
time to fulfill its task, slightly delaying the production of an output. As with 
the uncertainty relation between frequency response and sensitivity to low- 
amplitude signals, this delay is “proportional to the narrowness” of the filter.10 
A system with a narrower filter will exclude more frequencies, create longer 
delays, and take more time to produce an output. These negative effects will 
increase or decrease in proportion to the signal’s bandwidth.

The frequency spectra of most signals are not stable and periodic, but rapidly 
and continuously changing. Indeed, they sometimes change faster than filters’ 
minimum response time, causing inaccuracies in the output. If a frequency 
spectrum changes before its filter has completed its analysis, then this change 
will not be processed. As a result, the duration of the filtered frequencies is reg-
istered incorrectly. Hence, although a narrower channel will reduce more noise 
and transmit lower- amplitude signals, filtering out more frequencies requires 
more time, which causes a longer response time and longer delay. Following the 
second uncertainty principle (as summarized in Text Box 3.2), any gain in sensi-
tivity to low- amplitude signals comes at the cost of sensitivity to their duration. 
In an extreme limit case of this trade- off, the aforementioned infinitely accurate 
filter would ideally filter out all noise so as to (re)produce just one, absolutely 
noise- free frequency. Significantly, in this instance, the filter’s response time 
would mathematically tend toward infinity. Indeed, given that such a filter would 
never stop filtering, it would never produce its perfectly unambiguous output. 
Though mathematically perfect, the ideal filter is physically impossible.

Despite their physical impossibility, conceptualizing such ideal filters is an 
essential practice in theoretical physics and technical engineering, for doing 
so helps us understand the physical filtering operations of technical media. As 

 10 Moles, Information Theory, 86.

Box 3.2 The Second Uncertainty Principle

 • Abraham Moles: “Error in amplitude × error in duration = constant”a

 • System is more sensitive to lower amplitudes = narrower bandwidth (= less 
noise) = longer delay = more uncertainty about duration

 • Precise duration = shorter delay = broader bandwidth (= more noise) = system 
less sensitive to low amplitudes

 a Moles, Information Theory, 87.
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Vilém Flusser argues, practices of modeling do not objectively represent the 
physical world, but order and structure it.11 In a manner akin to Heidegger’s 
account of “enframing” (explained in  chapter  2), Flusser argues that the 
“so- called natural laws” of physics are not objective descriptions of physical 
processes but ways of decoding the “gigantic quantity of indications, signs, 
clues” with which we are confronted on a daily basis.12 Hence, mathematical 
and physical models are not neutral representations, but idealized versions 
of complex processes. In symbolically establishing order and reducing com-
plexity, they also shape our perspective on, and approach to, the phenomena 
they represent.13 When our attempts to represent and reproduce physical 
processes run up against their physical complexity, idealized models serve to 
break up this complexity to impose order, regularity, and linearity. Without 
mathematical conceptualizations, and the symbolic understanding of oth-
erwise ungraspable processes that they provide, technological development 
would be close to impossible.

Still, in physical reality, the seamless operations of an ideal filter are faced 
with the physical limitations imposed by the uncertainty principles described 
earlier. This applies to both digital and analog media, for even machines that 
can process signals as fast and accurately as modern digital media eventu-
ally run into the intractable physical constraints posed by the trade- offs 
I have outlined. In the case of digital recording, higher precision (more bits) 
decreases the number of quantization errors and allows a more precise rep-
resentation of each sample’s amplitude value. By reproducing low- amplitude 
signals more accurately, it enlarges the dynamic range. On the other side of 
the ledger, however, the uncertainty principle means that measuring and 
processing longer word lengths also requires longer response times and cor-
responding delays. This, in turn, introduces errors with respect to signal 
duration. Conversely, a higher sample rate increases frequency response 
and allows for a broader frequency range. Higher sample rates multiply the 
number of samples per second, however, meaning that they require shorter 

 11 Vilém Flusser, Into the Universe of Technical Images, trans. Nancy Ann Roth (Minneapolis: University 
of Minnesota Press, 2011), 170.
 12 Flusser, Universe, 46.
 13 Flusser, Universe, 170. “Models,” Flusser writes, “give form to a world and a consciousness that has 
disintegrated; they are meant to ‘inform’ that world. Their vector of signification is therefore the reverse of 
that of earlier images: they don’t receive their meaning from outside but rather project meaning outward. 
They lend meaning to the absurd.” Similarly, John Monk writes, “it is tempting to imagine that a model 
or theory is an accurate reflection of what takes place in reality; however, prominent nineteenth century 
physicists and latterly pragmatist philosophers have insisted that our descriptions of reality are of our own 
making and are a product of our institutions and customs. Models as part of our descriptive practices, 
therefore, make a contribution to the construction of reality.” John Monk, “Creating Reality,” in Ways of 
Thinking, Ways of Seeing: Mathematical and Other Modelling in Engineering and Technology, eds. Chris 
Bissell and Chris Dillon (Berlin: Springer, 2012), 2.
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samples with shorter response times. Ultimately, this decreases the system’s 
sensitivity to low- amplitude signals.

The fact that both analog background noise and digital quantization errors 
limit a system’s sensitivity to low- amplitude signals can thus be explained in 
terms of these uncertainty principles. This means that the most fundamental 
difference between ideal models and the physical systems they represent is 
the presence of noise: random physical noise in the case of analog media, and 
communicational noise (error and distortion) in the case of digital media. The 
uncertainty principles mark the gap between the idealized domain of mathe-
matical models, which I will call the plane of the ideal filter, and the operations 
of filters in physical reality, which I will call the domain of technical filters.

As the previous chapter explained, this gap results from what Siegert calls the 
rift or rupture in the classical order of representation, which appeared with the de-
velopment of modern mathematical analysis between Leibniz’s invention of the 
infinitesimal calculus in the late sixteenth century and the emergence of Fourier 
analysis in the early nineteenth century. The introduction of Fourier analysis in 
particular allowed for the symbolic representation of complex physical processes 
and eventually their autonomous reproduction by technical media. A crucial 
moment in the growing divide between representation and represented, Fourier 
analysis marks the beginning of a new order, built on the twin pillars of analytical 
idealization and physical reproduction. Conceptually, the domain of the ideal 
filter is grounded in Fourier’s analytical theorem, which also produced the idea 
of the sine wave as one pure frequency. The application of Fourier’s theorem to 
the analysis of sound, in short, inspired the conceptual logic of noise reduction’s 
ideals of infinite precision and maximal purity (although it should be said that 
the mathematics underpinning the uncertainty principles described earlier can 
be traced back to Fourier’s work as well). A closer look at the history and basic 
principles of Fourier analysis and the figure of the sine wave, therefore, can help 
explain the relation between the noiseless plane of the ideal filter and the impor-
tance of noise in the domain of technical filters.

