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 Grassmann’s Concept Structuralism

Paola Cantù

1.  Introduction

It is hard to determine whether Hermann Grassmann should be considered a 
mathematically inclined philosopher or a philosophically inclined mathemati-
cian, for he was an autodidact in mathematics (he learned mathematics mainly 
from the books of his father, Justus, and from Legendre’s treatise), in Greek 
philology, and partly also in philosophy. He studied theology at the Berlin 
University at the end of the 1820s, and attended, among the philosophy courses, 
only Schleiermacher’s lectures on dialectics and Ritter’s lectures on the history 
of philosophy. In any case, his main contributions concern mathematics and 
linguistics, rather than philosophy. Or rather, he got recognition mainly for his 
mathematical results and his linguistic achievements, whereas his philosophy 
of mathematics did not receive similar attention, not even after his death. Yet 
a large part of Grassmann’s mathematical work is specifically devoted to (a) the 
relation between the emergence of a new abstract mathematical theory and the 
need for a new philosophical frame to understand it, (b) the relation between 
certain applications of this theory and Leibniz’s universal characteristics, and 
(c) the characterization of mathematical disciplines by means of a philosophical 
deduction of their fundamental concepts and of mathematics as the science of 
particulars generated from a given element.

Notwithstanding the growing number of publications concerning specific 
aspects of Grassmann’s mathematical or philosophical writings,1 it is still diffi-
cult to find a comprehensive treatment of his philosophy of mathematics. There 
are several reasons for this: (1) Grassmann’s philosophy of mathematics varies 
in different writings, (2) it is difficult to clearly distinguish his conception from 
that of his brother Robert, (3) where a distinction can be traced, Robert appears 
to have been the one who was most interested in logic and philosophy of logic 

	 1	 See, for example, Banks (2013); Radu (2013); Petsche et al. (2011); Schubring (2005); Flament 
(2005); Radu (2003); Darrigol (2003); Schubring (1996a); Dorier (1995); Schreiber (1995); Flament 
(1994); Boi et al. (1992); Châtelet (1992); Otte (1989); Hestenes (1986); Schlote (1985); Echeverría 
(1979); Lewis (1977); Heath (1917).
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(see Peckhaus 2011 and Grattan-​Guinness 2011), (4) Grassmann’s philosophical 
style, typical of early 19th-​century natural philosophy, cannot easily be read by 
contemporary philosophers, (5) Grassmann was interpreted in different ways 
in the second half of the 19th century and at the beginning of the 20th century 
(see, e.g., Hankel 1867; Cassirer 1910; and Klein 1875). These interpretations ex-
emplify Grassmann’s philosophical destiny, which is perhaps less “tragic” than 
his mathematical fortune, yet not really fortunate, because he was often used to 
corroborate a given conception of mathematics rather than read to verify what 
his own view really was. These interpretations did not adequately emphasize the 
role of particulars in Grassmann’s mathematics (Cassirer), the role of intuition 
and the reasons for a quasi-​axiomatic presentation of extension theory and arith-
metic (Klein), the differences between the general theory of forms and a sym-
bolic treatment of mathematical objects as signs whose referent does not matter 
(Hankel). Yet all these aspects are extremely relevant to grasp Grassmann’s un-
derstanding of concept formation in mathematics and his contribution to the 
history of methodological and philosophical structuralism. I will try to recon-
struct Grassmann’s definition of mathematics as the science of the particular, and 
to investigate his complex distinction between formal and real, referring to some 
philosophical interpretations discussed in Lewis (1977), Flament (1994), Banks 
(2013), and Schlote (1996).

So in the following it will not be sufficient to recall several of Grassmann’s 
mathematical contributions that are relevant for the structuralist transformation 
of mathematics, such as abstract algebra, linear algebra, and number theory (§2). 
The most important task will be that of giving a plausible and comprehensive re-
construction of Grassmann’s philosophy of mathematics (§3), as it emerges from 
his own mathematical works, rather than from subsequent influential interpret-
ations, such as those by Hankel, Cassirer, and Klein. As a result, it will emerge 
that the notions of linear combination, series, and addition are more important 
to Grassmann than the notions of function, mapping, and order. Mathematics is 
the science of the particular, and the general theory of forms does not properly 
belong to it, because it is about underdetermined connections.

The main aim of the chapter will be to analyze Grassmann’s contribution to 
structuralism, discussing differences and similarities between our interpretation 
and some received views in the literature (§4). In particular, I will try to evaluate 
Grassmann’s work with respect to two different issues that are often mixed up in 
the literature or, when they are clearly distinguished, are often called by different 
names or defined in slightly different ways: methodological (or mathematical)2 
and philosophical structuralism.

	 2	 In the literature, this methodology is often called “mathematical structuralism” rather than 
“methodological structuralism.” I  prefer Reck and Price’s (2000) terminological choice for two 
reasons. On the one hand, this choice does better justice to the idea that the structuralist philosophical 
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By methodological structuralism I intend an analysis of the method that is ap-
plied by mathematicians when they are doing mathematics and that has evolved 
in time. Reck and Price have defined methodological structuralism as a method-
ology that “motivates, explicitly or implicitly, many of the structuralist views in 
the philosophical literature” (2000, 345). Reck and Schiemer in the introduction 
to this volume enucleate a list of conditions that should characterize methodo-
logical structuralism. Later in this chapter, I broadly follow their suggestion and 
associate methodological structuralism with questions concerning (1) criticism 
of mathematics as the science of a given domain of objects (e.g., quantities), con-
cerning objects in isolation rather than relations, (2) the role of intuition and 
formal deductions, (3)  the role of axioms, invariants, and applications, and 
(4) the relation between alternative ways to frame mathematics (e.g., set theory, 
category theory). This methodological structuralism tackles deep philosophical 
questions, which often arise in mathematical practice itself or in historical anal-
ysis of the development of mathematical theories.

Philosophical structuralism is used here as a collective name for a large number 
of different philosophical theories centering on the fundamental question, 
“What is a structure?” Typical issues concern, for example (1) whether there 
are objects and operations, and what their relations to structures might be, 
(2) whether general structures can be distinguished from particular structures 
and from exemplars, (3) what is that we call “formal” in a structure and what 
role is played by axiomatics within it. In section 4.3 the analysis of these issues is 
interconnected with the study of answers given in the contemporary philosoph-
ical debate by Shapiro, Parsons, Feferman, Isaacson, and Burgess. A  tentative 
distinction between concept structuralism and object structuralism is used to 
characterize Grassmann’s own perspective with respect to some contemporary 
approaches.

The objective is certainly not to determine whether Grassmann was a fore-
runner of a specific philosophical position in the contemporary debate. This 
would be quite anachronistic, because both mathematics and philosophy have 
deeply evolved from Grassmann’s time. On the one hand several conceptions of 
structuralism are grounded either in a set-​theoretic or in a categorical frame-
work that had not yet been developed at the time; on the other hand the ana-
lytic approach to structuralism is based on a new understanding of mathematics 
and logic introduced, e.g., by Dedekind, Frege, Peano, Russell, and Hilbert, 
which makes it difficult to separate our common use of certain notions (such as 

viewpoint emerges in mathematical practice, and that a study of the mathematical method might al-
ready be philosophical in nature. On the other hand, it avoids the mistake of considering the method-
ological component of structuralism as the only mathematical aspect of it, whereas also the so-​called 
philosophical structuralism might be the result of mathematical self-​reflection.
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function, concept, equality) from the corresponding use made by Grassmann. 
Yet, provided that historical differences are spelled out clearly, it is not anach-
ronistic to evaluate Grassmann from the perspective of contemporary philos-
ophy of mathematics, to verify whether he asked questions that challenge certain 
structuralist views or raised issues that still need to be clarified.

2.  Grassmann’s Mathematics

Hermann Grassmann’s contributions to mathematics and to its applications 
to physics are numerous; we will recall them very shortly. A clear and detailed 
presentation of Grassmann’s mathematical writings can be found in Schubring 
(1996b) and Petsche et al. (2011). In the following we will restrict our attention 
to several contributions that might be relevant for the development of structur-
alism and that derive mainly from the following works: Ausdehnungslehre (both 
in the 1844 and in the 1862 revised edition), Geometrische Analyse, Lehrbuch der 
Arithmetik, and Robert Grassmann’s Formenlehre.

2.1.  Linear Algebra

Grassmann’s extension theory (ET) (Ausdehnungslehre) introduces several fun-
damental concepts of linear algebra: basis, dimension, generator, linear depend-
ence and independence, but there is no axiomatization of the theory (Dorier 
1995; Zaddach 1994). Grassmann’s vector theory is developed in a purely ab-
stract way (in modern parlance, the vector system is a module over a field), and 
conceptually distinguished from geometry, which is considered as an applied 
science (it is the application of ET to three-​dimensional space).

Grassmann’s theory partially differs from contemporary vector-​based sys-
tems, such as vector analysis, exterior algebra, and geometric algebra, both 
from a technical and from a philosophical point of view. Differences concern 
the closure of the operations, the condition of homogeneity on addition, and the 
conception of the product (Cantù 2011, 96–​98). Besides, an important charac-
teristic of Grassmann’s system is that his notions of base and of a system of (inde-
pendent) generators does not aim at the introduction of a system of coordinates, 
but rather at expressing the idea that all the magnitudes of the system are charac-
terized by some generating law.

Following Grassmann, who uses a geometrical analogy to make the abstract 
presentation more intuitive, we will introduce the fundamental notions of ET 
(element, generating law, simple extensive formation, extensive magnitude) by 
analogy with geometry (point, movement, bound vector, vector). An extensive 
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formation (Ausdehnungsgebilde) is “the collection of all elements into which the 
generating element is transformed by continuous evolution”:3 geometrically 
speaking, it is the geometrical figure resulting from the different positions of a 
point in continuous movement. An elementary (einfach) extensive formation 
“is produced by continuation of the same fundamental evolution” (Grassmann 
1844, 48, my trans.): geometrically, it is a straight line that results from the move-
ment of a point in just one direction.

An extensive magnitude is the class of extensive formations that are generated 
according to the same law by means of equal evolutions (Grassmann 1844, 48–​
49); that is, the vector defined as an equivalence class of bound vectors having the 
same direction, the same orientation, and the same size.

