2022

CHEMISTRY

[Honours]

B.Sc. Second Semester End Examination - 2022
PAPER - C3T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

Answer any five questions:-

 $5 \times 2 = 10$

- 1. (a) Between MgSO₄ and BaSO₄ which one is soluble in water and why?
 - (b) Write down two fundamental differences between nuclear reaction and chemical reaction.
 - (c) What is meant by Mirror nuclei? Give example.

(Turn Over)

- (d) The half life of a radio element is 231 mins. How long will it take for 9/10th fraction of the radio element to deeay?
- (e) BaO is 2000 times more soluble in water than MgO. Explain.
- (f) Draw the structure of ICl, (+) using VBT.
- (g) Compare the stability of H₂ molecule relative to H₂⁺ and H₃ species.
- (h) Neculear fission products of 235 U are always $\beta^{(-)}$ active. Explain.

Group - B

Answer any four questions

4×5=20

- (a) Which of the following nucliedes are electron emitter and which are positron emitters? Give reasons for your choice.
 - C14, P30, He6, Na22, F19
- 3 (a) Draw the M.O. diagram of HCl indicating bonding, non-bonding and antibonding electron present. 3

although Mg²⁺, O²⁻, Na⁺ F⁻ ions are isoelectronic. 2

(b) MgO is harder and has higher melting point than NaF,

- 4. (a) What do you understand by magic numbers? Can you cite evidence in its favour from the binding energy curve?
 - (b) ZnO is white when cold but yellow when hot. 2
- (a) Write the relation between half-life and average life of a radio element.
 - (b) Unlike CO, isoelectronic N₂ molecule is unreactive at normal condition. Explain.
- 6. (a) What is meant by "ion deformation". Applying Fajan's rule, how will you determine whether a compound is covalent or not?
- 7. (a) Bond angles in F₂O and Cl₂O are 105° and 111° respectively. Explain.
 - (b) How can you account for the forces binding the nucleus on the basis of meson particles?

 3

B.Sc. RNLKWC(A)-/Chemistry/C3T/22

(Continued)

B.Sc. RNLKWC(A)-/Chemistry/C3T/22

(Turn Over)

Group - C

Answer any one question.

 $1 \times 10 = 10$

- 8. (a) What is spallation and how does it differ from fission?

 3
 - (b) A sample of ${}^{90}\text{Sr}_{38}$ (t_{1/2}=19.9 yrs) originally had an activity of 0.5 millicurie. Calculate— 2+2
 - (i) specific activity of the sample.
 - (ii) activity of the sample after 30 years.
 - (c) Discuss the bonding in B₂ molecule in the light of M.O. theory and hence explain its magnetic behaviour.

3

 (a) Draw the Born-Haber cycle for the formation for Pottassium hydride. Hence find the electron affinity of hydrogen atom using the following data given kj/mole.

2+4

Heat of submilation of Potassium metal= 83 kj mol⁻¹ First ionisation energy of Potassium = 417 kj mol⁻¹ Bond dissociation energy of hydrogen molecule =436 kj mol⁻¹

B.Sc. RNLKWC(A)-/Chemistry/C3T/22

(Continued)

Lattice energy of Potassium hydride = -742 kj/mol⁻¹ Heat of formation of Potassium hydride=-59 kj/mol⁻¹

- (b) Explain why the conductivity of Ge is enhanced many folds when trace amount of As is added to it. 2
- (c) The ${}^{14}\text{C}$ to ${}^{12}\text{C}$ ratio in a piece of wood is 19% of that of the atmosphere. Calculate the age of the piece of wood. ($t_{1/2}$ of ${}^{14}\text{C}$ =5679 years)

B.Sc. RNLKWC(A)-/Chemistry/C3T/22