Fourier Analysis: A ShortIntroduction

First published in 1822, Fourier analysis became a crucially important ana-
lytical tool and cornerstone of our contemporary information society.14 At 

 14 As mathematician T. W. Körner puts it, Fourier analysis is “built into the commonsense of our society.” 
Körner in Barbara Burke Hubbard, The World According to Wavelets: The Story of a Mathematical Technique 
in the Making (Wellesley, MA: A K Peters, 1996), 8. Also see Donner, “Fourier’s Beitrag.”
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the time of its emergence, it marked a decisive step in the transition from a 
received type of physical research, for which mathematical analysis was of 
secondary import, toward modern theoretical physics, for which mathemat-
ical modeling is an absolutely central, indeed constitutive practice.15 Jean- 
Baptiste Joseph Fourier had been a prodigious mathematician from early 
childhood. Later, his experiences under the hot desert sun of Egypt, where he 
served in Napoleon’s armies during the final years of the eighteenth century, 
allegedly provided him with a lifelong obsession with heat. As his biographer 
John Herivel writes, Fourier was unable “to acclimatize himself to the change 
from Egypt.”16 Upon his return to France in 1801 or 1802, “the question of 
heat, its loss by propagation in solids and radiation in space, the problem of 
conserving it [ . . . ], can never have been out of his mind for long.”17 From 
1804 at the latest, Fourier— whom Napoleon had by now appointed prefect of 
the newly created Département Isère in Grenoble— was spending most of his 
free time developing a new theory of heat propagation.

When the first version of his treatise “On the Propagation of Heat in Solid 
Bodies” was completed in 1807, it was met with considerable resistance from 
leading physicists of the time, most notably Siméon Poisson, Jean- Baptiste Biot, 
and Pierre- Simon Laplace. In 1811, Fourier entered a revised version of the 
treatise into the contest for that year’s grand price in mathematics at the Institut 
de France. Not entirely by coincidence, the topic of the competition— “the prop-
agation of heat in solid bodies”— matched his interests exactly. After amending, 
correcting, and expanding on the first draft, he won the contest. Still, the com-
mittee remained convinced that his solutions were “not exempt of difficulties” 
and left “something to be desired.”18 Due to this persistent professional oppo-
sition, and his ongoing, turbulent political career, the definitive version of the 
Analytical Theory of Heat was only published in 1822. This was after Fourier 
had been appointed permanent secretary for the mathematical sciences at the 
Académie des Sciences in Paris and eight years before his death in 1830.

Much of the professional resistance that Fourier had faced in the fifteen 
years between his draft of 1807 and the final treatise in 1822 was due to his 
scientific approach. Rather than relying on qualitative results based on em-
pirical research, Fourier extrapolated from empirical findings to develop 
new hypotheses based on advanced mathematics. Steeped in the work of late 
eighteenth- century mathematicians and physicists, Fourier was especially 

 15 Olivier Darrigol, “The Acoustic Origins of Harmonic Analysis,” in Archive for History of Exact Sciences 
61, no. 4 (2007): 397.
 16 John Herivel, Joseph Fourier. The Man & the Physicist (Oxford: Clarendon Press, 1975), 99.
 17 Herivel, Fourier, 99.
 18 Committee report cited in Herivel, Fourier, 103.
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good, writes Herivel, at “taking an essentially complex problem and make it 
amenable to mathematical treatment while simultaneously providing a solu-
tion yielding a good approximation to the actual physical situation in a wide 
range of cases.”19 Indeed, his work introduced a level of mathematical abstrac-
tion that, although still highly contested during the late eighteenth and early 
nineteenth centuries, was to become standard practice over the course of the 
nineteenth century.

Mathematically, Fourier analysis transforms a function (f), representing devel-
opment over time, into a series of sine and cosine values corresponding to par-
tial states. In the case of sound signals, these values correspond to the amplitude, 
phase, and frequency of every individual wave in its sound spectrum. The out-
come of this transformation is a mathematical representation of the waveform, 
which is given in terms of a frequency spectrum consisting of many sinusoidal 
components called “sine waves.” The sum of all these frequency components 
expresses the original waveform. This is a Fourier series, the simplest rendition of 
the Fourier transform, which applies solely to periodic signals that repeat iden-
tically over and over again.20 The frequency composition of such signals can be 
complex (in that they consist of many individual sine waves oscillating at dif-
ferent frequencies). In terms of its temporal development, however, every cycle 
of a periodic signal is exactly the same. Given this periodicity, one cycle contains 
all available spectral and temporal information about the signal. This means that 
only one cycle is needed to analyze its frequency spectrum. The time required to 
analyze a strictly periodic signal is therefore identical with one cycle’s duration.21

The requirement that analysis focus solely on endlessly repeating periodic 
signals follows from Fourier’s mathematical use of trigonometric or circular 
sine and cosine functions.22 These functions derive from the representation of 
the ratios between the sides of a triangle (hence the “trigonometric” in their 
name), which stems, in turn, from the geometrical relations between triangles 
and circles (hence the name “circular”). The origins of Fourier analysis in the 
geometry of circles is significant on account of the fact that a circle’s circum-
ference is mathematically infinite. In accordance with this, the infinity of si-
nusoidal motion is an analytical given in Fourier analysis.23 To summarize: in 

 19 Herivel, Fourier, 213.
 20 Most textbooks write that the Fourier series applies to periodic functions and the Fourier transform 
to nonperiodic or quasi- periodic functions. Engineer Stan Tempelaars, however, argues that “the Fourier 
series [ . . . ] is the Fourier transform of a periodic function,” which means that a Fourier series is a partic-
ular form of the more general Fourier transform. Stan Tempelaars. Signal Processing, Speech and Music 
(Lisse: Swets & Zeitlinger Publishers, 1996), 142.
 21 Tempelaars, Signal Processing, 129.
 22 Gareth Loy, Musimathics: The Mathematical Foundations of Music, Volume 1 (Cambridge, MA: MIT 
Press, 2006), 140.
 23 Loy, Musimathics, 140.
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the symbolic domain of Fourier analysis, sine waves are infinite by definition. 
A Fourier series represents a periodic signal, which consists of series of sine 
waves, as if it has oscillated and will oscillate, unchanged, for all eternity.