Given Grassmann’s understanding of equality as an identity whose crite-
rion is substitutivity, one cannot say that two extensive formations (two bound 
vectors) are equal (in the sense that they are equivalent), but rather that their 
extensive magnitudes (their corresponding free vectors) are equal (see §2.3.1). 
An extensive formation is determined by the elements it is composed of. An ex-
tensive magnitude, on the contrary, is determined only by direction, size, and 
orientation; that is, it does not depend on the initial element of the generation 
(Grassmann 1844, 49).

2.2.  Number Theory

2.2.1. � Natural Numbers
The theory of natural numbers is presented by Grassmann in the Lehrbuch der 
Arithmetik (1861), which is the result of collaboration with his brother Robert. 
Here the term “magnitude” (Grösse) replaces “form”; mathematics is defined as 
the science of magnitudes, that is, of anything that should be set equal or une-
qual to another thing (Grassmann 1861, 1). This general definition of magnitude 
might apply to any kind of form: arithmetical, extensive, or combinatorial. In any 
case, arithmetical magnitudes are characterized by a further property, that is, the 
fact that they are obtained by successive applications of a specific kind of connec-
tion (an addition) to a single magnitude taken as given and denoted by the sign e. 
It should be noted that Grassmann does not mention the number 1 as the arith-
metic unit. Any magnitude that is taken as initial element to build the arithmetic 
series, which he calls Grundreihe, by successive addition of that initial magnitude 

	 3	 See Grassmann (1844, 48; 1995, 47). Cf. also Lewis (1977, 150). By translating Ausdehnungsgebilde 
by “extensive formation” rather than “extensive structure” (Kannenberg) or “extensive entity” 
(Lewis), I follow here the French translation by Flament and Bekemeier in Grassmann (1994).
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can play the role of a unit. The commutativity and associativity of any arithmet-
ical magnitudes denoted by the symbols a, b, c is not introduced as an axiom, but 
derived inductively (inductorisch) from the commutativity and associativity of 
a + e = e + a and (a + b) + e = a + (b + e) respectively (Grassmann 1861, 1). This 
shows the essential role played by the initial element and by the operation of ad-
dition in the definition of an arithmetical magnitude, and thus of the notion of 
series (see §3.1.1).4

The Lehrbuch has been very influential, because it introduces (1) a clear dis-
tinction between the symbols used to denote (bezeichnen) the concepts and the 
concepts themselves, (2)  the parallelism between the symbolic development 
(Formelentwicklung) and the conceptual development (Begriffsentwicklung) of a 
proof, (3) a clear separation between primitive and derived propositions, and 
(4) the use of induction as a method of inference.

2.2.2. � Real Numbers
Real numbers are not introduced in arithmetic, but in ET. Grassmann, at least in 
the first edition of the Ausdehnungslehre, defines real numbers as ratios of exten-
sive magnitudes of the same dimension: they are thus introduced as magnitudes 
of grade zero, that is, as magnitudes that have no dimension. The idea that num-
bers are themselves magnitudes is familiar in modern linear algebra, where the 
real number field can itself be represented as a vector system (a module on the 
field of real numbers). In particular, the fact of having no dimension allows for 
the product of real numbers to be commutative, even if the product between ex-
tensive forms is generally non-​commutative. So all properties of the usual arith-
metical operations hold for the so-​introduced real numbers, which are the only 
magnitudes whose product commutes (Cantù 2011, 98).

Once real numbers have been introduced according to the operation that 
generates them (division), they can be used as a tool in the symbolic definition 
of extensive magnitudes given in the second edition of the Ausdehnungslehre. 
Relying on an analogy with the generation of natural numbers as successive 
additions of the unity, Grassmann defines several unit magnitudes e1, e2, . . . and 
then introduces extensive magnitudes as additions of the products of these units 
by real numbers, as in the following polynomial: a e1 1  +  a e2 2  +  . . .  . Yet real num-
bers, although presupposed in the definition, can still be conceived as extensive 
magnitudes “if the system consists only of the absolute unity (1) (Grassmann 
1862, 12, my trans.).5

	 4	 The notion of power series emerges already in arithmetic, because Grassmann investigates 
which powers can be transformed into a power series of the form ax bx cxn n n+ + +…− −1 2  with x as 
base. The complex relations between the solution of systems of linear equations, analysis, and exten-
sion theory is here evident.
	 5	 This sentence is omitted in Grassmann (2000). Grassmann thus uses the notion of series to ex-
press natural numbers, extensive magnitudes, and also real numbers. Besides, he often uses it as a tool 
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Natural numbers are based on addition of absolute unities, rational num-
bers are based on division of natural numbers, and real numbers are obtained 
as the quotient of extensive magnitudes. This approach does not provide a uni-
fied notion of number that includes natural, rational, and real. Grassmann does 
not seem to be bothered by the piecemeal character of the definition. On the 
contrary, he aims to ground each kind of number in the operation that is used 
to generate it, and seems to consider as most primitive those notions that are 
built on the basis of addition alone (see §2.3.1 for a discussion of this algebraic 
hierarchy between operations). So natural numbers are more primitive than ra-
tional numbers because the former are introduced by an operation of addition, 
whereas the latter need multiplication and division. For the same reason, exten-
sive magnitudes are more primitive than reals, which are magnitudes and not 
numbers: extensive magnitudes are introduced by addition, whereas reals are 
obtained as the quotient of extensive magnitudes.

2.3.  Algebra and Logic

2.3.1. � Abstract Algebra
Under the name of “general theory of forms” (GTF) Grassmann gathers the inves-
tigation of equality, difference, and the common properties of some connections 
that make their appearance in all branches of mathematics. Contrary to the usual 
treatment in modern algebra, he does not investigate sets of objects endowed 
with a given operation, but rather considers the connections in a purely formal 
way, abstracting from the elements they might be applied to. It is true that some-
times he reasons as if in specific mathematical branches one should consider 
the connections as always holding between certain given magnitudes, and then 
show that these connections satisfy the requirements that allow one to call them 
addition and multiplication respectively (Schlote 1996, 168). Yet this can be done 
only once GTF has been established.6 This explains why Grassmann claims that 

in the solution of problems in different mathematical branches. The ubiquity of the notion of series 
as well as its capacity to express the generating rule of mathematical forms attests to the foundational 
role Grassmann attributes to it.

	 6	 See, e.g., the following passage in the second edition of the Ausdehnungslehre: “We therefore also 
call such a method of conjunction a multiplication, provided only that its multiplicative relation to 
addition is demonstrated, or in other words, provided only that the equal entry of all the terms of the 
conjunctive factors into the conjunction is established in the above sense” (Grassmann 2000, 43). In 
other words, Grassmann defines in abstracto what addition, multiplication, and raising to a power 
are, and then, given a domain closed under an operation, he determines whether it is an addition, a 
multiplication, or a raise to a power, and specifies its further characteristics.
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GTF should precede all other mathematical branches in the exposition: there are 
both epistemological and didactic grounds, because GTF provides a foundation 
of all other branches of mathematics—​in that it presents as united what should 
be united, and has the highest degree of generality—​and also because it spares 
useless repetitions of basic concepts in a mathematical treatise (Grassmann 
1844, 28).

Two forms are said to be equal when they can be substituted one for the other 
in any connection they occur in. Equality is transitive—​if two forms are equal 
to a third, then they are equal one to the other—​and has the following pro-
perty:  forms that are generated in the same way from equal forms are equals 
(Grassmann 1844, 28).

Forms are determined by their generating law, and are therefore equal if the 
same law from the same initial element generates them. Grassmann has often 
been criticized for his adoption of a Leibnizian conception of equality as substi-
tutability salva veritate instead of a Euclidean conception of equality as equiva-
lence (Helmholtz 1887, 377n): as I read him, his equality lies midway between 
Leibniz and Euclid, because he defines it as an identity, and restricts it to some 
features of concepts rather than defining it between objects themselves.7

Given that forms are not given objects but the results of an act of thought that 
generates them according to a certain law, only the characteristics that depend on 
the specific way in which forms have been generated will be taken into account in 
the comparison: the substitutability is thus limited to pertinent contexts.

Grassmann then considers three connections and introduces a four-​level dis-
tinction based on their decreasing generality.

	 1.	 Grassmann believes that the most restrictive conditions to be required 
from any mathematical connection depend on the number of connections 
that are introduced and on their reciprocal relations. So he requires from 
a first connection (connection of first order) that it be commutative and as-
sociative, and from a second connection related to the first (connection of 
second order) that it satisfy the distributive laws with respect to the first.8 At 
this level of generality, the two connections (denoted respectively by ∩ and 
∪) are pre-​mathematical operations between concepts.

	 2.	 Then there is the formal level, where the conditions are less restrictive and 
the connections of first and second order are respectively called “formal ad-
dition” and “formal multiplication” and denoted by the usual arithmetical 
symbols + and ·. A formal addition is a simple synthetic connection with 

	 7	 E.g., two vectors can be considered as equal—​in some extended sense—​because their directions 
and lengths are equal, i.e., identical (Grassmann 1844, 28).
	 8	 The distributive laws are two, because the second connection need not be commutative.
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a single-​valued analytical operation, whereas a formal multiplication is a 
connection of second order with respect to the given addition. This is the 
level of GTF, which is occasioned by an investigation of certain properties 
of the connections that are common to different mathematical branches.

In modern parlance, one could say that Grassmann’s notion of formal addition 
corresponds to a commutative group, and the notion of formal multiplication 
corresponds to a ring under two operations (Schlote 1996, 168). Yet it has often 
been remarked in the literature (e.g., in Lewis 1977, 140, 146, and Flament 1992, 
216) that one should not consider the properties of the connections of first and 
second order, or the properties of the formal addition and formal multiplication 
as axioms,9 or as a reductionist kind of foundation. I believe that a comparison 
with ancient proportion theory might be illuminating, because—​as Aristotle 
himself observed—​the theorems of the theory of proportions could be demon-
strated not only separately for numbers and for geometrical magnitudes but also 
in a more general way. Just as the formulation of proportion theory did not imply 
(at least not until the 18th century) the creation of a new genus of objects (Cantù 
2008, §3), the fact that Grassmann assembled a list of propositions that “relate 
to all branches of mathematics in the same way” (Grassmann 1844, 33; 1995, 
33) does not imply the construction of a new branch of mathematics or of a new 
domain of objects. So formal operations have the properties that are common to 
real operations, the latter being the operations that generate the mathematical 
forms in each mathematical discipline. This explains why Grassmann considers 
addition as being always commutative: he had not encountered any example of a 
non-​commutative additive group in mathematics.

