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A key ingredient in learning mathematics is problem solving. This is the strength, and no doubt
the reason for the longevity of Professor Spiegel’s advanced calculus. His collection of solved
and unsolved problems remains a part of this second edition.

Advanced calculus is not a single theory. However, the various sub-theories, including
vector analysis, infinite series, and special functions, have in common a dependency on the
fundamental notions of the calculus. An important objective of this second edition has been to
modernize terminology and concepts, so that the interrelationships become clearer. For exam-
ple, in keeping with present usage fuctions of a real variable are automatically single valued;
differentials are defined as linear functions, and the universal character of vector notation and
theory are given greater emphasis. Further explanations have been included and, on occasion,
the appropriate terminology to support them.

The order of chapters is modestly rearranged to provide what may be a more logical
structure.

A brief introduction is provided for most chapters. Occasionally, a historical note is
included; however, for the most part the purpose of the introductions is to orient the reader
to the content of the chapters.

I thank the staff of McGraw-Hill. Former editor, Glenn Mott, suggested that I take on the
project. Peter McCurdy guided me in the process. Barbara Gilson, Jennifer Chong, and
Elizabeth Shannon made valuable contributions to the finished product. Joanne Slike and
Maureen Walker accomplished the very difficult task of combining the old with the new
and, in the process, corrected my errors. The reviewer, Glenn Ledder, was especially helpful
in the choice of material and with comments on various topics.

RoOBERT C. WREDE
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Numbers

Mathematics has its own language with numbers as the alphabet. The language is given structure
with the aid of connective symbols, rules of operation, and a rigorous mode of thought (logic). These
concepts, which previously were explored in elementary mathematics courses such as geometry, algebra,
and calculus, are reviewed in the following paragraphs.

SETS

Fundamental in mathematics is the concept of a set, class, or collection of objects having specified
characteristics. For example, we speak of the set of all university professors, the set of all letters
A,B,C,D,...,Z of the English alphabet, and so on. The individual objects of the set are called
members or elements. Any part of a set is called a subset of the given set, e.g., A, B, C is a subset of
A,B,C,D,...,Z. The set consisting of no elements is called the empty set or null set.

REAL NUMBERS

The following types of numbers are already familiar to the student:

1. Natural numbers 1,2, 3,4, ..., also called positive integers, are used in counting members of a
set. The symbols varied with the times, e.g., the Romans used I, II, III, IV, . . . Thesuma+ b
and product a - b or ab of any two natural numbers « and b is also a natural number. This is
often expressed by saying that the set of natural numbers is closed under the operations of
addition and multiplication, or satisfies the closure property with respect to these operations.

2. Negative integers and zero denoted by —1, —2, —3, ... and 0, respectively, arose to permit solu-
tions of equations such as x + b = a, where @ and b are any natural numbers. This leads to the
operation of subtraction, or inverse of addition, and we write x = a — b.

The set of positive and negative integers and zero is called the set of integers.

3. Rational numbers or fractions such as %, —%, .. . arose to permit solutions of equations such as

bx = a for all integers « and b, where b # 0. This leads to the operation of division, or inverse of

multiplication, and we write x = a/b or a + b where a is the numerator and b the denominator.
The set of integers is a subset of the rational numbers, since integers correspond to rational

numbers where b = 1.

4. Trrational numbers such as /2 and 7 are numbers which are not rational, i.c., they cannot be
expressed as a/b (called the quotient of a and b), where a and b are integers and b # 0.
The set of rational and irrational numbers is called the set of real numbers.

1
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2 NUMBERS [CHAP. 1

DECIMAL REPRESENTATION OF REAL NUMBERS

Any real number can be expressed in decimal form, e.g., 17/10=1.7, 9/100 = 0.09,
1/6 =0.16666.... In the case of a rational number the decimal exapnsion either terminates, or if it
does not terminate, one or a group of digits in the expansion will ultimately repeat, as for example, in
%: 0.142857 142857 142. ... In the case of an irrational number such as /2 =141423... or
7 = 3.14159 ... no such repetition can occur. We can always consider a decimal expansion as unending,
e.g., 1.375 is the same as 1.37500000 . . . or 1.3749999 . ... To indicate recurring decimals we some-

The decimal system uses the ten digits 0,1,2,...,9. (These symbols were the gift of the Hindus.
They were in use in India by 600 A.D. and then in ensuing centuries were transmitted to the western world
by Arab traders.) It is possible to design number systems with fewer or more digits, e.g. the binary
system uses only two digits 0 and 1 (see Problems 32 and 33).