The infinite repetition of sine waves on the mathematical plane poses few 
problems for the analysis of periodic signals. Their periodicity already entails 
their endless repetition (at least in theory). Nonperiodic signals, by contrast, 
change over time, often rapidly. To deal with this changeability, the analysis 
of nonperiodic signals employs a trick. Instead of simply representing the 
original waveform as the sum of all individual sine and cosine values, the 
Fourier transform of nonperiodic signals applies a second idealization. It 
treats a nonperiodic signal as if it were periodic, approaching the entire signal 
(or some part of it) as one complete cycle of an imaginary periodic signal. 
To achieve this, the analysis assumes that the temporal factor (t), which 
represents one full cycle, is infinitely long. Effectively, this means that the 
Fourier transform of nonperiodic signals renders irrelevant time conceived as 
“duration” (the time of things with a beginning and end).24

Then, to derive the frequency spectrum of this (symbolically) infinite cycle, 
the Fourier transform replaces the sum of all sine and cosine values with an 
integral. This means it adds up or “integrates” a great number of little (ideally 
infinitesimal) slices of the “cycle” to represent all of its frequency components. 
By essentially pretending that the nonperiodic signal is periodic, the Fourier 
transform thereby represents all the sine and cosine values as one artificial, 
infinite “cycle.”25 In short, as the pioneering engineer Ralf Heartley puts it, the 
Fourier integral “may be thought of as a mathematical fiction for expressing 
a transient phenomenon in terms of steady state phenomena.”26 In this con-
text, this means the representation of unpredictable, nonperiodic wave phe-
nomena that constantly change over time as periodic, regular signals that 
repeat infinitely and unchanged.

At the expense of the Leibnizian ideal of complete representability and ab-
solute correspondence between mathematical representation and physical re-
ality, the analytical idealizations introduced by the Fourier transform create 
a perspective from which all ambiguity is expelled, and perfect clarity seems 
to appear. Although these idealizations closely approximate the properties of 
the physical phenomenon they represent, the correspondence is never exact. 

 24 Tempelaars, Signal Processing, 129.
 25 Tempelaars, Signal Processing, 129.
 26 Heartley in Wolfgang Ernst, Chronopoetik:  Zeitwesen und Zeitgaben Technischer Medien 
(Berlin: Kadmos, 2012), 40. William Sethares defines “steady state” as “the part of a sound that can be 
closely approximated by a periodic waveform” and a “transient” as “that portion of a sound that cannot be 
closely approximated by a periodic signal.” William A. Sethares, Tuning, Timbre, Spectrum, Scale, Second 
edition (London: Springer, 2005), xviii.
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According to Siegert, the graphs depicting Fourier’s analysis of heat propaga-
tion represent “the seemingly sharp contours of surfaces, which are actually 
just the infinitely fine heat- shimmering of these surfaces themselves.”27 What 
appears in all sharpness and clarity in the Fourier domain is actually an ideal-
ized representation of constantly changing transient phenomena in an artifi-
cial “steady state.”

Fourier himself did not apply his analytical method to acoustical problems. 
Although his work drew heavily on an eighteenth- century controversy re-
garding the mathematical representation of vibrating strings, it was only in 
the 1840s and ’50s that Georg Simon Ohm and Hermann von Helmholtz 
applied Fourier analysis to the study of musical sounds.28 Ohm turned to 
Fourier’s treatise in 1843 to prove the hypothesis that complex sound waves 
can be represented by series of these “simple” waves. Unlike acoustician 
August Seebeck, who heavily objected to this abstract mathematical approach, 
Ohm did not rely on empirical observations using his own faculty of hearing. 
Instead, as Julia Kursell argues, “mathematics [ . . . ] replaced the ear for Ohm,” 
who “sought to illuminate physical phenomena with the help of their mathe-
matical formalization.”29 Notwithstanding Seebeck’s strong objections, which 
caused Ohm to retreat from the field of acoustics altogether, Helmholtz later 
corroborated, corrected, and expanded Ohm’s analysis. On the Sensations of 
Tone as a Physiological Basis for the Theory of Music, Helmholtz’s highly in-
fluential work on the nature of sound and the physiology of hearing, was first 
published in 1863. By combining Ohm’s mathematical analysis with extensive 
empirical experiments of his own, the book established Fourier analysis as the 
quintessential theory of the composition of sound waves. Building on what 
came to be known as “Ohm’s Acoustic Law,” Helmholtz even argued that the 
ear itself performs some kind of Fourier analysis.30

Helmholtz set out to verify the mathematical outcomes of the Fourier anal-
ysis of periodic tones (or “musical” tones, as he has it) through scientific ex-
periment and prove empirically the physical difference between these and 
nonmusical sounds (in other words, noise) through empirical observation. 
In these efforts, the strict periodicity assumed by Fourier analysis encour-
aged Helmholtz to take, as Kursell puts it, “the steady, internal repetition of 

 27 Siegert, Passage, 246.
 28 See Georg Simon Ohm, “On the Definition of a Tone with the Associated Theory of the Siren and 
Similar Sound Producing Devices,” trans. R. Bruce Lindsay, in Acoustics:  Historical and Philosophical 
Development, ed. R. Bruce Lindsay (Stroudsberg:  Dowden, Hutchinson & Ross, 1972), 242– 247; 
Helmholtz, Sensations, 84– 100; R. Steven Turner, “The Ohm– Seebeck Dispute, Hermann Von Helmholtz, 
and the Origins of Physiological Acoustics,” British Journal for the History of Science 10, no. 1 (1977), 1– 24.
 29 Julia Kursell, “Experiments on Tone Color in Music and Acoustics:  Helmholtz, Schoenberg, and 
Klangfarbenmelodie,” in Osiris 28, no. 1 (2013): 196.
 30 Turner, “Ohm– Seebeck Dispute,” 5.
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periodic sound waves” as the starting point of his experiments, and approxi-
mate “the mathematical description of a periodic wave as closely as possible.”31 
This means that he tried to come as close as possible to producing absolutely 
pure sine waves. To produce the most periodic sounds that he could phys-
ically achieve, Helmholtz built an experimental set- up consisting of tuning 
forks fitted with resonating cones to amplify their basic frequency. These ar-
tificial sine- like sounds effectively constituted a new type of sound, for which 
no physical referent had hitherto existed.32

In this way, Helmholtz forged a connection between the mathematical 
idealizations of Fourier analysis and the acoustic phenomena under inves-
tigation. The strictly periodic and ideally infinite sine wave, which Fourier 
himself never explicitly mentions, was not so much the object of Helmholtz’s 
experimental analysis as its product. No longer a purely mathematical con-
cept, the sine wave was now also an acoustic object produced to approximate 
that mathematical ideal. As such, it presented an empirical basis for age- old 
discursive connections between music, harmony, and regularity that go back 
as far as Pythagoras’s theories of celestial harmony in the sixth century BC.33 
The mathematical- acoustic figure of the infinite sine wave also constitutes 
a foundational element in the ideal of a perfect, noiseless signal. Indeed, it 
would become the quintessential figure on the plane of the ideal filter that was 
to dominate the discourse on sound and media from then onward.