	 3.	 Third, there are abstract connections between thought forms, which 
might have different properties depending on the thought forms they are 
applied to. For example, at this level we find addition and multiplication 
between natural numbers, or addition and multiplication between exten-
sive magnitudes. These abstract connections might be different (e.g., the 
multiplication is commutative in the first case and not commutative in the 
second case), but only with respect to the properties that were not already 
contained in their respective “formal” notions. These are what Grassmann 
calls “real” connections between forms: they are “real” because the law of 
connection is specified and grounds the generation of the forms.10 This is 

	 9	 See Radu (2003) for a discordant point of view on this issue.
	 10	 “So far we have developed the concept of addition in a purely formal manner, since we have 
defined it from the validity of certain laws of conjunction. This formal concept also remains the 
only general one. Yet it is not the way we arrive at this concept in the individual branches of math-
ematics. Rather in them a characteristic method of conjunction is obtained from the generation 
of the magnitudes itself, which manifests itself as an addition in precisely the general sense given, 
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the mathematical treatment of connections, as it is developed in its math-
ematical branch. The idea that in each branch of mathematics, one should 
verify whether the connections that can be introduced can be called ad-
dition or multiplication confirms that there should be a distinction be-
tween the level of formal operations and the level of specific mathematical 
branches, where Grassmann refuses to admit a domain of elements given 
prior to, or independently from, the generation of the elements themselves 
(Cantù 2011, 100).11

	 4.	 Fourth, there is the application of mathematical operations to physical 
reality, as in the case of the addition of masses or forces, or segments. To 
this level belongs the investigation of the connections that one finds in 
geometry.

Mathematics, as we will see in section 3.1, is for Grassmann the science of the 
particular. GTF, on the contrary, investigates formal operations, which are nec-
essarily underdetermined, because the nature of the forms and their generating 
law induce the properties of the operation, which might vary relative to the do-
main of application. Grassmann considers as more “general” the product relative 
to a variable domain—​a domain that is not closed under the operation but rather 
a result of our carrying out the operation itself. It is more general in the sense 
that it is underdetermined, because the determination or particularization of the 
operation depends on further conditions dictated by the nature of mathematical 
objects and by generating rules. The refusal to admit a domain of elements given 
prior to, or independently from, the generation of the elements themselves is an 
idea that Grassmann never abandons, and a basic assumption of his “construc-
tivism” (see §4.2.2 and Cantù 2011, 100).

To resume, Grassmann’s GTF, that is, the study of some fundamental relations 
and operations that occur in all branches of mathematics, is not itself part of 
mathematics, because it contains formal operations that are underdetermined 
and that might receive full determination only when they become real opera-
tions in mathematical disciplines or in the applications of mathematics.

since those formal laws apply to it” (Grassmann 1844, 40; 1995, 39, trans. slightly modified). “We 
have therefore formally defined the general concept of this multiplication as well; if the nature of the 
magnitudes to be conjoined is given, then to this formal concept must correspond a real concept that 
expresses the method of generation of the product by the factor.” (Grassmann 1844, 44; 1995, 42, 
trans. slightly modified).

	 11	 It is interesting to note that different notions of product might occur in the same mathematical 
branch: for example, in the case of ET, there are a real addition between homogenous magnitudes 
(e.g., between segments) and a formal addition between non-​homogeneous magnitudes (e.g., 
the addition between a point and a segment gives a point, because the symbol of addition has to 
be interpreted as a movement from one point to another point rather than as a concatenation of 
magnitudes) (Cantù 2011, 97).
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2.3.2. �  Logic
Hermann Grassmann’s contributions to logic concern some reflections (1) on the 
notion of primitive proposition—​and in particular on the idea that in formal sci-
ences there are only definitions, and no axioms, because mathematics concerns 
abstract concepts and not given objects—​and (2) on a general logical law (law of 
progression).

The nature of primitive propositions varies according to the kind of science 
in question: formal sciences start from definitions, while real sciences start from 
axioms.

Now if truth is in general based on the correspondence of the thought with the 
existent, then in particular in the formal sciences it is based on the correspond-
ence of the second thought process with that existent established by the first, 
that is, on the correspondence of the two thought processes. . . . Consequently, 
the formal sciences cannot begin with axioms [Grundsätze], as do the real; 
rather, definitions comprise their foundation. (Grassmann 1844, 22; 1995, 23, 
trans. slightly modified)

Unlike Kant’s formal criterion of truth, which concerns only the form and not the 
content of knowledge, and thus cannot say anything on the eventual contradic-
tion between knowledge and its object (Kant 1787, 82), Grassmann’s condition 
on the consistency of two thought processes is a condition on the consistency be-
tween an object of thought (the result of the first thought process) and a thought, 
that is, between two concepts.

Grassmann mentions a law of progression (Fortschreitungsgesetz) that he 
considers a general logical law:12 it guarantees that “anything that is asserted 
about a series of things in the sense that it should hold for each individual of 
the series can actually be asserted about each individual belonging to the series” 
(Grassmann 1844, 65, my trans.).13

	 12	 Here “logical law” should be intended as a law of thought, rather than as a law of propositional 
or predicate logic. This interpretation is supported by what Grassmann’s brother Robert explicitly 
claimed, i.e., that mathematical proof is independent of any given natural language, and of any log-
ical theory (syllogistic logic in particular). Even if Robert’s conception differs from that of Hermann 
inasmuch as he treated GTF as being itself mathematics, and logic as being one of its branches 
(Grassmann 1872, 17–​18), I think the two brothers would agree that the notion of series is more 
pervasive in science (and thus more fundamental or more general) than universal instantiation in 
predicate logic: Hermann does not mention the latter at all, neither in GTF nor in mathematical 
branches such as arithmetic and extension theory, whereas Robert considers universal instantiation 
as occurring in a specific mathematical branch: logic.
	 13	 On the rule of progression cf. Cassirer (1910, 20–​21). I translate “law of progression” rather than 
“procedural principle,” as does Kannenberg (Grassmann 1995, 62), to underline the relationship to 
the concept used by Cassirer in a passage of Substanzbegriff und Funktionsbegriff where he discusses 
Grassmann’s ideas (“In all these cases, we are not concerned in analyzing a given ‘whole’ into parts 
similar to it, or in compounding it again out of these, but the general problem is to combine any 
conditions of progression in a series in general into a unified result” [Cassirer 1910, 127; 1923, 96]).
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This law, which we could understand as universal instantiation for series 
(rather than a law explaining the universal quantification of a predicate), just 
makes explicit what Grassmann means by general proposition, and should not 
be assumed as an axiom of mathematics. It is rather what allows us to demon-
strate mathematical results, because proofs are considered concatenations 
(Aneinanderketten) of definitions, that is, themselves series of thoughts.

3.  Grassmann’s Philosophy of Mathematics

3.1.  Mathematics as the Science of the Particular

Defining mathematics as the science of (thought) forms, Grassmann claims that 
mathematics is about concepts, which are considered particulars generated by 
means of an act from some initial element.

	 1.	 Thought forms are particulars that have “come to be through thought” 
(Grassmann 1844, Intro., §§2–​3, 22–​23).

	 2.	 Thought forms might come to be by different types of generation and 
different ways to relate them to the initial element of the generation 
(Grassmann 1844, Intro., §5, 25).

But he also characterizes mathematics by contrasting its peculiar method to the 
method followed in philosophy.

	 3.	 The mathematical method goes from the particular to the general 
(Grassmann 1844, Intro., §13, 30).

According to both characterizations of mathematics, which are not mutually ex-
clusive but rather complementary, mathematics is conceived as the science of the 
particular.

3.1.1. � Mathematical Thought Forms as Particulars
Mathematical thought forms (Denkformen)—​or simply forms—​are determined 
by their generating law: any form is a particular being that has come to be by 
some act of thought (it is the result of a particular act).

Pure mathematics is therefore the science of the particular existent that has 
come to be by thought. The particular existent, viewed in this sense, we call a 
thought form or simply a form: thus pure mathematics is the theory of forms. 
(Grassmann 1995, 24)
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Forms are abstract concepts that result from a generating thought from an initial 
element, which is itself a particular concept. Mathematics is thus the science of 
the particular that is posited by thought and not the science of the general laws of 
thinking (logic).14

The generation of the forms is so intrinsic to their nature that it also explains 
the partition of mathematical disciplines: depending on the relation between the 
elements (equal or different) and on the kind of generating law (discrete or con-
tinuous) that is applied to an initial element, one obtains a partition of math-
ematics into four branches: arithmetic, analysis, combinatorics, and extension 
Theory (see Table 1).

The partition of mathematics is based on the generating law and on the rela-
tion of the generated element to the initial element; that is, it is based on oper-
ations and relations, but also on the determinateness of the initial element. One 
reason why Grassmann introduced the term “form” in the definition of math-
ematics is that it contains a reference to formation, that is, to the way mathe-
matical particulars are generated by a certain law, which alone guarantees their 
determinateness.15

Since what is different from something given [von einem Gegebenen] may be 
different in infinite ways, the difference would get lost completely in the inde-
terminate, were it not constrained by a fixed law. (Grassmann 1995, 29, trans. 
modified)

	 14	 “The formal sciences treat either the general laws of thought or the particular as established by 
means of thought, the former being the dialectic (logic), the latter pure mathematics” (Grassmann 
1995, 23–​24).
	 15	 Other reasons might be the influence of Leibniz as well as dissatisfaction with the usual term 
“magnitude” (§4.2.1).

Table 1  The Partition of Mathematics

Elements Discrete generation Continuous generation

Equal Arithmetic
(natural numbers)

Analysis
(intensive magnitudes)

Different Combinatorics
(permutations)

Extension theory
(extensive magnitudes)
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Grassmann is a conceptualist and a constructivist: what mathematics is about are 
concepts determined by construction, according to a law, from a particular that 
is considered as given (even if it is itself a concept).16

The relation of difference and equality between elements is introduced as 
a difference or equality with something given, that is, a first element from 
which the forms are successively generated. The importance of the individua-
tion of a first element in the series becomes particularly relevant in arithmetic, 
where it grounds Grassmann’s conception of numerical induction, but it plays 
a fundamental role also in ET, where it grounds the notion of generator, and in 
applications (e.g., in the geometrical calculus the initial element is the point, 
whereas in the barycentric calculus it is the point magnitude). Yet this charac-
teristic of Grassmann’s philosophy of mathematics has often been neglected or 
underestimated in the literature.