GEOMETRIC REPRESENTATION OF REAL NUMBERS

The geometric representation of real numbers as points on a line called the real axis, as in the figure
below, is also well known to the student. For each real number there corresponds one and only one
point on the line and conversely, i.c., there is a one-to-one (see Fig. 1-1) correspondence between the set of
real numbers and the set of points on the line. Because of this we often use point and number

interchangeably.
- \ _
P

|
t
-2

Wik

(R ¢
N L

0

Fig. 1-1

(The interchangeability of point and number is by no means self-evident; in fact, axioms supporting
the relation of geometry and numbers are necessary. The Cantor—Dedekind Theorem is fundamental.)

The set of real numbers to the right of 0 is called the set of positive numbers; the set to the left of 0 is
the set of negative numbers, while 0 itself is neither positive nor negative.

(Both the horizontal position of the line and the placement of positive and negative numbers to the
right and left, respectively, are conventions.)

Between any two rational numbers (or irrational numbers) on the line there are infinitely many
rational (and irrational) numbers. This leads us to call the set of rational (or irrational) numbers an
everywhere dense set.

OPERATIONS WITH REAL NUMBERS

If a, b, ¢ belong to the set R of real numbers, then:

1. a+ b and ab belong to R Closure law

2. a+b=b+a Commutative law of addition

3. a+(b+c)=(@+b)+c Associative law of addition

4. ab=ba Commutative law of multiplication
5. a(be) = (ab)c Associative law of multiplication
6. alb+c)=ab+ac Distributive law

7. a+0=04+a=a,1-a=a-1=a

0 is called the identity with respect to addition, 1 is called the identity with respect to multi-
plication.
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8. For any « there is a number x in R such that x +a = 0.
x is called the inverse of a with respect to addition and is denoted by —a.

9. For any a # 0 there is a number x in R such that ax = 1.
x is called the inverse of a with respect to multiplication and is denoted by a~' or 1/a.

Convention: For convenience, operations called subtraction and division are defined by
a—b=a+(-b)and §= ab™', respectively.

These enable us to operate according to the usual rules of algebra. In general any set, such as R,
whose members satisfy the above is called a field.

INEQUALITIES

If @ — b is a nonnegative number, we say that a is greater than or equal to b or b is less than or equal to
a, and write, respectively, a = b or b = a. If there is no possibility that a = b, we write a > b or b < a.
Geometrically, a > b if the point on the real axis corresponding to a lies to the right of the point
corresponding to b.

EXAMPLES. 3 <5o0r5>3; -2 < —1or—1> —2; x < 3 means that x is a real number which may be 3 or less
than 3.

If @, b, and ¢ are any given real numbers, then:

Eithera > b, a=bora<b Law of trichotomy
Ifa>band b > ¢, thena > ¢ Law of transitivity
Ifa>b,thena+c>b+c

If a > b and ¢ > 0, then ac > bc

A e

If a > b and ¢ < 0, then ac < bc

ABSOLUTE VALUE OF REAL NUMBERS

The absolute value of a real number a, denoted by |al, is defined as « if @ > 0, —a if a < 0, and 0 if
a=0.

EXAMPLES. |—5/=51+2/=2|-3|=3|-+v2/=+2,10|=0.
1. |ab| = l|al|b| or |abc...m| = |al|bl|c]|...|m|
2. la+b| £ la| + |b| orla+b+c+---+m| Zlal+ 16+ |c|+---|m|

3. la—bl z |al —1b]

The distance between any two points (real numbers) ¢ and b on the real axis is |a — b| = |b — a].

EXPONENTS AND ROOTS

The product a-a...a of a real number «a by itself p times is denoted by a”, where p is called the
exponent and a is called the base. The following rules hold:

1. a?-a? =a"™ 3. (@) =ad"
a’ a\r a’
@ _ r a\f_da
2 S=a 4. (b) -



4 NUMBERS [CHAP. 1

These and extensions to any real numbers are possible so long as division by zero is excluded. In
particular, by using 2, with p =¢ and p =0, respectively, we are lead to the definitions =1,
a¥=1/d.