The Plane of the Ideal Filter

With Ohm’s application of Fourier’s theorem to the analysis of sound, and 
Helmholtz’s expansion and experimental verification of its principles, the 
sine wave came to be defined as the elemental tone: a pure frequency with no 
overtones and no timbral characteristics of its own. As with the graphs showing 
the “seemingly sharp contours of surfaces” produced by Fourier’s analysis of 
heat propagation, the purity and clarity of the sine wave are properties of a 
conceptual limit case— the most extreme limit of a phenomenon— drawing 

 31 Kursell, “Experiments,” 192, 205.
 32 Kursell, “Experiments,” 192.
 33 As Douglas Kahn writes, “the figure of vibration was upheld by the Pythagoreans, refurbished by neo- 
Platonic and neo- Pythagorean thought centuries later, and invigorated by scientific, Eastern and spiritist 
thought in the West in the nineteenth century. The monochord— the technology that underscored the har-
monic totality of Pythagorean thought, the vibrating string structuring the cosmos— was so overcoded by 
the late- nineteenth century locus of vibrations in the synesthetic arts that it was functionally nonexistent, 
although the connections between acoustics, music, and mathematics, not to mention certain ambitions 
toward the cosmos, remained strong.” Douglas Kahn, Noise, Water, Meat: A History of Sound in the Arts 
(Cambridge, MA: MIT Press, 2002), 16.
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seemingly sharp contours around infinitesimally fuzzy sound waves. A fixed 
and indivisible standard of sonic purity, the sine wave is an ideal form toward 
which all physical sounds seem to tend. The relation between this idealized 
mathematical object (a sine wave) and the physical phenomenon it represents 
(a simple sound wave) can therefore be described as the relation between 
symbol and signal.34

Produced by the strictly symbolic operations of mathematical analysis, a 
sine wave is not a physical signal, but an analytical symbol. Its symbolic clarity 
depends upon a prior, conceptual act of noise reduction that suppresses all 
reference to its material carriers (transmission channels). “The mathemati-
cian,” Serres explains, “does not see any difficulty on this point,” for the math-
ematical manipulation of written signs already serves “to isolate an ideal 
form [and] render it independent of the empirical domain and of noise.”35 
The mathematical production of an ideal symbol, in other words, entails 
the removal of any trace of its material production as signal. Ultimately, this 
entails denying its physical production and transmission as signal, and thus 
the complete symbolic reduction of noise. To function mathematically, the 
sine wave requires a process of abstraction that separates its “pure” symbol 
from its physicality as a contingent signal. In subsequently being physically 
produced as an actual acoustic object, the sine wave becomes what we might 
call an “idealized signal,” discursively positioned in between purely symbolic 
mathematical analysis (the plane of the ideal filter) and physical acoustics (the 
domain of technical filters).

So, the production of a perfect sine wave— a single frequency— would re-
quire complete noise reduction. This indicates that Fourier analysis and the 
concept of the sine wave are subject to an uncertainty principle. The ideal sine 
wave presupposes the analytical filtering out of all material channels; and be-
cause it represents a signal as a series of such sine waves, the operations of 
Fourier analysis can be interpreted as an ideal— that is, infinitely accurate— 
spectral filter.36 Following the uncertainty principle described earlier, the 
more a physical filter comes to resemble this ideal filter, the narrower its fre-
quency range becomes and the more time it will need to complete the op-
eration. At the analytical limit of this process, the filter will be attuned to a 

 34 Siegert, Techniques, 19– 23.
 35 Michel Serres, Hermes: Literature, Science, Philosophy, trans. and eds. Josue V. Harari and David F. Bell 
(Baltimore: Johns Hopkins University Press, 1982), 68, 70.
 36 Referring this ideal filtering operation back to its origins in Helmholtz acoustical experiments, Tara 
Rodgers writes, “the technical process of regulating additional harmonic frequencies is now known as 
filtering— which retains Helmholtz’s logic of separating out the pure form from the flux of variations.” Tara 
S. Rodgers, “Synthesizing Sound: Metaphor in Audio- Technical Discourse and Synthesis History” (PhD 
diss., McGill University, Montreal, 2010), 120.



90 The Logic of Filtering

single frequency and its response time will tend mathematically to infinity. 
At that point, the physical filter would become an ideal filter and the physical 
signal an ideal signal: a pure sine wave. In this way, the infinity of the sine wave 
correlates directly with the uncertainty principle: an ideal filter produces a 
single, symbolic frequency only when the factor t (in mathematical terms) or 
the filter’s response time (in engineering terms) is infinite.

Kittler explains this correlation between the mathematical idealizations 
of Fourier analysis and the abstraction from temporality through the meta-
phor of lightning and thunder. An (ideally infinitesimally) short event (light-
ning), he emphasizes, can be analyzed in terms of a series (thunder).37 On 
account of its briefness, the only information that one can generally glean 
from a lightning bolt is its “thatness” (dass es ist)— the simple fact that it took 
place. Understanding its “whatness” (was es ist), however, requires that the 
event repeats itself, that one stretch it out in time so as to allow assessment and 
analysis.38 In the case of lightning, such repetition comes in the form of the 
acoustic reverberations of thunder. Repetition (or rather “frequentia, the re-
turn”) provides time in which to analyze the singular event and acquire more 
stable knowledge about what happened.39 This, Kittler argues, is what Fourier 
analysis does: it transforms a brief, random, and constantly changing signal 
into a series of repetitions or frequencies. As thunder is to lightning, so the 
frequency domain created by Fourier analysis is to the original signal.