However, it plays an essential role in the notion of equality (e.g., two extensive 
magnitudes are equal if they are generated in the same way by equal elements), 
in the definition of thought form, and in the clarification of the specificity of the 
mathematical method (§3.1.2). Besides, it is relevant in the distinction between 
operations that are defined on a fixed domain and operations whose domains 
depend on the forms they are applied to: see, for example, the regressive or ap-
plied product (Grassmann 1844, 206), which is relative to the system that two 
magnitudes have in common (Cantù 2011, 94). Finally, it constitutes an essen-
tial aspect of Grassmann’s understanding of concept formation, which is better 
represented by the notion of series than by the notion of function. Whereas the 
notion of function is introduced in modern mathematics by a correspondence 
between two given sets of elements, a series is always determined by an initial el-
ement and a law of development.17

One of the most acute interpreters of Grassmann’s notion of series was Ernst 
Cassirer. Yet he underestimated the role of the initial element that is taken as 
given in order to go from the particular to the general, as well as the additive 
group of elements required by the notion of a series, insisting rather on what he 
calls the “concrete universality” of mathematical functions, and on the order re-
lation between the members of a series. Cassirer understood Grassmann’s claims 
about the initial element in ET by analogy with arithmetic rather than with ge-
ometry, and tried to go beyond the limit to “definite kinds of transformations” 
by highlighting the fact that “the element . . . is . . . only a pure particular grasped 
as different from other particulars,” whereby no “specific content” is assumed 

	 16	 By concept I  mean what Grassmann calls “a thought representing an existent”; the existent 
might be given independently from thought, as in real sciences, or be itself a thought, as in formal 
sciences.
	 17	 In modern parlance we could say that a function could be intended as a logical notion, whereas 
a series is usually considered a mathematical notion.
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(Cassirer 1923, 97–​98).18 But Grassmann explicitly adds that a further determi-
nation and distinction is guaranteed by the generation law, which might generate 
the forms in a discrete or in a continuous way. This is needed in order to let a real 
concept of operation correspond to the formal concept of operation.

Cassirer rightly underlined what he considered the “most general function 
of the mathematical concept: . . . giving some qualitatively definite and unitary 
rule that determines the form of the transition between the members of a series” 
(1923, 98). But then he concluded by inscribing Grassmann among the authors 
who considered mathematics as the science of relations:

The considerations by which Grassmann introduces his work thus create a ge-
neral logical schema under which the various forms of calculus, which have 
evolved independently of the Ausdehnungslehre, can also be subsumed; for they 
only show from a new angle that the real elements of mathematical calculus are 
not magnitudes but relations. (Cassirer 1923, 99).

So, even if Cassirer’s reading of Grassmann is partially accurate and faithful, he 
inscribes Grassmann in a tradition to which Grassmann does not properly be-
long, especially if one acknowledges that Grassmann’s GTF, which actually deals 
only with relations and operations, does not really belong to mathematics.19

	 18	 “First, in place of the point, that is, of the particular position (locus), we here substitute the 
element, by which we mean a mere particular, conceived as distinguished from other particulars; 
and indeed we attribute to the element in the abstract science absolutely no other content. There 
can therefore be no question as to what sort of particular it properly is—​for it is the particular per 
se, devoid of any real content—​, or in what sense this one is distinguished from the others—​for it is 
merely defined as the distinct per se, without establishing any real content that might account for its 
distinctness. Our science has this concept of an element in common with combination theory, and 
thus the designation of elements by different letters is also common to both. The difference consists 
only in the way forms are obtained from the elements in the two sciences; that is, in combination 
theory by simple conjunction and thus discretely, but here by continuous generation. The different 
elements can now also be regarded as different states of the same generating element, and this differ-
ence of stages corresponds to differences in position (locus)” (Grassmann 1844, 47; 1995, 46, trans. 
modifified). Cf. also Grassmann (1994, 12).
	 19	 Erich Reck rightly noticed that Cassirer’s notion of function cannot be reduced to the concept 
of a mapping between two domains. I agree that the notion of series grounds what Cassirer says 
about conceptual understanding: an intuitive multiplicity can be understood conceptually only if 
its elements can be seen as the elements of a series (Cassirer 1910, 19–​20). Yet the notion of function 
is distinct from the notion of series: it is “some general law of arrangement through which a thor-
oughgoing rule of succession is established. . . . it is the rule of progression, which remains the same, 
no matter in which member it is represented” (Cassirer 1910, 20–​21; 1923, 17). In another passage, 
Cassirer again distinguishes between “a series which has a first member, and for which a certain law 
of progress has been established, of such a sort that to every member there belongs an immediate 
successor with which it is connected by an unambiguous transitive and asymmetrical relation, that 
remains throughout the whole series” and the “progression” (Fortschritt) in which “we have already 
grasped the real fundamental type with which arithmetic is concerned” (Cassirer 1910, 49; 1923, 38). 
On the one hand, the notion of function is influenced by Dedekind’s notion of Abbildung (Cassirer 
1910, 50); on the other hand, Cassirer apparently agrees with Russell that arithmetic is a formal study 
of relations (Cassirer 1910, 48).
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More specifically, Cassirer’s move from series to relations is too quick. 
Grassmann’s philosophy of mathematics is rooted in the notions of series and ad-
ditive group rather than in the notions of function and order: the former and not 
the latter are relevant in concept formation.

In the introduction to the second edition of the Ausdehnungslehre, Grassmann 
explains the different role played by the notion of linear combination, which is 
essential to defining the notion of elementary extensive magnitude, and by the 
notion of function, which is not an expression between signs: its value is itself a 
magnitude, and precisely a composite magnitude (Grassmann 1862, 7; 2000, xvi, 
trans. modified). The notion of function occurs only in the second part of the 
book and presupposes the notion of magnitude, which is defined by means of the 
notion of linear combination.

Definition. When a magnitude u depends on one or several magnitudes x, y, . . . 
in such a way that, whenever x, y, . . . assume determinate values, then u also 
assumes a determinate (univocal) value, then we call u a function of z, y, . . . . 
(Grassmann 1862, 224, my trans.)

So, according to Grassmann, neither linear combinations nor functions are 
notational abbreviations (Grassmann 1862, 5; 2000, xiv): they are rather essen-
tial tools for concept formation. It is only because a new autonomous concept has 
been formed by addition and multiplication that inverse operations can arise and 
the concept of a negative quantity can be introduced. In particular, Grassmann’s 
notion of function has nothing in common with the notion of a mapping be-
tween two domains, because the latter does not include any privileged reference 
to operations. And even in the case of numbers, the operation of successor is 
considered a generating law that builds numbers by addition (the simplest ex-
ample of linear combination, characterized by a single unit: the absolute unit). 
Thus, Grassmann highlights the similarities between numbers and extensive 
magnitudes, which are generated by similar concept formation tools, rather than 
their respective differences (the kind of order, and the commutative property of 
the product).

3.1.2. � Mathematical (and Scientific) Method: From the Particular to the 
General (and Back)

The notion of a particular is at the basis of the mathematical method too. 
Mathematics and philosophy are characterized by an opposite movement: phi-
losophy starts from the general and arrives at the particular with an analytical 
process of decomposition of a complex concept in more simple concepts; math-
ematics proceeds in a synthetic way and links several particulars to get a new 
particular, that is, links several concepts to get a new concept. The philosophical 
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(dialectical/​logical) method and the mathematical method can be better under-
stood by analogy with the two different moments of the Platonic dialectic pro-
cess: reduction and division. Philosophy starts from an overview of the totality, 
which is successively articulated and ramified, whereas mathematics starts by 
connecting particulars and aims at their unity (Grassmann 1844, 30).20

It is still controversial whether Schleiermacher’s Dialektik had a decisive in-
fluence on Grassmann’s understanding of mathematics.21 Without pretending 
to give historical support to the claim, I  would like to recall two issues of 
Schleiermacher’s Dialectic that might clarify my interpretation of the difference 
between formal and real operations as a difference in determinateness, and offer 
a key to understanding the importance of the initial element in Grassmann’s gen-
eration of mathematical objects.22

Schleiermacher distinguishes between the construction of the one (the ini-
tial element) and the combination of the one with another one (generation law 
starting from an initial element and determining the other elements). Even if 
mathematics mainly deals with combination, it does not ignore that each par-
ticular is in turn the result of a thought process, and in particular cannot ignore 
that the initial element is the result of a construction, which is relevant in the 
determination of the outcome of the combination. Production (or construc-
tion) and combination condition each other reciprocally (Schleiermacher 1839 
[1986], 179).

The knowledge of a single concept obtained by a process of concept formation 
is an incomplete knowledge that needs to be further determined by the connec-
tion of that concept with other concepts. The mathematical method concerns 
specifically the determination of connections, but these cannot be separated 
from the particulars they should connect, and from the initial element whose 
knowledge should be completed by further determinations.23 The initial element 

	 20	 For a convincing interpretation of Schleiermacher’s influence on Grassmann’s distinction be-
tween dialectic and mathematics see Lewis (1977). See especially the distinction between construc-
tion (concept formation) and combination (connection of particular concepts).
	 21	 See, for example, Engel (1911), Lewis (1977), and Petsche (2004), who claim it did, and 
Schubring (2008), who denies it—​or at least restricts the influence to other domains than mathe-
matics, as, for example, philology.
	 22	 Both issues are actually mentioned in Lewis (1977), but are not related to Grassmann’s 
Ausdehnungslehre, nor specifically to Grassmann’s ideas on concept formation and indeterminacy. 
Schleiermacher’s influence is rather recognized by Lewis in Grassmann’s deduction of mathematical 
branches by opposition of the fundamental concepts (equal, unequal, discrete, continuous). See also 
Schubring (2008, 63). I thank Jamie Tappenden for calling my attention to this review.
	 23	 “Even if a concept is formed it can never by itself completely represent the existent since as con-
cept it only contains what is based in the particularity of this existent and not what is posited in it 
as a consequence of its associations [with other existents]. . . . Thus each given thought contains the 
requirement of finding another new thought and of determining that which is left undetermined. 
The first is the extensive direction within combination and the latter the intensive, and it will be in 
the oscillation between the two that we must progress. The method in the first direction—​to find 
from a given knowledge a new one—​we call the heuristic; that in the other—​to connect the dispersed 
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of the series allows the construction of the successive element, which in turn 
adds determinateness to the preceding element.

