Total	Pages-	03
-------	--------	----

RNLKWC/B.Sc./CBCS/IIS/MTMHC201/22

2022

Mathematics

[Honours]

(B.Sc. Second Semester End Examination-2022) PAPER-MTMH C201

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

(Group Theory - I) F.M. - 37

1. Answer any six questions:

6x2 = 12

- a) Let (G,*) be a group and $a,b \in G$. If $a^2 = e$ and $a*b^2*a = b^3$ then prove that $b^5 = e$.
- b) Find the number of generators of additive group $(Z_{36},+)$
- c) Find the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 1 & 3 & 2 & 8 & 6 & 7 \end{pmatrix}$.
- d) Define quasigroup and examine if (Z, \bullet) is a quasigroup or not.
- e) Let $S = \{a_1, a_2, \dots, a_n\}$. How many binary operations can be defined on S?

- f) If the set $\{1, x, y\}$ forms multiplicative group then show that $(xy)^{-1} = xy$ and $x^3 = y^3 = 1$
- g) Prove that each element of a finite group is of finite order.
- h) For what condition union of two subgroups of a group G is a subgroup of G? Justify.
- i) Let G be a group and $a \in G$. Find the $o(a^8)$ if o(a) = 17

2. Answer any six questions:

3x5 = 15

- a) Prove that the order of every subgroup of a finite group G is a divisor of the order of G. Is the converse true? Justify.
- b) i) If (G,o) be a group in which $(aob)^3 = a^3ob^3$ and $(aob)^5 = a^5ob^5$ for all $a,b \in G$. Prove that the group (G,o) is an abelian.
 - ii) Let (G,o) be a finite abelian group with elements a_1, a_2, \dots, a_n and $x = a_1 = a_1 o a_2 o \dots o a_n$ Show that xox = e
- c) Show that A_3 the set of all even permutation of $\{1,2,3\}$ is a cycle group with respect of product of permutations. Is it Commutative? Answer with reason.
- d) Let (G,0) be a group and $a \in G$. Prove that Z(G) the centre of the group is subgroup of the C(a), the eentraliser of a.

If there exists an element a in G such that C(a) = Z(G), Prove that (G,o) is commutative group.

- e) i) Prove that all proper subgroup of order 8 is commutative.
 - ii) Find all subgroup of A_3

3. Answer any one questions:

1x10 = 10

- a) i) Let G be a group of order 15. A and B are two subgroups of order 3 and 5 respectively. Prove that G=AB
 - ii) Prove that set of all complex numbers of unit modulus forms a commutative group with respect to multiplication.
- b) i) Let $S = \{1., w, w^2, -1, -w, -w^2\}$ where $w = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$,

 Prove that S is cyclic group under multiplication. Find the generators of the cyclic group.
 - ii) Let G be a infinite cyclic group generated by a. Prove that a and a^{-1} are the only generated of the group.

Group-B

(Vector Analysis - I)

F.M. - 23

1. Answer any four questions:

4x2 = 8

a) If
$$\frac{d^2r}{dt^2} = 6t\hat{i} - 24t^2\hat{j} + 4\sin\hat{k}$$
 and if $\vec{r} = 2\hat{i} + \hat{j}$ and $\frac{d\vec{r}}{dt} = -\hat{i} - 3\hat{k}$
when $t = 0$ then show that $\vec{r} = (t^3 - t + 2)\hat{i} + (1 - 2t^4)\hat{j} + (t - 4\sin t)\hat{k}$

- b) Find the vector \vec{x} from the equation $\vec{x} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{x} \cdot \vec{a} = 0$ where $\vec{a} \cdot \vec{b} \neq 0$. In particular, if $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + \hat{j} + 3\hat{k}$ then find \vec{x}
- c) Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of $2\hat{i} \hat{j} 2\hat{k}$
- d) Find the equation of the tangent plane to the surface xyz = 4 at the point (1, 2, 2)
- e) Find constants a, b, c so that the vector $\vec{v} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k}$ is irrotational.
- f) Find the vector equation of the straight line passing through the point having position vector $\hat{i} 2\hat{j} + \hat{k}$ and perpendicular to the vector $2\hat{i} + \hat{j} \hat{k}$ and $\hat{i} 2\hat{j} + \hat{k}$

2. Answer any one question out of two:

1x5 = 5

- a) i) Find the shortest distance between the times $\vec{r} = (2 \lambda)\hat{i} + (\lambda 3)\hat{j} + (5 3\lambda)$ $\vec{r} = (\mu + 2)\hat{i} + (3\mu 2)\hat{j} (3\mu + 2)\hat{k}$
 - ii) If $\vec{r} = 2\hat{i} \hat{j} + 2\hat{k}$ when t = 2 and $\vec{r} = 4\hat{i} 2\hat{j} + 3\hat{k}$ when t = 3then show that $\int_{2}^{3} \left(\vec{r} \cdot \frac{d\vec{r}}{dt}\right) dt = 10$

b) If \hat{e}_1 and \hat{e}_2 be two unit vectors and θ be the angle between their directions, show that $2\sin\frac{\theta}{2} = |\hat{e}_1 - \hat{e}_2|$

3. Answer any one question:

1x10 = 10

- a) i) Necessary and sufficient condition that a proper vector \vec{u} always remains parallel to a fixed line i.e. to have a constant direction is $\vec{u} \times \frac{d\vec{u}}{dt} = 0$
 - ii) Show that the lines $\vec{r} = \vec{a} + t(\vec{b} \times \vec{c})$ and $\vec{r} = \vec{b} + s(\vec{c} \times \vec{a})$ will intersect if $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$
 - iii) Show that the solution of the eqn^n $k\vec{r} + r \times \vec{a} = \vec{b}$ where k is a non-zero scalar and \vec{a} and \vec{b} are two vectors, then the representation of $\vec{r} = \frac{1}{k^2 + a^2} \left(\frac{\vec{a} \cdot \vec{b}}{k} \vec{a} + k\vec{b} + \vec{a} \times \vec{b} \right)$ 4+3+3
 - b) i) Find the volume of the parallelepiped whose three concurrent edges are represented by $\vec{a} = 3\hat{i} 5\hat{j} 4\hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} 2\hat{k}$, $\vec{c} = 3\hat{i} + \hat{j} 2\hat{k}$
 - ii) State Lami's theorem
 - iii) Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar potential. 5+1+4