If a” = N, where p is a positive integer, we call a a pth root of N written </N. There may be more
than one real pth root of N. For example, since 22 = 4 and (—2)2 = 4, there are two real square roots of
4, namely 2 and —2. For square roots it is customary to define ~/N as positive, thus +/4 = 2 and then
—/4=-2.

If p and ¢ are positive integers, we define a”/ = J/a?.

LOGARITHMS

If a” = N, p is called the logarithm of N to the base a, written p =log, N. If a and N are positive
and a # 1, there is only one real value for p. The following rules hold:

M
1. log, MN =log, M +log, N 2. logaﬁ =log, M —log, N
3. log,M" =rlog,M

In practice, two bases are used, base a = 10, and the natural base a = e = 2.71828 .... The logarithmic
systems associated with these bases are called common and natural, respectively. The common loga-
rithm system is signified by log N, i.e., the subscript 10 is not used. For natural logarithms the usual
notation is In N.

Common logarithms (base 10) traditionally have been used for computation. Their application
replaces multiplication with addition and powers with multiplication. In the age of calculators and
computers, this process is outmoded; however, common logarithms remain useful in theory and
application. For example, the Richter scale used to measure the intensity of earthquakes is a logarith-
mic scale. Natural logarithms were introduced to simplify formulas in calculus, and they remain
effective for this purpose.

AXIOMATIC FOUNDATIONS OF THE REAL NUMBER SYSTEM

The number system can be built up logically, starting from a basic set of axioms or “self-evident”
truths, usually taken from experience, such as statements 1-9, Page 2.

If we assume as given the natural numbers and the operations of addition and multiplication
(although it is possible to start even further back with the concept of sets), we find that statements 1
through 6, Page 2, with R as the set of natural numbers, hold, while 7 through 9 do not hold.

Taking 7 and 8 as additional requirements, we introduce the numbers —1, —2, =3, ... and 0. Then
by taking 9 we introduce the rational numbers.

Operations with these newly obtained numbers can be defined by adopting axioms 1 through 6,
where R is now the set of integers. These lead to proofs of statements such as (—2)(—3) = 6, —(—4) = 4,
(0)(5) = 0, and so on, which are usually taken for granted in elementary mathematics.

We can also introduce the concept of order or inequality for integers, and from these inequalities for
rational numbers.  For example, if a, b, ¢, d are positive integers, we define a/b > ¢/d if and only if
ad > bc, with similar extensions to negative integers.

Once we have the set of rational numbers and the rules of inequality concerning them, we can order
them geometrically as points on the real axis, as already indicated. We can then show that there are
points on the line which do not represent rational numbers (such as +/2, m, etc.). These irrational
numbers can be defined in various ways, one of which uses the idea of Dedekind cuts (see Problem 1.34).
From this we can show that the usual rules of algebra apply to irrational numbers and that no further
real numbers are possible.
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POINT SETS, INTERVALS

A set of points (real numbers) located on the real axis is called a one-dimensional point set.

The set of points x such that a < x < b is called a closed interval and is denoted by [a, b]. The set
a < x < b is called an open interval, denoted by (a, b). The sets a < x < b and a £ x < b, denoted by
(a, b] and [a, b), respectively, are called half open or half closed intervals.

The symbol x, which can represent any number or point of a set, is called a variable. The given
numbers « or b are called constants.

Letters were introduced to construct algebraic formulas around 1600. Not long thereafter, the
philosopher-mathematician Rene Descartes suggested that the letters at the end of the alphabet be used
to represent variables and those at the beginning to represent constants. This was such a good idea that
it remains the custom.

EXAMPLE. The set of all x such that |x| < 4, i.e., —4 < x < 4, is represented by (—4, 4), an open interval.

The set x > a can also be represented by ¢ < x < co. Such a set is called an infinite or unbounded
interval. Similarly, —oo < x < oo represents all real numbers x.

COUNTABILITY

A set is called countable or denumerable if its elements can be placed in 1-1 correspondence with the
natural numbers.

EXAMPLE. The even natural numbers 2,4, 6,8, ... is a countable set because of the 1-1 correspondence shown.

Given set 2 4 6 8
r ¢ ¢
Natural numbers 1 2 3 4

A set is infinite if it can be placed in 1-1 correspondence with a subset of itself. An infinite set which
is countable is called countable infinite.

The set of rational numbers is countable infinite, while the set of irrational numbers or all real
numbers is non-countably infinite (see Problems 1.17 through 1.20).