The scientific method, which is for Grassmann the method of presentation of 
a science in a treatise, that is, a pedagogical method (Flament 1992, 215), should 
sum up in itself both the specificity of the philosophical method (which pro-
ceeds from the general to the particular) and the specificity of the mathematical 
method (which proceeds from the particular to the general). So any scientific ex-
position should combine two aspects, which Grassmann calls respectively con-
tent and form: the content (Inhalt) of a science is the development that goes from 
one individual truth to another individual truth in demonstrations, whereas the 
form (Form) is a guiding idea, which is either a presentiment of the searched 
truth or a conjectural analogy with other well-​known branches of knowledge 
(Grassmann 1844, 31).

3.2.  Formal and Real

There is an ambiguous use of the terms “formal,” “form,” and Formel in 
Grassmann, which explain the difficulty in understanding and appreciating his 
philosophy of mathematics. These expressions occur in different contexts with 
different meanings.

	 1.	 Forms are thought forms, which are opposed to what exists independently 
of thought (“das Sein als das dem Denken selbständig gegenübertretende”), 
to what is given and cannot be itself generated by thought (e.g., space) 
(Grassmann 1844, Intro., §1, p. 22). The former notion is connected to the 
distinction between “formal sciences” and “real sciences,” whereby formal 
sciences concern the purely conceptual (rein begrifflich), whereas real sci-
ences concern what is given outside thought (e.g., spatial [räumlicher 
Natur] notions) (Grassmann 1844, 22).

	 2.	 Formeln are symbolic expressions, as opposed to their denotations: concepts 
(Grassmann 1861, 6).

	 3.	 “Formal operations” in GTF are the formal addition and the formal multi-
plication that are opposed to “real operations” (e.g., addition between num-
bers in arithmetic or between extensive magnitudes in ET) (Grassmann 
1844, 41, 42n).

	 4.	 The form of a science is its treatment or exposition, as opposed to its con-
tent (concatenations of truths) (Grassmann 1844, 31).

and isolated given material—​the architectonic” (Schleiermacher [1839] 1986, 179–​180; trans. in 
Lewis 1977).
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In the following, I will discuss in more detail the first three occurrences, having 
already discussed the last one in the method of scientific exposition (§3.1.2).

3.2.1. � Purely Conceptual versus Spatially Intuitive
We have already mentioned that thought forms are the objects of mathematics. 
“Formal” is also used to characterize several sciences in contrast to real sci-
ences: the main differences between them concern their respective objects (ab-
stract vs. intuitive), their primitive propositions (definitions vs. axioms), and 
their criterion of truth (correspondence between two acts of thought versus cor-
respondence with some external thing). Independence from intuition is clearly 
stated at the end of Grassmann’s Geometrische Analyse, where abstract as purely 
conceptual is opposed to real as associated with spatial intuition.

Now, in fact, as is demonstrated throughout Grassmann’s Ausdehnungslehre, 
all concepts and laws of the new analysis can be developed completely inde-
pendently of spatial intuition [unabhängig von der räumlichen Anschauung], 
since they can be tied only to the abstract concept of a continuous transforma-
tion; and, once one has grasped the idea of this purely conceptually conceived 
[rein begrifflich gefassten] continuous transformation, it is easy to see that also 
the laws developed in this essay can be conceived as freed from spatial intui-
tion [von der räumlichen Anschauung gelösten]. (Grassmann 1995, 384, trans. 
modified)

The main point is not to do away with intuition, but to give it its own role. 
The analogy with geometry is essential in the method of exposition of the 
Ausdehnungslehre and as a heuristic guide in the search for theorems. One thing 
is to consider pure concepts as independent from intuition and another thing is 
to assume that Grassmann calculates with signs devoid of meaning.

3.2.2. � Symbolic versus Conceptual
Formel occurs in expressions such as Formelentwicklung, where it might be 
considered synonymous with what we now call symbolic. In the Treatise on 
Arithmetic, formal as symbolic is mentioned in the inferential development 
of arithmetical truths, which are expressed by symbols but denote concepts. 
There is thus no idea of symbols or “signs or letters the referent of which did not 
matter” in Grassmann (Darrigol 2003, 522). This formalistic interpretation of 
Grassmann’s number theory has been encouraged by Hankel, who maintained a 
distinction between actual and formal numbers, but identified formal numbers 
with signs (Hankel 1867, 36). Quoting Grassmann as a fundamental source of his 
work (Hankel 1867, 16), Hankel indirectly suggested that Grassmann shared his 
point of view. Yet Grassmann claimed that
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“the symbolic development [Formelentwicklung] and the conceptual develop-
ment [Begriffsentwicklung] should go hand in hand. . . . The whole treatment 
will proceed along a conceptual development, whereas the formulas added at 
each step symbolically represent the conceptual advancement.” (1861, 6, my 
trans.)

The mentioned definition of function, as well as the refusal to consider linear 
combination as a notational abbreviation, also supports a non-​formalistic 
reading of Grassmann.24

3.2.3. � Formal versus Real: Two Levels of Abstractness
The adjective formell occurs in GTF as a way to distinguish formal addition and 
multiplication from real addition and multiplication. Here the formal concerns 
an underdetermination of the concept of a connection, which gets embodied 
and becomes real only in each specific mathematical discipline. Both the formal 
connections and the real connections are thus abstract and purely conceptual 
(rein begrifflich), and thus opposed to intuitive or spatial notions that can be 
found in applied mathematics (e.g., in a real science as geometry). The ambi-
guity of the terminology is here evident and explains why it is difficult to under-
stand Grassmann’s philosophy of mathematics. The notion of real connection, 
opposed to that of formal connection, is not to be found in real sciences, but in 
formal sciences! It is thus abstract and opposed as such to what is real in the sense 
of concrete, as connections between geometrical figures.

Are the formal operations of GTF merely expressed by signs devoid of refer-
ence, as several authors took them to be? Here Grassmann’s idealistic philosophy 
explains why this is not the case.

As the general sign for conjunction we take the symbol ∩; now if a and b are the 
factors, with a the prefactor, b the postfactor, then we indicate the product of 
their conjunction as (a ∩ b), where the parentheses here express that the con-
junction indicates that the factors are no longer separate, but that their concepts 
are unified. (Grassmann 1995, 34)

It is certainly true that the level of generality and the abstraction from specific 
features of the real operations suggest that the formal connections do not refer 
in the same way, because they concur in the formation of concepts once applied 

	 24	 For a different reading see Darrigol (2003, 522), but also Klein, who encouraged a formalistic 
reading of Grassmann, as he praised his ingenious algorithms (Klein 1979, 166–​167). Klein’s reading 
suggests that ET contains algorithms that refer to geometry, thereby ignoring Grassmann’s abstract 
level that is situated between the formal and the real concrete level (§2.4).
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to some concept. Just as proportion theory (from which GTF inherits the anal-
ysis of equality and of addition) needs to be applied to specific mathematical 
branches, so does Grassmann’s GTF. The following passage supports this inter-
pretation, according to which formal and real should be understood as disem-
bodied and embodied respectively:

Incidentally, it lies in the nature of things that the conceptual determination 
of these connections is here purely formal, whereas only in the single sciences 
it can be embodied by means of real definitions. (Grassmann 1844, 42n, my 
trans.)

The insistence on the separation of the different mathematical branches and on 
the purity of proofs in each domain is incompatible both with the idea that GTF 
has as its object an abstract structure, and with the view that it constitutes a sym-
bolic calculus devoid of reference or meaning.

3.2.4. � Hankel’s Three-​Level Distinction
Hankel rightly distinguishes the first and the second notions of formal and real, 
individuating three levels in the Ausdehnungslehre: formal, real abstract, and real 
concrete, which correspond to the laws of GTF, of extensive magnitudes and of 
geometrical figures respectively (Hankel 1867, 16–​17).

Hankel thus traces a distinction between (1) the level of formal laws, (2) the 
level of abstract content, and (3) the level of real content. There are at least two 
distinct interpretations of this tripartition in the literature on Grassmann: (a) 
universal algebra, different algebras, and physical instantiations of such algebras, 
(b) abstract algebra, linear algebra, and geometry. A critical discussion of these 
two interpretations is useful to understand Grassmann’s contributions to uni-
versal algebra, abstract algebra, and non-​Euclidean geometry, and therefore 
to the transformation of mathematics into a science of structures, but it is also 
useful to compare contemporary philosophical structuralism with Grassmann’s 
peculiar understanding of mathematical objects and structures.

The second interpretation of the tripartition holds for what Grassmann does 
in the Ausdehnungslehre, provided that one also remarks that of the three levels, 
only the second properly pertains to pure mathematics, whereas the former is 
not mathematics, and the latter is applied mathematics, and provided that one 
recalls the differences between Grassmann’s approach and modern algebra. The 
main question here is whether GTF (1)  does not belong to mathematics yet, 
because it has not been sufficiently developed or because it cannot be part of 
mathematics, given that it is only formally abstract and not really abstract, or 
(2) cannot belong to mathematics, given its too general nature. In support of in-
terpretation (1), it should be noted that Grassmann himself declares that “such a 
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general branch is not yet available” and that he has developed it only as far as it is 
needed for ET, thereby neglecting a third possible connection: raising to a power 
(Grassmann 1844, 33, 42n). In support of interpretation (2) there is the fact that, 
according to Grassmann’s conception of the mathematical method, GTF cannot 
belong to mathematics, because it does not go from the particular to the general. 
And in fact the connections are considered independently from their application 
to a first element.