The Fourier transform imposes a temporal (one could even call it rhyth-
mical) order in the form of an infinite, periodic repetition of simple elem-
ents. This repetition allows waves that unfold in time to be taken out of time. 
The Fourier domain— the plane of the ideal filter— conjures a fundamen-
tally atemporal sphere in which everything always returns and nothing ever 
changes. As a perfectly noiseless signal, the sine wave exemplifies this abstract 
plane of existence. As I have set out earlier, symbolic representations of the 
sine wave imply the complete exclusion of material channels. Physically, to-
tally transcending channels in this way would require the complete reduction 
of noise— and that, in turn, would symbolically require removing the factor of 
time. The actually existing domain of technical filters, by contrast, is defined 
by the impossibility of such analytical purity, by the occurrence of events that 
physically change over time and inevitably introduce a level of random noise. 
It is marked not by the frequentia of the series, but by the flash of the event.

 37 Friedrich Kittler, “Lightning and Series— Event and Thunder,” Theory, Culture & Society 23, no. 7– 8 
(2006): 63– 74.
 38 Kittler, “Lightning,” 70.
 39 Kittler, “Lightning,” 69.
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At one extreme of the uncertainty relation between amplitude and tempo-
rality, the ideal sine wave would represent a timeless series. Squeezed through an 
impossibly narrow filter, the signal would be cleansed of both temporality and 
all possible noise. Widening the bandwidth of this hypothetical, ideal filter, how-
ever, would allow a larger frequency spectrum to seep through. In accordance 
with the uncertainty principle, this would shorten the filter’s response time and 
thus its delay: the temporal factor t  would cease to be an idealized t = ∞  and 
revert back into a finite, physical timeframe. Widening the bandwidth and short-
ening response and delay still further, one ultimately arrives at the other extreme 
of the uncertainty relation. Here we find another analytical idealization, which 
precisely inverts the ideal series. With a symbolic delay time of 0, the timeframe 
of this ideal transmission would be reduced to an infinitesimally short moment. 
This is a Dirac impulse or delta function, named after British physicist Paul Dirac 
or the sign used to represent the function, the · . A Dirac impulse represents the 
radical instantaneity of something that happens in less than a flash, the ultimate 
transient phenomenon: the ideal event.

The Dirac delta is a peculiar function with an infinitesimally short 
timeframe and— when t  is exactly zero— an infinite amount of energy.40 In 
terms of our understanding of the uncertainty principle, the function implies 
a filter with an instantaneous response and a delay time of 0. Given that a filter’s 
response time affects its precision (the longer the response time, the more pre-
cise the filtering), a hypothetical filter with a response time of 0 would filter 
nothing out: all frequencies would pass through it unfiltered. In consequence, 
a Dirac impulse’s frequency spectrum is infinite, as illustrated by the upward- 
facing arrow in Figure 3.1. Here, an infinite number of frequencies occur at 
one, infinitesimally short moment. Accordingly, the Dirac impulse inverts the 
sine wave exactly: whereas the latter represents one frequency repeating infi-
nitely, the former contains all frequencies in an infinitesimally short time.

Like the sine wave, the delta function is a symbolic limit that does not directly 
represent anything in the physical world but can only be approximated. The 
more closely a real signal approximates the infinitesimally short spike of a Dirac 

 40 Although Dirac formally defined the delta function and suggested its standard notation in his 
Principles of Quantum Mechanics in 1930, the concept itself already appears in the step function pro-
posed by the nineteenth- century mathematician and physicist Oliver Heaviside. Graham Farmelo, The 
Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom (New York: Basic Books, 2009), 113. 
As mathematician Jesper Lützen notes, the delta function ultimately follows from results with which 
Fourier himself was “confronted” in the early nineteenth century. Jesper Lützen, “Between Rigor and 
Applications: Developments in the Concept of Function in Mathematical Analysis,” in The Modern Physical 
and Mathematical Sciences, ed. Mary Jo Nye, Volume 5 (Cambridge: Cambridge University Press, 2002), 
479– 480. Accordingly, both the Dirac delta and sine wave originate in the same discursive context.
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delta, the more frequencies it contains.41 Kittler’s metaphor of a bolt of lightning 
is well chosen: its enormous energy discharge contains a frequency spectrum 
so large as to approximate a Dirac impulse. Musically, as well, one can com-
pare a bow gently stroking a violin string with a short smash on a snare drum. 
The bow’s long gesture slowly sets the string’s vibrations in motion, producing 
a semiperiodic and primarily harmonic frequency spectrum. These vibrations 
tend toward an ideal sine wave (but will nonetheless fall short, due to the 
vibrating string’s rich harmonic overtones). In the case of the snare drum, the 
sudden noisy blow produces a broad and complex nonperiodic frequency spec-
trum. Full of inharmonic partials, this sound approximates a Dirac impulse.42
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Figure 3.1 The Dirac Impulse or Delta Function. A graphical representation of the 
Dirac- delta: the upward direction of the arrow, the width of which should ideally be 
infinitesimally small, indicates that its frequency spectrum is infinite. This figure 
illustrates why the Dirac impulse is also referred to as the “needle function.” (Courtesy of 
Omegatron, “Dirac distribution PDF,” adapted by Qef, Wikimedia, accessed October 23, 
2015 commons.wikimedia.org/ wiki/ File:Dirac_ distribution_ PDF.svg).

 41 Reportedly, Dirac’s training as an engineer led him to “tolerate” such approximations:  “the pure 
mathematician who wants to set up all of his work with absolute accuracy,” he said, “is not likely to get 
very far in physics.” Dirac in Paul Nahin, Dr.  Euler’s Fabulous Formula Cures Many Mathematical Ills 
(Princeton: Princeton University Press, 2006), 192.
 42 In communication engineering, a physical, real- time approximation of a Dirac impulse function (in 
the form of a very— but not infinitesimally— short blow) is used to test a system’s frequency response. By 
feeding the impulse to its input and measuring which frequencies resonate within the system itself, it is 
possible to discover which elements, materials, or room acoustics affect (shape, change, or dampen) the 
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Just as the sine wave can be interpreted as the product of an infinitely ac-
curate spectral filter, which perfectly isolates an unambiguous signal amid 
an infinite sea of frequencies, so a Dirac impulse can be interpreted as the 
product of an ideal temporal filter, which extracts one infinitesimally short 
instant from the flow of time. The infinite timeframe of the ideal sine wave 
turns constantly changing sound waves into an endlessly repetitive rhyth-
mical order, effectively bringing time to a standstill. A Dirac impulse, by con-
trast, does not “last” any amount of time, for reducing time to its absolute zero 
value means that it can no longer be understood in terms of duration. Time, 
here, is a pure, point- like “present”: an impossibly exact moment or absolute 
now, without any connection to past or future. Diametrically opposed to the 
Fourier domain’s complete stasis, the upward- pointing needle of the Dirac 
impulse represents a singular event: pure transience.