The number of elements in a set is called its cardinal number. A set which is countably infinite is
assigned the cardinal number X, (the Hebrew letter aleph-null). The set of real numbers (or any sets
which can be placed into 1-1 correspondence with this set) is given the cardinal number C, called the
cardinality of the continuuum.

NEIGHBORHOODS

The set of all points x such that |x — a| < § where § > 0, is called a § neighborhood of the point a.
The set of all points x such that 0 < |[x —a| <8 in which x = a is excluded, is called a deleted §
neighborhood of a or an open ball of radius § about a.

LIMIT POINTS

A limit point, point of accumulation, or cluster point of a set of numbers is a § number / such that
every deleted § neighborhood of / contains members of the set; that is, no matter how small the radius of
a ball about / there are points of the set within it. In other words for any § > 0, however small, we can
always find a member x of the set which is not equal to / but which is such that |[x —/| <§. By
considering smaller and smaller values of § we see that there must be infinitely many such values of x.

A finite set cannot have a limit point. An infinite set may or may not have a limit point. Thus the
natural numbers have no limit point while the set of rational numbers has infinitely many limit points.
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A set containing all its limit points is called a closed set. The set of rational numbers is not a closed
set since, for example, the limit point /2 is not a member of the set (Problem 1.5). However, the set of
all real numbers x such that 0 < x < 1 is a closed set.

BOUNDS

If for all numbers x of a set there is a number M such that x £ M, the set is bounded above and M is
called an upper bound. Similarly if x = m, the set is bounded below and m is called a lower bound. 1If for
all x we have m < x £ M, the set is called bounded.

If M is a number such that no member of the set is greater than M but there is at least one member
which exceeds M — € for every € > 0, then M is called the least upper bound (1.u.b.) of the set. Similarly
if no member of the set is smaller than 7 but at least one member is smaller than m + € for every € > 0,
then m is called the greatest lower bound (g.1.b.) of the set.

BOLZANO-WEIERSTRASS THEOREM

The Bolzano—Weierstrass theorem states that every bounded infinite set has at least one limit point.
A proof of this is given in Problem 2.23, Chapter 2.

ALGEBRAIC AND TRANSCENDENTAL NUMBERS

A number x which is a solution to the polynomial equation

n—2

X"+ a X" Va4 a,  x+a,=0 )

where ay # 0, a,, a», . .., a, are integers and » is a positive integer, called the degree of the equation, is
called an algebraic number. A number which cannot be expressed as a solution of any polynomial
equation with integer coefficients is called a transcendental number.

EXAMPLES. % and +/2 which are solutions of 3x — 2 = 0 and x> — 2 = 0, respectively, are algebraic numbers.

The numbers 7 and e can be shown to be transcendental numbers. Mathematicians have yet to
determine whether some numbers such as exr or e 4+ 7 are algebraic or not.

The set of algebraic numbers is a countably infinite set (see Problem 1.23), but the set of transcen-
dental numbers is non-countably infinite.

THE COMPLEX NUMBER SYSTEM

Equations such as x> 4 1 =0 have no solution within the real number system. Because these
equations were found to have a meaningful place in the mathematical structures being built, various
mathematicians of the late nineteenth and early twentieth centuries developed an extended system of
numbers in which there were solutions. The new system became known as the complex number system.
It includes the real number system as a subset.

We can consider a complex number as having the form « + bi, where a and b are real numbers called
the real and imaginary parts, and i = v/—1 is called the imaginary unit. Two complex numbers a + bi
and ¢ + di are equal if and only if « = c and » = d. We can consider real numbers as a subset of the set
of complex numbers with » = 0. The complex number 0 + 0/ corresponds to the real number 0.

The absolute value or modulus of a + bi is defined as |a + bi| = v/ a*> + b*>. The complex conjugate of
a + biis defined as a — bi. The complex conjugate of the complex number z is often indicated by z or z*.

The set of complex numbers obeys rules 1 through 9 of Page 2, and thus constitutes a field. In
performing operations with complex numbers, we can operate as in the algebra of real numbers, replac-
ing # by —1 when it occurs. Inequalities for complex numbers are not defined.
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From the point of view of an axiomatic foundation of complex numbers, it is desirable to treat a
complex number as an ordered pair (a, b) of real numbers a and b subject to certain operational rules
which turn out to be equivalent to those above. For example, we define (a, b) + (¢, d) = (a+ ¢, b+ d),
(a, b)(c, d) = (ac — bd, ad + bc), m(a, b) = (ma, mb), and so on. We then find that («, b) = a(1, 0)+
b(0, 1) and we associate this with a + bi, where i is the symbol for (0, 1).