My claim is that GTF should be considered as something that has to do with 
the scientific method, which, as we have seen, has to incorporate both the phil-
osophical and the mathematical method, going both from the unity of the idea 
to the multiplicity of particulars and back. This interpretation seems to be con-
firmed by the role Robert Grassmann assigns to it in the Formenlehre. Robert 
develops what Grassmann calls GTF as a theory of magnitudes (Grösenlehre),25 
including the general definitions and theorems that make a rigorous scientific 
thought possible, teaching us how to make scientific inferences (wissenschaftlich 
beweisen) (Grassmann 1872, 1), and characterizes it as the general part in oppo-
sition to special disciplines.26

Now, if one considers not only the Ausdehnungslehre but more generally the 
totality of Grassmann’s writings, then one might have an argument for the first 
interpretation of the tripartition already mentioned. The level of formal laws 
might correspond to a certain way of doing universal algebra; the level of abstract 
content might correspond to different algebras developed by Grassmann, among 
which is vector space theory, but also some non-​commutative algebras that he 
developed in his essay on different kinds of multiplication (Grassmann 1855); 
and the level of real content would correspond to geometry, to the barycentric 
calculus, and to other physical instantiations of such algebras.

	 25	 Yet Robert Grassmann uses a different terminology and inverts the presentation: he begins by 
raising to a power (Anreihung, which is not commutative), then introduces multiplication (Einigung, 
which is associative), and finally introduces addition (Vertauschung, which is commutative) 
(Grassmann 1872, 15–​24). He then considers direct (Trennung or trennbare Knüpfung) and inverse 
operations (Lösung or untrennbare Knüpfung), where the former are univocal and the latter are not 
univocal.
	 26	 “Grösenlehre, the first or most general discipline of Formenlehre, teaches us to recognize those 
connections between magnitudes that are common to all disciplines of Formenlehre. It develops the 
laws of equality, addition or Fügung, multiplication or Webung, and exponentiation or Höchung. The 
four special disciplines of Formenlehre emerge from Grösenlehre through the introduction of new 
conditions” (Grassmann 1872, 11–​12, my trans.).
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4.  Is Grassmann a Structuralist?

4.1.  Mathematical Contributions

Grassmann’s contributions to mathematics already tell us something about his 
relation to methodological structuralism (see §1). If the mathematical structur-
alist methodology is the result of several important innovations such as abstract 
algebra, axiomatic method, set theory, and Bourbaki’s structuralism (Reck and 
Price 2000, 346), Grassmann did explicitly contribute to the first factor, thanks to 
his contribution to vector space theory, which clearly favored the development of 
abstract algebra. Vector space theory is also an example of a non-​Euclidean ge-
ometry, because the vector space has dimension n, with n ∈ N, and thus includes 
the investigations of abstract spaces with dimension > 3. Grassmann’s distinc-
tion between real and formal sciences thus contributed to the liberation of ab-
stract geometry (linear algebra) from physical space.

Even if Grassmann’s presentation of extensive forms is not strictly axiomatic, 
Grassmann contributed to the development of axiomatics for at least three 
reasons:

	 1.	 He gave an axiomatic presentation of natural numbers in 1861, where, 
thanks also to the collaboration with his brother Robert, specific attention 
was given not only to the propositions chosen as axioms but also to demon-
strative inferences (and in particular to which propositions are used in each 
step of the derivation).

	 2.	 He developed a purely abstract treatment of linear magnitudes that is com-
pletely independent from concrete intuition.

	 3.	 He was the source of inspiration of Giuseppe Peano, who published an ex-
plicitly axiomatic presentation of vector theory in 1888 and of arithmetic in 
1889.27

Grassmann contributed to the investigation of the abstract structure of a system 
of extensive magnitudes. He highlighted similarities and differences concerning 
the operations of different systems of mathematical forms. On top of that, he 
favored a comparison of the abstract structures of numbers with the abstract 
structures of magnitudes, individuating their main difference in dimensionality 
and in the commutativity of the product. Grassmann thus clearly contributed to 

	 27	 Shapiro himself, literally quoting Nagel (1939), acknowledges the contribution of Grassmann’s 
theory of extension as a prefiguration of “the method of implicit definition” (Shapiro 1997, 147). On 
the relation between Peano’s axiomatic vector theory and Grassmann’s extension theory see in partic-
ular Dorier (1995, 247) and Cantù (2003, 331–​338).
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the development of abstract algebra, and, if universal algebra is conceived as a 
comparative investigation of different algebras—​either to see what they have in 
common (Grätzer 1968, 7) or in connection with their interpretations in order to 
find a generalized notion of space that might serve as a uniform method of inter-
pretation of the various algebras (Whitehead [1898], 1960, v, 29)—​then he con-
tributed to the development of universal algebra too. In particular, Grassmann’s 
comparison of different structures was motivated by a foundational effort to dis-
tinguish different branches of mathematics according to the structural relations 
of their elements (§3.1.1). Yet one should remember that Grassmann did not un-
derstand algebraic systems as sets of given entities closed with respect to certain 
operations, and did not investigate classes of algebras, but only the different pos-
sible properties of operations.

If an essential condition for the development of methodological structuralism 
was the “transition from geometry as the study of physical or perceived space 
to geometry as the study of freestanding structures,” a transition that was ac-
complished through the development of analytical geometry, projective geom-
etry and non-​Euclidean geometry (Shapiro 1997, 14), Grassmann’s distinction 
between what we now call linear algebra (vector space theory in n dimensions) 
and geometry (the three-​dimensional application of the former to physical 
space) (Grassmann 1845, 297) was certainly a relevant step, even if, as is often 
said, Grassmann did not bridge the gap between the discrete and the continuous, 
at least in the sense that he never considered real numbers as an extension of the 
system of rational numbers. On the contrary, he defined real numbers as being 
themselves magnitudes, thereby emphasizing the difference between discrete 
natural numbers and continuous real numbers, and grounding ET independ-
ently from arithmetic.

4.2.  Methodological Structuralism

4.2.1. � Mathematics Is Not the “Science of Quantity”
Methodological structuralism is often associated with a criticism of the 
definition of mathematics as science of quantity and number. Grassmann 
criticizes the traditional definition of mathematics as “science of quantity 
or magnitudes” (Grössenlehre) for two reasons. First, the word Größe refers 
only to continuous magnitudes and thus does not apply to the whole of 
mathematics.

The name “theory of magnitude” is inappropriate for all mathematics, since one 
finds no use for magnitude in a substantial branch of it, namely combination 



Grassmann’s Concept Structuralism  45

theory, and even in arithmetic only in an incidental sense. (Grassmann 
1995, 24)

That Größe refers only to continuous quantities is proved linguistically:  in 
the German language vermehren and vermindern are connected to number, 
while vergrössern and verkleinern are connected to continuous quantities. 
Distinguishing what Wolff in Mathematisches Lexikon had not explicitly 
separated (Wolff translated both Latin terms magnitudo and quantitas by the 
same German word, Grösse [Cantù 2008]), Grassmann refuses to admit the re-
duction of geometry to algebra and to subsume continuous geometrical figures 
and real numbers under a single genus. Grassmann considers natural num-
bers as discrete quantities generated by repetition of a unit. Therefore the lan-
guage rightly distinguishes numbers that increase or decrease from continuous 
magnitudes (including real numbers) that become bigger or smaller.

Second, the word Größe fails to express the main characteristic of mathe-
matical objects, that is, that they are not given but generated according to a 
rule (§3.1.1). It is only in this second sense that Grassmann’s remarks might be 
interpreted as having some relationship to structuralist approaches.

4.2.2. � Mathematics Is Not about “Objects” but about Relations
A second fundamental feature of methodological structuralism is that mathe-
matics is not about objects but about relations, or at least about objects only in-
asmuch as they are positions in a structure. Recalling what we have said about 
mathematics as the science of the particular, and especially about the role of the 
initial element in the “real” generation of mathematical abstract forms, it seems 
implausible to associate Grassmann with the conception of mathematics as the 
science of relations, notwithstanding Cassirer’s and Hankel’s tendency to do it. 
A further argument against this assimilation might come from some remarks 
by Banks, who insists on Grassmann’s belonging to a German tradition that 
was interested in the development of a physical monadology in a Leibnizian 
sense (Banks 2013, 20–​21), or the investigations by Brigaglia, who considers 
Grassmann to be the inspiring source for Segre’s generalization of the notion of 
point (Brigaglia 1996, 159–​160).

Yet there might be reasons to claim that, even if Grassmann’s mathematics 
cannot be considered, sensu stricto, a science of relations, it might be an interme-
diate step between the traditional conception of mathematics and a structuralist 
approach. Such reasons are his constructivism and his consideration of opera-
tions as corresponding to pre-​mathematical operations that can be applied to 
any kind of domain. Grassmann’s constructivism is based on the idea that forms 
are the results of processes of connection, which construct or generate them, so 
that, in a dialectical perspective inherited from Schleiermacher, forms cannot 
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really be distinguished from the process of their construction, and thus from the 
operations that occur in their concept formation and that determine their rela-
tions to other forms.

4.2.3. � Mathematics Is the Study of “Relational Systems”
A third feature of methodological structuralism is the idea that mathematics 
investigates different “relational” systems, such as number systems, geometrical 
manifolds, various algebras, and so on. Again, Grassmann’s separation between 
GTF, the specific branches of pure mathematics, and applied mathematics make 
it difficult to compare this approach to methodological structuralism. Certainly, 
he did not deeply investigate order relations, and he had a quite intuitive notion 
of continuous transformation. On the other hand, the effort to introduce a parti-
tion of mathematics that is based on different properties of the operations—​an ef-
fort that became systematic especially in Robert’s Formenlehre—​or Grassmann’s 
abstract analysis of different kinds of formal multiplications and their possible 
“realizations” in mathematical theories (Grassmann 1855, 216–​217) can be con-
sidered a step toward the development of the project of a systematic investigation 
of relational systems.

4.2.4. � Mathematics Is Not “Directly about the World”
There is at least one feature of methodological structuralism that Grassmann en-
tirely subscribed to: it is the separation between pure and applied mathematics, 
which implies that mathematics is about abstract forms, and thus is not about the 
external world, or, in Grassmann’s parlance, is not about a given that is not itself 
constructed by thought.