Only a device capable of perfect accuracy and unlimited resolution would 
be able to capture and analyze the spectrum of such an event at the very mo-
ment it occurs. That device would instantaneously register, to use Kittler’s vo-
cabulary, both that it took place and what it was. Infinitely perfect analysis, 
then, requires a combination of the infinitesimal temporal precision (abso-
lute singularity) of Dirac impulses and infinite spectral clarity (infinite pe-
riodicity) of sine waves. The pure event can never be analyzed completely, 
however, because it contains an infinite number of frequencies. The pure se-
ries, conversely, can never be fully processed, for that would take an infinite 
amount of time. According to the uncertainty principle, whatever we might 
gain in one domain, we lose in the other. Hence, although the Fourier trans-
form might seem to unravel and demystify the complexity of noise by posing 
an ordered series of sine waves, this comes at the cost of doing away with all 
instantaneity and transience. At the other extreme of this uncertainty prin-
ciple, the infinitesimal window of the Dirac impulse is nothing but transience. 
By turning our attention away from the purity and clarity of the Fourier do-
main and toward the temporal filter of the delta function, then, we can explore 

output. Here, the “thatness” of an approximate Dirac delta is used to measure the characteristic “whatness” 
of an (electro)- acoustic system, and test how these characteristics might affect a signal fed to its input. 
A similar principle is central to pulse code modulation (PCM), the most common method for sound dig-
itization, which I discussed in  chapter 1. To determine the amplitude values of each sample, an analog- to- 
digital converter runs a series of pulses, each of which, writes Kadis, “approximates an impulse, an infinitely 
narrow pulse.” Kadis, Science, 149. Before they are modulated, Rumsey and McCormick explain, “all these 
pulses have the same amplitude (height), but after modulation the amplitude of the pulses is modified ac-
cording to the instantaneous amplitude of the audio signal at that point in time.” Rumsey and McCormick, 
Sound and Recording, 211. Hence, modulating a regular series— in most cases 44,100 per second— of ap-
proximate Dirac impulses with an analog audio waveform can scale impulses so as to match the waveform’s 
amplitude at that particular point in time. This results in a time- limited sample of a band- limited signal, 
which is the basis for all digital audio. It also shows that the ideal timeframe of a digital sample would be the 
infinitesimally short timeframe of a Dirac impulse.
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in more depth the randomness and transience that escapes the spectral filters 
of Fourier analysis.

The Domain of Technical Filters

Constrained by the laws of the uncertainty principle that I  have been 
discussing, physical signals must strike a balance between precision in time 
and precision in amplitude. In an essay first published in 1967, Norbert Wiener 
recounts how he used a musical example to explain the physical consequences 
of this balancing act at a talk given in Göttingen in 1925.43 Every waveform, 
he writes, occurs within a finite (but not infinitesimal) timeframe, which lasts 
long enough to allow the waveform to complete at least one full cycle. In the 
case of complex harmonic waveforms (including most musical sounds), a 
hearer can generally identify the characteristics of a specific frequency spec-
trum once the fundamental frequency (which determines the fundamental 
pitch) completes at least one cycle. This, Wiener explains, means that “if you 
take a note oscillating at a rate of sixteen times a second and continue it only 
for one twentieth of a second, what you will get is essentially a single push of 
air without any marked or even noticeable periodic character.”44 When the 
waveform’s fundamental frequency is cut short, the physical signal “will not 
sound to the ear like a note,” but will rather resemble a short, transient blow, 
impulse, or noise.45

This is the uncertainty principle at work. At a certain limit, tending toward 
but never reaching the infinitesimally short timeframe of a Dirac impulse, 
it becomes impossible to shorten a sound without losing its identifiable fre-
quency spectrum in the process. Beyond this threshold, the analytical clarity 
of spectral analysis gives way to the instantaneity of Dirac impulses: clearly 
definable sine waves disappear into fuzzy, undefined spectra and all that re-
mains is a transient blow or noise. This is why, writes Wiener, “you can’t play 
a jig on the lowest register of the organ”: the jig’s tempo is faster than the time 
it takes for the lowest frequencies to finish one cycle.46 Besides demarcating 
the musical limits of organ performances, these fuzzy, nonperiodic transients 
are an indispensable aspect of every sound. Physical sounds do not exist at 

 43 Wiener, “Spatio- Temporal Continuity,” 539– 546.
 44 Wiener, “Spatio- Temporal Continuity,” 545.
 45 Wiener, “Spatio- Temporal Continuity,” 545.
 46 Wiener, “Spatio- Temporal Continuity,” 545. Kittler writes in “Lightning and Series— Event and 
Thunder”: “Before a deep organ tone can turn into an event, many high trebles have already been recog-
nized.” Although he does not credit Wiener, it is likely that Kittler drew the example from his paper. Kittler, 
“Lightning,” 71.
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either one of the limiting cases of the uncertainty relation. Between the two 
extremes of sine waves and Dirac impulses, every signal has a beginning, du-
ration, and end. Even an almost entirely periodic signal does not continue 
forever: at some point— even if only with the final collapse of the universe— it 
will stop.

Absolute purity requires a timeframe that stretches infinitely into the past 
and the future. No finite filtering operation, therefore, will attain perfection 
and no real signal is entirely pure. Transience negates the Fourier domain’s 
infinite periodicity, for the inevitable starts and stops of every signal cause, 
Wiener puts it, “an alteration of its frequency composition which may be small, 
but which is very real.”47 This means that the beginning and end (in acoustic 
terms, the “attack” and “decay”) of every sound add elements of nonperiodic 
transience. These random alterations give a sound its unique timbral quality. 
Whereas periodic frequencies are largely responsible for determining pitch 
and overall harmonic composition, these nonperiodic alterations determine 
the specific tone color (and also, in the case of speech, specific vowel color and 
consonant shape). Composer Henry Cowell calls them the “noise element in 
the very tone itself.”48

These sonic traces of attacks and decays mark the difference between the 
plane of the ideal filter and physical sounds produced in the domain of tech-
nical filters. The symbolic gesture of a clean cut, administered by the ideal filter, 
separates the former from the latter sphere, seamlessly removing the singular 
event from its natural flow and turning it into an infinite series.49 This cut 