POLAR FORM OF COMPLEX NUMBERS

If real scales are chosen on two mutually perpendicular axes X'OX and Y'OY (the x and y axes) as
in Fig. 1-2 below, we can locate any point in the plane determined by these lines by the ordered pair of
numbers (x, y) called rectangular coordinates of the point. Examples of the location of such points are
indicated by P, O, R, S, and T in Fig. 1-2.

Y
44 .
P@3.4) r
. 3+
0(-3.3)
N P(x,y)
14 P y
T(2.5,0
——— 0, ¢
X -4 -3 -2 -1 0 1 2 3 4 X b7 0 . X
1
R(72.5,71.5') o4 .
S(2,-2)
34
Y’ Yy’
Fig. 1-2 Fig. 1-3

Since a complex number x + iy can be considered as an ordered pair (x, y), we can represent such
numbers by points in an xy plane called the complex plane or Argand diagram. Referring to Fig. 1-3
above we see that x = pcos¢, y = psin¢ where p = /x> + »> = |x + iy| and ¢, called the amplitude or
argument, is the angle which line OP makes with the positive x axis OX. It follows that

z=Xx+4 iy = p(cos ¢ + isin ) 2

called the polar form of the complex number, where p and ¢ are called polar coordintes. 1t is sometimes
convenient to write cis ¢ instead of cos ¢ + isin ¢.

If zy =x; +iy; = pi(cos¢; +ising,) and z, = x, + iy, = py(cosp, +ising,) and by using the
addition formulas for sine and cosine, we can show that

212y = p1p2{cos(¢y + @) + isin(p; + ¢,)} 3
2= Pltcos(gy — o) + isin(y — ¢)) @
Z P2
" = {p(cos ¢ + isin @)} = p"(cos ng + isin ne) ®))

where 7 is any real number. Equation (5) is sometimes called De Moivre’s theorem. We can use this to
determine roots of complex numbers. For example, if 7 is a positive integer,
1/n __ P 1/n
/" = {p(cos ¢ + isin P)} (6)
2k 2k
:pl/"[cos<¢+ n)+isin(¢+n n)] k=0,1,2,3,...,n—1

n
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from which it follows that there are in general n different values of V" Later (Chap. 11) we will show

that ¢ = cos¢ + isin¢ where e = 2.71828 .... This is called Euler’s Sformula.

MATHEMATICAL INDUCTION

The principle of mathematical induction is an important property of the positive integers. It is
especially useful in proving statements involving all positive integers when it is known for example that
the statements are valid for n = 1, 2, 3 but it is suspected or conjectured that they hold for all positive
integers. The method of proof consists of the following steps:

Prove the statement for n = 1 (or some other positive integer).
Assume the statement true for n = k, where k is any positive integer.

From the assumption in 2 prove that the statement must be true for » = kK + 1. This is part of
the proof establishing the induction and may be difficult or impossible.

4. Since the statement is true for n = 1 [from step 1] it must [from step 3] be true forn =1+1=2
and from this for n = 2 + 1 = 3, and so on, and so must be true for all positive integers. (This
assumption, which provides the link for the truth of a statement for a finite number of cases to
the truth of that statement for the infinite set, is called “The Axiom of Mathematical Induc-
tion.”)

Solved Problems

OPERATIONS WITH NUMBERS

L1, If x=4,y=15z=-3,p=3¢g=—1 and r=3 evaluate (a) x+(+2), (b) (x+y)+z,
() plgr), (@) (pgr, (e) x(p+4q)
(@) x+(+z2)=4+[15+(3)]=4+12=16
b) x+y)+z=@+15+(-3)=19-3=16
The fact that () and (b) are equal illustrates the associative law of addition.
© P =3 =3 =P =—5=—1
@ Pr={QEPR =R =@ =—5%=—1%
The fact that (¢) and (d) are equal illustrates the associative law of multiplication.
© xp+@=4G-H=4¢-h=4@=2=2
Another method: x(p+¢q)=xp+xg=HF+@)(-H=5-4=8—
law.

Wi

= g =2 using the distributive

1.2. Explain why we do not consider () g (b) % as numbers.

(a) If we define a/b as that number (if it exists) such that bx = a, then 0/0 is that number x such that
0x =0. However, this is true for all numbers. Since there is no unique number which 0/0 can
represent, we consider it undefined.