4.2.5. � Mathematical Inferences Are “Formal”
A further feature of methodological structuralism is based on the idea that 
deductions are merely formal. Grassmann explicitly recognized that mathemat-
ical inferences are independent of intuition in the sense that primitive propos-
itions can be conceived purely conceptually and that the only general logic law 
is the law of progression. Even if he admitted a relevant role of intuition as a 
heuristic tool, he never conceded that it should play a role in deductions. Yet 
Engel criticized Grassmann exactly because he did not manage to fulfill his pro-
ject, maintaining an intuitive and unclear notion of continuous transformation 
(Grassmann 1844, 405). But this again is a controversial issue: Lawvere claims on 
the contrary that Grassmann’s continuous transformation is unclear if wrongly 
conceived as a spatial translation, but that it becomes philosophically clear if it is 
understood as an action of the additive monoid of time.28

	 28	 “Grassmann philosophically motivated a notion of a ‘simple law of change,’ but his editors in the 
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4.2.6. � Mathematics Goes toward Set Theory or Category Theory
If either set theory or category theory is a necessary condition for the develop-
ment of methodological structuralism (an exception made, maybe, for Hellman’s 
modal structuralism), then one should note that Grassmann did not contribute 
to the development of a theory of sets. On the contrary, his notion of product is 
incompatible with the modern understanding of a function, and his construc-
tivism is incompatible with a set-​theoretic perspective, where operations are de-
fined on previously given sets of individuals (Cantù 2011, 2016). Grassmann did 
not contribute to the theory of category either, from a strict mathematical point 
of view, but Lawvere considers that category theory makes it “possible to recover 
some of Grassmann’s insights and to express these in ways comprehensible to the 
modern geometer,” and claims that Grassmann can be considered as precursor of 
category theory (Lawvere 1996, 255–​256).

4.2.7. � Mathematics Is Based on Some Kind of Axioms
We have seen that Grassmann did not present ET in an axiomatic way, at least not 
in a Hilbertian sense. But he considered mathematics to be based on concepts, 
because he deduced the differences between mathematical disciplines and math-
ematical forms by means of four fundamental concepts: equal, different, discrete, 
and continuous. And there is another sense in which GTF is based on some ge-
neral conditions upon which a real operation might be called an addition or a 
multiplication (see §2.3.1). Finally, mathematics, being a formal science, does 
not have axioms in a traditional sense, but definitions. Yet the treatment of ET is 
not presented axiomatically, and GTF rather describes the operational features 
common to all operations that can be found in known mathematical disciplines, 
rather than an axiomatic description of algebraic structures.

4.2.8. � Mathematics Studies Invariants
Structuralism is often associated to the investigation of invariant properties of 
different systems. GTF can be interpreted as a unifying perspective that studies 
what is invariant in different mathematical operations. Yet, as we have repeated 
many times, it is not a branch of mathematics. Some authors have tried to show 
that, even if Grassmann did not himself develop a comparison and classifica-
tion of different mathematical systems by means of groups, his remarks on affine 
geometry influenced Klein’s Erlangen program (see Engel 1911, 312, quoted in 
Toebies 1996, 120–​122). Yet this is controversial, given that it has been argued 

1890’s found this notion incoherent and decided he must have meant mere translations. However, 
translations are insufficient for the foundational task of deciding when two formal products are geo-
metrically equal axial vectors. But if ‘law of change’ is understood as an action of the additive monoid 
of time, ‘simple’ turns out to mean that the action is internal to the category A [of affine-​linear spaces 
and maps] at hand” (Lawvere 1996, 255).
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that Klein took his inspiration from Riemann and from projective geometry 
rather than from Grassmann and affine geometry (Rowe 2010, 142). Besides, 
Kannenberg has claimed that even if Grassmann individuated the group of 
circular and linear transformations starting from an analysis of different side 
conditions for the multiplication of extensive magnitudes, “the relation between 
groups and ‘species of multiplication’ is not reciprocal” (Grassmann 1995, 469).

To resume, Grassmann’s GTF, which corresponds to the level of formal laws, 
is not part of mathematics, because it is underdetermined:  it does not speak 
about a specific structure or a class of structures, but rather about the possible 
ingredients of a structure, being thus more similar to a metatheory of abstract 
structures. Grassmann’s arithmetic contains just one kind of multiplication, 
whereas Grassmann’s ET (the level of abstract content) concerns several kinds 
of multiplication, which can be fully determined only by further side conditions.

4.3.  Philosophical Structuralism

In an earlier section of my chapter (see §3), I  have tried to reconstruct 
Grassmann’s conception from a perspective internal to his writings and to the 
spirit of his time. Now I will try to look at Grassmann’s philosophy of mathe-
matics from the present perspective, and thus look at some of the questions 
raised by Grassmann in the light of contemporary philosophical structuralism.

4.3.1. � Grassmann’s Claims on Structures
Even if Grassmann never used the term “structure” himself, I suggest that he 
might have agreed that (1) mathematical objects are characterized by structural 
properties; (2) structures are not given axiomatically; (3) general structures are 
distinguished from particular structures and from exemplars; (4) there is an in-
terdependence between a structure and its objects, and (5) pre-​mathematical op-
erations between concepts are distinguished from operations in structures.

	 1.	 Mathematical objects are characterized by means of their relations and op-
erations and by the relations between such operations (i.e., by structural 
properties). Structures are not themselves mathematical forms, because 
mathematical structures are universals, whereas mathematical forms, al-
though being themselves concepts, are particulars.

	 2.	 Structures are not given axiomatically (construction versus postulation), 
and certainly not defined as in model theory by means of a domain and 
some relations and operations on it.

	 3.	 GTF is the study of relations and operations and concerns what we now 
call general structures (monoids, groups, rings). Mathematics is the study 



Grassmann’s Concept Structuralism  49

of particular thought forms and concerns what we would now call partic-
ular structures. Applications of mathematics study particulars considered 
as given independently from thought and concern the investigation of 
exemplars of particular structures.

	 4.	 There is a dialectic between general structures, particular structures, and 
their exemplars, which allows further determination of mathematical 
forms as well as their relational properties. General structures do not exist 
independently from particular structures. Particular structures both deter-
mine and are determined by their objects. The distinction between GTF and 
mathematics concerns the question of the interdependence between rela-
tion and relata. In formal operations the operation might stand without its 
factors, whereas in mathematics it cannot. GTF is a sort of metatheoretical 
discourse on mathematical operations rather than itself a theory having 
mathematical structures as its objects.

	 5.	 There are some pre-​mathematical relations and operations (equality, con-
nection, and separation) that express some general operations of com-
position of concepts. They have some very general properties, such as 
substitutivity, commutativity and distributivity respectively. They are 
underdetermined with respect to mathematical operations, which have 
further properties: for example, the properties of the additive operation in 
an abelian group, or of the additive and multiplicative operations in a ring.

4.3.2. � Grassmann’s Claims Evaluated from the Perspective 
of Contemporary Philosophical Structuralism

If one evaluates the previous claims from the perspective of contemporary philo-
sophical structuralism, one might remark that (1) there are no structures as uni-
versal objects in Grassmann; (2) there is no set-​theoretic approach in Grassmann, 
(3) Isaacson’s distinction between general and particular structures might apply 
to Grassmann’s distinction between ET and arithmetic, (4) Grassmann’s episte-
mology might be fruitfully compared to Parsons’s non-​eliminative structuralism 
as well as to (5) Feferman’s conceptualism.

	 1.	 No universals: Grassmann’s epistemology suggests the need for a construc-
tivist alternative to the ante rem /​ in re ontology, an alternative that might 
speak about structures without considering them as mathematical objects, 
and especially not as universals.

Grassmann certainly had an ontological perspective, at least in the sense that he 
was an idealist and a constructivist: mathematical forms have an objective na-
ture. All products of thought processes become objective in the moment of their 
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construction, and can thus be successively taken as given (Grassmann 1844, 22). 
For this objective nature of thought forms, it is certainly not easy to associate 
Grassmann with an eliminative (nominalistic) position à la Hellmann (1990). 
Nor does it seem possible to consider thought forms as in re universals (as in 
Shapiro’s account of eliminative structuralism [1997, 9]).

Yet the question about Grassmann’s structuralism can be asked once more at 
another level, that is, at the level of GTF. Grassmann could be associated with an 
eliminative approach at this level, because there are no such things as the objects 
of a general structure. General structures are not the genus of which spaces, 
number systems, and so forth are species (Burgess 2015, 107–​108), but are based 
on underdetermined concepts that get their full determination once applied to 
particulars, and it is this very application that makes further side conditions ex-
plicit and allows for the determinateness that is needed to treat something as an 
object of mathematics.

	 2.	 No set-​theoretic notion of structure: a preliminary objection might con-
cern the anachronism of applying a philosophical perspective that is 
grounded on different notions of function, object, and concept. According 
to Grassmann, operations are not closed on a domain, either because the 
domain might be considered variable (in mathematics) or because the op-
erations might be considered independently from their factors or from a 
domain on which the factors should vary.

The main problem in the case of Grassmann is to exactly determine what he 
might mean by “structure.” Whereas the model-​theoretic notion of structure is 
based on a domain (a set) to which the operation is applied (and the definition of 
the structure concerns this domain, at least inasmuch as it has properties of clo-
sure with respect to operations), there is not even the possibility of determining 
closure properties in Grassmann’s consideration of formal operations.

	 3.	 General and particular structures (Isaacson and Shapiro):  a comparison 
with Isaacson’s structuralism is interesting in order to appreciate another 
aspect of Grassmann’s structuralism: the distinction between formal and 
real operations. Isaacson’s structuralism is antithetic to Grassmann’s per-
spective, at least inasmuch as it defends the existence of structures but 
not of mathematical objects (structures themselves are not mathematical 
objects), and he centers his perspective on axiomatic postulation rather 
than on construction.

Isaacson distinguishes between general and particular structures. The distinction 
is derived from the way we linguistically refer to them, either by the determinate 
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article (the structure of natural numbers) or by the indeterminate article (a 
group) (Isaacson 2011, 2–​3, 18). Isaacson remarks that Bourbaki believed that 
the mathematical interest was mainly on the side of general structures, and 
Grassmann might agree on that point.