 47 Wiener, “Spatio- Temporal Continuity,” 544– 545.
 48 Henry Cowell, “The Joys of Noise,” in Audio Culture: Readings in Modern Music, eds. by Christoph Cox 
and Daniel Warner (New York: Continuum Group, 2004), 22– 24. “Consider the sound of a violin,” Cowell 
writes, “part of the vibrations producing the sound are periodic, as can be shown by a harmonic analyzer. 
But others are not— they do not constantly reform the same pattern, and consequently must be considered 
noise. In varying proportions all other instruments yield similar combinations.”
 49 In his discussion of Kantian aesthetics in The Truth in Painting, Jacques Derrida writes about the “sans 
of the pure cut” [Le ‘sans’ de la coupure pure]: “So it is the without that counts for beauty; neither the fi-
nality nor the end, neither the lacking goal nor the lack of a goal but the edging in sans of the pure cut, the 
sans of the finality sans- end.” Conceptually, this paradox of the finitude inherent to an actual cut and the 
ideal infinity of a pure cut, which leaves no traces of its cutting, bears similarities to my idea of the clean 
cut. Jacques Derrida, The Truth in Painting, trans. Geoff Bennington and Ian McLeod (Chicago: University 
of Chicago Press, 1987), 89, emphasis in original. In a different context, in Meeting the Universe Halfway, 
Karen Barad describes the problem of separating subject and object, observer and observed in quantum 
mechanics (which, given the importance of the uncertainty principle, is not that far removed from the 
present discussion): “So the question of what constitutes the object of measurement,” she writes, “is not 
fixed: as Bohr says, there is no inherently determinate Cartesian cut. [ . . . ] What constitutes the object of 
observation and what constitutes the agencies of observation are determinable only on the condition that 
the measurement apparatus is specified. The apparatus enacts a cut delineating the object from the agencies 
of observation. Clearly, then, as we have noted, observations do not refer to properties of observation- 
independent objects (since they don’t preexist as such).” In this example, as with my concept of the clean 
cut, the cut itself is (at least partly) constitutive for establishing a more or less unambiguous object of obser-
vation and analysis. Karen Barad, Meeting the Universe Halfway: Quantum Physics and the Entanglement of 
Matter and Meaning (Durham: Duke University Press, 2007), 114.
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transforms temporal events into infinitely oscillating frequencies, doing away 
with all temporal or spectral randomness, and thus with all possible noise 
too. Indeed, the literal and figurative figure of the cut appears throughout 
discourses on technical media and sound recording. The common expres-
sion to “cut” a record describes the way that grooves used to be cut into the 
recording material (wax, acetate, vinylite). The phrase also has a more met-
aphorical resonance. Oliver Read, for example, recommends recording styli 
“that produce quiet, clean cuts.”50 The cleanliness of the cut, here, refers not 
only to the technological procedure of cutting grooves, but also to the sound 
quality of the recording itself, which should be “cut” with as few acoustic 
traces as possible.51 The common expression of “cutting” a track extends this 
double- sided trope to magnetic tape recording, referring to both the literal 
“cutting” of tape and metaphorical “cutting” of a piece of music from its sonic 
flow. Such cuts craft a more or less clearly delineated musical object, separ-
ating one song or track from another. As such, the symbolic gesture of the 
clean cut is fundamental to the myth of perfect fidelity and conceptual logic of 
noise reduction.

In contrast to the clean cuts made by an ideal filter, technical filtering oper-
ations apply physical cuts that must strike a compromise between the spectral 
domain and time domain, that is, between sine waves and Dirac impulses. 
Set apart from symbolic representations and the ideal filter, the operations of 
physical filters process real- time signals that extend in space and change over 
time. In the previous chapter, my analysis of dual- ended noise reduction and 
dithering showed how the conceptual logic of noise reduction presupposes a 
clear, unambiguous definition of what constitutes noise and what signal. Such 
a distinction amounts to a clean cut, executed by a perfect symbolic noise 
filter, separating everything that you want from everything that you do not. In 
the domain of technical filters, the noisy traces of physical filtering operations, 
applied by technical sound media, signify the impossibility of clean cuts.

As soon as a signal starts, it introduces nonperiodic oscillations and tran-
sient events, adding randomness, unpredictability, and spectral complexity. 
In sharp contrast to the infinite repetition of sine waves, such transience 

 50 Read, Recording, 46.
 51 Of course, magnetic tape also enabled cutting and pasting as an aesthetic tool, a means of both separ-
ating and ordering sonic material and of disruption. William Burroughs’s famous “cut- ups” in the 1960s, 
“where he,” as N. Katherine Hayles describes, “physically cuts up previously written narratives and arbi-
trarily splices them together,” use a technique that was and still is heavily employed in both avant- garde and 
pop musical practices. These practices, in turn, take their cue from modernist cut- up and cut- and- paste 
practices developed in early twentieth- century avant- garde movements. N. Katherine Hayles, “Voices Out 
of Bodies, Bodies Out of Voices: Audiotape and the Production of Subjectivity,” in Sound States: Innovative 
Poetics and Acoustical Technologies, ed. Adalaide Morris (London:  University of North Carolina Press, 
1997): 88.
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makes each moment sonically different from the next. Each link in the chain 
from sender to receiver (each passageway or gate) filters the sound in specific 
ways, adding transient noises to the signal. Every technologically processed 
sound contains traces of every incidental or technical thing— air, copper, 
or glass fiber— that it has encountered in the acoustical, electro- acoustical, 
electronic, or digital domains and bears marks of the specific circumstances 
through which it has unfolded:  humidity, air pressure, altitude, etc. etc. 
Wiener describes these noises as “small” but “very real” alterations of the fre-
quency composition; von Neumann called them the “small extra” added to 
the output. At every stage of sound reproduction, they change the sound.

In 1953, while visiting a radio studio in Brussels, Belgian composer Karel 
Goeyvaerts, learned of a machine that could electronically generate sine waves. 
This machine, he realized, might offer an opportunity for creating a type of 
music about which he had been speculating for quite some time. Ever since 
they had met at the famous Summer Courses for New Music in Darmstadt 
two years earlier, Goeyvaerts and his German friend and colleague Karlheinz 
Stockhausen had been exchanging letters in which they discussed, among 
many other things, the musical, aesthetic, and formal foundations of total 
serialism. The two composers had been developing this compositional prin-
ciple alongside Frenchman Pierre Boulez and Italian Luigi Nono. Expanding 
on Arnold Schönberg’s prewar twelve- tone system, total serialism did more 
than just make the twelve tones of the Western diatonic scale equally impor-
tant. Beyond this, it strived to rationalize each musical parameter: duration, 
volume, meter, and the spectral composition of sounds. As their correspond-
ence attests, during the early 1950s, Goeyvaerts and Stockhausen considered 
the sonic purity of sine waves key to this quest for absolute control over the 
compositional material. Indeed, for Goeyvaerts, sine waves were nothing less 
than the “almighty basic material governing every sound phenomenon.”52

Even before discovering the sine wave generator, Goeyvaerts had already 
written Nr.4 met Dode Tonen (N°.4 with Dead Tones) (1952). Although he pro-
vided technical and musical instructions for this electronic composition, it 
was not realized sonically until several decades later.53 The “dead tones” men-
tioned in the title were to be pieced together from what Goeyvaerts at that 
point called “sound atoms.”54 Although they could have a complex frequency 

 52 Karel Goeyvaerts, Selbstlose Musik: Texte, Briefe, Gespräche, ed. Mark Delaere (Cologne: Musik Texte, 
2010), 166.
 53 Karel Goeyvaerts, Compositie Nr. 4, track 4 on The Serial Works [#1– 7], Megadisc Classics, 1998, 
compact disc.
 54 Goeyvaerts in Herman Sabbe, “A Paradigm of ‘Absolute Music’:  Goeyvaerts’s N°.4 as ‘Numerus 
Sonorus,’” Revue Belge De Musicologie/ Belgisch Tijdschrift voor Muziekwetenschap 59 (2005): 243.
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composition, these tones should have no unpredictable “inner life,” as Richard 
Toop puts it.55 That is to say, they had to “be identical at any moment in time, 
and therefore detached from time itself.”56 By using the most static sounds, 
which do not suffer from the irregularities introduced by attacks and decays, 
Goeyvaerts wanted to minimize sonic transience and approximate the char-
acterless immortality of ideal sine waves.

This desire to technologically “lift the sense of time,” as Herman Sabbe 
has written, became even more pronounced with Nr.5 met Zuivere Tonen 
(N°.5 with Pure Tones). Goeyvaerts conceived the piece after discovering 
the sine wave generator that enabled its actual production.57 By building 
the spectral composition of the eponymous “pure tones” from the ground 
up using electronically produced sine waves, N°.5 took the rationalist logic 
of total serialism to its extreme. The pure tones were to be constructed out 
of individual sine waves following the same rules that organized the other 
parameters. Furthermore, like N°.4, the piece is entirely symmetrical or pal-
indromic (turning around at its half point and closing in on itself at the end). 
Accordingly, N°.5 is an almost algorithmic procedure, intended to be soni-
cally identical to itself at all times and with each playback.58

Ultimately, Goeyvaerts was dissatisfied with the sound of N°.5. As he 
recalled in 1994, there was “a lot of crackle on the tape,” and far from achieving 
a blend of “more bright or more muffled” sounds, “one could clearly hear 
the different component tones” of each sound.59 Instead of achieving sonic 
purity and clarity, Goeyvaerts realized that “absolute certainty lay outside 
my grasp.”60 It is therefore not in fulfilling, but rather in performing the 
unrealizability of Goeyvaerts’s ideals that these pieces encapsulate the fun-
damental role of the noise resonance of sound media. They show how the 
material agency of the medium itself defines the ways in which technologi-
cally produced sounds make musical sense. While attempting to transcend 
the material basis of sound production and make music with an ideal filter, 
Goeyvaerts was confronted with the unruliness of technical filters. Purity, he 
found, lies forever out of reach. In accordance with the mathematical princi-
ples of Fourier analysis, Goeyvaerts’s dead and pure tones aspire to timeless 

 55 Richard Toop. “Stockhausen and the Sine- Wave: The Story of an Ambiguous Relationship,” in The 
Musical Quarterly 65, no. 3 (1979): 386.
 56 Toop, “Stockhausen,” 386.
 57 Herman Sabbe, “Goeyvaerts and the Beginnings of ‘Punctual’ Serialism and Electronic Music,” 
Revue Belge De Musicologie/ Belgisch Tijdschrift voor Muziekwetenschap 48 (1994): 76. Karel Goeyvaerts, 
Compositie Nr.5, track 5 on The Serial Works [# 1– 7], Megadisc Classics, 1998, compact disc.
 58 Sabbe, “Paradigm,” 243.
 59 Karel Goeyvaerts, “Paris- Darmstadt 1947– 1956. Excerpt from the Autobiographical Portrait,” Revue 
Belge de Musicologie/ Belgisch Tijdschrift voor Muziekwetenschap 48 (1994): 51.
 60 Goeyvaerts, “Paris- Darmstadt,” 51.
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clarity. However, this transcendental desire ran up against the physical fact 
that sounds simply cannot be entirely static and frozen in time. The channel 
itself always introduces Wiener’s “small but very real,” alterations and Von 
Neumann “small extra”— noises, distortions, and transient alterations to the 
frequency spectrum.

Along every physical channel, these alterations cling to the sound signal 
and cause the output to differ ever so slightly from the input. In terms of both 
information theory and thermodynamics, such difference increases entropy. 
Indeed, in a 1949 letter to Gödel, Einstein wrote, “the sending of a signal is, 
in the sense of thermodynamics, an irreversible process, a process which is 
connected with the growth of entropy.”61 The arrow of time flies from the past 
to the future and it cannot, as Goeyvaerts wished, stand still. The ways in which 
material transmission channels physically change signals therefore constitute 
temporal traces of the transmission itself. Accordingly, these changes not only 
signify the difference between input and output, or original and copy. More 
importantly, they signify a difference in time. In the next chapter, I show how 
this “time critical” character of transients constitutes a crucial aspect of the 
noise resonance of sound media.62

 61 Einstein in Kurt Gödel, “Static Interpretation of Space- Time with Einstein’s Comment on It,” in The 
Concepts of Space and Time: Their Structure and Their Development, ed. Milič Čapek (Dordrecht: D. Reidel 
Publishing Company, 1976), 459.
 62 Wolfgang Ernst, Gleichursprünglichkeit: Zeitwesen und Zeitgegebenheit von Medien (Berlin: Kadmos, 
2012), 39– 43.