Yet, according to Isaacson, the philosophical interest is all on the side of par-
ticular structures, because structuralist realism concerns the existence of partic-
ular structures. This might be related, I think, to Grassmann’s choice to consider 
GTF as not properly belonging to mathematics: it concerns general and not par-
ticular structures. Besides, Isaacson notes that particular structures can them-
selves be classified into abstract and concrete structures (type and tokens), being 
in the relation one-​many. This might correspond to Grassmann’s distinction be-
tween vector space theory and 3-​dimensional geometry, or between the abstract 
real level and the level of applications.

Shapiro had introduced a distinction between “algebraic” and “non-​algebraic” 
fields of mathematics, that is, between mathematical subdisciplines that concern 
a class of structures or a single structure respectively.29 Even if one might claim 
that algebraic fields are about general structures, whereas non-​algebraic fields 
are about particular structures, the use of Shapiro’s distinction is problematic, 
because it does not do justice to Grassmann’s idea that all mathematical fields are 
about particular structures. It is only GTF that concerns general structures. This 
is an important aspect of what we might call Grassmann’s concept structuralism, 
as opposed to an object structuralism, which requires a complete determinate-
ness of the objects and therefore an identity criterion.30 And this might explain 
why Grassmann would probably disagree with the idea (shared, e.g., by Isaacson 

	 29	 See Shapiro (1997, 40–​41). The distinction made by Grassmann between arithmetic and ET 
can be compared with Shapiro’s distinction between non-​algebraic (e.g., arithmetic and analysis) 
and algebraic fields (e.g., group theory, field theory, or topology, which are about a class of related 
structures).
	 30	 More should be said on this notion of “concept structuralism,” but this would require a new 
article. For the sake of the understanding of Grassmann’s perspective, it might suffice to say what 
concept structuralism is not, and how it is related to a dynamic process of mathematical determina-
tion of pre-​theoretical notions. (1) Concept structuralism is not a historical tradition like “conceptual 
mathematics” (see, e.g., Stein 1988 and Ferreirós 2007). (2) Concept structuralism is not necessarily 
characterized as a weak form of Platonism (see, e.g., Ferreirós’s effort to define conceptual structur-
alism as a version of weak Platonism, suggesting that structures exist as abstract entities but are not 
necessarily independent from the mathematician). Structures are conceptual tools that describe ge-
neral properties of the operations among particular entities. In a proper sense, only the particulars 
can be said to exist as fully determined objects. (3) Concept structuralism is based on the idea that 
mathematics is a dynamic process that tries to further determine some pre-​theoretic notions, e.g., by 
considering the algebraic closure of an underdetermined operation, so that mathematical objectivity 
is ultimately grounded in processes of concept formation. I would like to thank José Ferreirós for the 
rich discussion we had on the topic, and for the useful insights I got from the reading of his essay on 
mathematical practices (Ferreirós 2016), and his unpublished manuscript on Feferman’s conceptu-
alism (Ferreirós 2018).
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and Shapiro) that the philosophical problem consists in accounting only for the 
existence of particular structures.

Another interesting point is Isaacson’s remark that there cannot be objects 
without particularity and without an identity criterion: therefore Shapiro has a 
problem when he pretends to speak about the objects of a structure (as is proved 
by Keranen’s objections). I  take Isaacson’s remark to suggest that whenever 
structures are introduced axiomatically (or by postulation), then one cannot talk 
about mathematical objects of these structures, because no identity criteria are 
available. Grassmann avoids introducing vector space systems by postulation, 
exactly because he believes that they concern mathematical forms whose con-
struction is determined by their generating laws, which also allow for identity 
criteria. Construction rather than postulation has for Grassmann a foundational 
value. This position is again antithetic to the position of Isaacson, who believes 
that only postulation has foundational value, and that construction was funda-
mental only in the logicist perspective, because the construction should prove 
the logical nature of mathematical concepts.

	 4.	 Parsons’s non-​eliminative structuralism:  Grassmann’s approach can be 
interestingly compared with Parsons’s version of non-​eliminative struc-
turalism.31 Mathematical objects are taken to be particular forms (e.g., 
numbers, extensive magnitudes, etc.). Neither formal operations nor 
structures themselves seem to be considered mathematical objects, be-
cause they appear in GTF as underdetermined, devoid of an identity 
criterion, which on the contrary seems to be a necessary condition for 
something to be an object (Isaacson 2011). Talk about formal operations 
is rather metatheoretic, and general structures (in Grassmann’s sense) 
are not even deficient-​property objects (Burgess 2015), because they are 
not structures whose elements have no individual nature, but rather a 
bunch of operations considered independently from their “application” 
to particulars. There is a dialectic between particular structures and their 
exemplars, as in the case of the geometric analogy that guides the develop-
ment of Grassmann’s ET. Similarly, Parsons considers structures to be not 

	 31	 A general classification of all kinds of contemporary variants of structuralism is not available, 
and various terminologies conflict one with the other. I will adopt Parsons’s terminology, and distin-
guish eliminative from non-​eliminative structuralism: “Eliminative structuralism . . . proposes some 
procedure for paraphrasing the language that refers to the objects we are concerned with, usually 
either the numbers of one of the number systems, or sets, so that commitment to the objects con-
cerned, even the conception of them as a distinctive kind of object, disappears. . . . [Non-​eliminative 
structuralism] takes the ideas behind structuralism not as the basis for a program for eliminating 
numbers, sets and other pure mathematical objects, but rather as the basis for an account of them as 
objects, as the objects which theories of numbers and sets talk about when taken more or less naïvely” 
(Parsons 2004, 57).
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free-​standing but connected to instantiations developed in mathematical 
practice. Grassmann’s vector space theory is presented in a purely abstract 
way in the first edition of the Ausdehnungslehre, but a geometric analogy 
guides the development of ET. This dialectic between the particular struc-
ture and one of its exemplars suggests a comparison with Parsons’s claim 
that talking about mathematical objects is legitimate in structuralism, even 
if their identity criteria cannot be established exclusively by means of struc-
tural properties, but require some reference to extra-​structural properties.

Grassmann similarly believes that it is possible to talk both about operations that 
are only partially determined and about operations that are fully determined in 
some particular structure or in an exemplar of it. This is legitimate, because, ac-
cording to Parsons, structures are not free-​standing but are somehow connected 
to instantiations developed in mathematical practice.

With Parsons, Grassmann would agree that mathematical objects such as nat-
ural numbers are usually given in a realization of the structure, and that “some 
mutual dependence in understanding what the objects of a domain are and what 
their most important properties and relations are” need not be circular (Parsons 
2004, 73). I suggest that Grassmann would understand in a dialectical way the 
relation between the so-​called intended model and the axiomatic formulation of 
a structure.

Grassmann’s perspective cannot be compared with Parsons’s Quinean ap-
proach, according to which “speaking of objects just is using the linguistic 
devices of singular terms, predication, identity, and quantification to make se-
rious statements” (Parsons 1982, 497). Yet I think Grassmann shares what I take 
to be a presupposition of Parsons’s structuralism: the possibility of talking both 
about objects that are only partially determined (e.g., determined only by their 
structural properties, even when this does not allow us to distinguish objects in 
the structure, as might be the case for i and −i in the structure of the complex 
numbers) and about objects that are fully determined in some instantiation of 
the structure (where one might have identity criteria or knowledge of specific 
relations between the objects).

	 5.	 Feferman’s conceptualism:  Feferman’s conceptual structuralism is based 
on the belief that the general ideas of order, succession, collection, rela-
tion, rule, and operation are pre-​mathematical. Likewise, Grassmann’s 
conceptual constructivism distinguishes pre-​mathematical operations be-
tween concepts (some general notions of composition) from mathematical 
operations.
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 According to Feferman, the basic objects of mathematical thought exist only 
as abstract mental conceptions resulting from processes that are independent of 
the concrete objects to which they are applied, and based on pre-​mathematical 
concepts such as relations, rules. and operations (Feferman 2009). Grassmann 
might substantially agree on several of Feferman’s 10 theses that characterize his 
version of conceptual structuralism.32

As in Feferman’s version of conceptual structuralism, mathematics does not 
concern only universal or relational concepts, but also particular concepts con-
sidered as autonomous thought forms. The focus is on the procedures of concept 
formation.

4.3.3. � Grassmann’s Challenges to Contemporary Structuralism
The comparison between Grassmann’s epistemology and contemporary phil-
osophical structuralism can be used both to better understand Grassmann’s 
philosophy and to consider whether new challenges might derive from his “ob-
solete” perspective.

Grassmann certainly contributed to the development of methodological 
structuralism. He criticized the traditional definition of mathematics as a science 
of magnitudes, and even if he still associated it with particular thought forms, 
he considered the latter to be determined by their generating law applied to an 
initial element. Grassmann clearly separated pure from applied mathematics, 
and developed a formal analysis of certain properties of connections that can be 
found in all mathematical branches. Even if, sensu stricto, he did not axiomatize 
mathematics, he individuated certain side conditions of the general connections 
that can be considered as invariant under specific kinds of transformations.

From a philosophical perspective, Grassmann’s general theory of forms and 
the general definition of multiplication that occurs in ET can be interestingly 
compared to a non-​eliminative structuralism associated with a constructivist 
ontology, as for example Parsons’s or Feferman’s structuralism. With the latter 
Grassmann would share the idea that the basic objects of mathematical thought 
exist only as abstract mental conceptions resulting from processes that are in-
dependent of the concrete objects to which they are applied, and based on pre-​
mathematical concepts such as relations, rules, and operations (Feferman 2009). 
With the former Grassmann would share the idea that mathematical forms (in-
cluding numbers and extensive magnitudes) are the objects that mathematics 
talks about (Parsons 2004, 57).

Even if most questions related to the development of philosophical struc-
turalism, such as Benacerraf ’s dilemma on natural numbers, cannot really be 

	 32	 See in particular Feferman’s theses 1, 2, 3, 8, and 9 (2009, 3).
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compared with Grassmann’s pre-​set-​theoretic approach, the epistemological 
challenge is taken into account in his constructivism. So Grassmann’s most in-
teresting contributions to contemporary structuralism might be seen in several 
challenges: (a) find a constructivist alternative to the ante rem /​ in re ontology, (b) 
verify whether a form of conceptualism might explain how mathematicians talk 
about structures without wholly abstracting from their instantiations, (c) con-
sider the foundational role of series in mathematical and scientific thought, (d) 
develop an investigation of the differences between what we have called concept 
structuralism and object structuralism.
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