(b) Asin (a), if we define 1/0 as that number x (if it exists) such that Ox = 1, we conclude that there is no
such number.
Because of these facts we must look upon division by zero as meaningless.
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1.3.

2
. . X"=5x+6
Simplify —————.
Y 7 5 3

2
X =5%x+6 (x=-3)(x-2) x-2 . . .
;2 — 2: i— 3= E: — S;E; T 1; = ;C 1 provided that the cancelled factor (x — 3) is not zero, i.e., x # 3.

For x = 3 the given fraction is undefined.

RATIONAL AND IRRATIONAL NUMBERS

1.4.

1.5.

1.6.

1.7.

1.8.

Prove that the square of any odd integer is odd.

Any odd integer has the form 2m + 1. Since 2m + 1)> = 4m* 4+ 4m + 1 is 1 more than the even integer
4m* + 4m = 2(2m* + 2m), the result follows.

Prove that there is no rational number whose square is 2.

Let p/q be a rational number whose square is 2, where we assume that p/q is in lowest terms, i.e., p and ¢
have no common integer factors except £1 (we sometimes call such integers relatively prime).

Then (p/q)* =2, p* = 2¢° and p* is even. From Problem 1.4, p is even since if p were odd, p* would be
odd. Thus p =2m.

Substituting p = 2m in p* = 2¢° yields ¢> = 2m?, so that ¢° is even and ¢ is even.

Thus p and ¢ have the common factor 2, contradicting the original assumption that they had no
common factors other than +1. By virtue of this contradiction there can be no rational number whose
square is 2.

Show how to find rational numbers whose squares can be arbitrarily close to 2.

We restrict ourselves to positive rational numbers. Since (1)> = 1 and (2)* = 4, we are led to choose
rational numbers between 1 and 2, e.g., 1.1,1.2,1.3,...,1.9.

Since (1.4)> =1.96 and (1.5)> =2.25, we consider rational numbers between 1.4 and 1.5, e.g.,
1.41,1.42,...,1.49.

Continuing in this manner we can obtain closer and closer rational approximations, e.g. (1.414213562)>
is less than 2 while (1.414213563)° is greater than 2.

Given the equation ayx" +a;xX"~' +---+a, =0, where ay. ay,...,a, are integers and a, and
a, #0. Show that if the equation is to have a rational root p/g, then p must divide g, and ¢
must divide a, exactly.

Since p/q is a root we have, on substituting in the given equation and multiplying by ¢", the result

n—2 2

ap" +ap" g+ ap" e+ A+ aipd +a,q" =0 o
or dividing by p,
- g B a 7
ap" ap" g+t a, g = 7% ©

Since the left side of (2) is an integer, the right side must also be an integer. Then since p and ¢ are relatively
prime, p does not divide ¢" exactly and so must divide a,.

In a similar manner, by transposing the first term of (/) and dividing by ¢, we can show that ¢ must
divide ag.

Prove that /2 + +/3 cannot be a rational number.

If x = +/2 + /3, then X =5+ 24/6, X —5= 24/6 and squaring, X —10x*+1=0. The only possible
rational roots of this equation are =1 by Problem 1.7, and these do not satisfy the equation. It follows that
/2 + +/3, which satisfies the equation, cannot be a rational number.



10 NUMBERS [CHAP. 1

1.9. Prove that between any two rational numbers there is another rational number.

The set of rational numbers is closed under the operations of addition and division (non-zero

. b . . . . .
denominator). Therefore, a 3 is rational. The next step is to guarantee that this value is between a
and b. To this purpose, assume ¢ < b. (The proof would proceed similarly under the assumption b < a.)

a+b a+b

Then 2a < a+ b, thus a < < b.

and a + b < 2b, therefore

INEQUALITIES

1.10. For what values of x is x +3(2 — x) = 4 — x?

x+32—-x)=24—xwhenx+6—-3x=24—x,6—-2x=24—x,6—4=2x—x,2 = x,1e.x 2.

1.11.  For what values of x is x* — 3x —2 < 10 — 2x?
The required inequality holds when
X2 —3x—2-104+2x <0, xX*—x—12<0 or (x—4)(x+3)<0

This last inequality holds only in the following cases.

Case l: x—4>0and x+3 <0,1ie.,x>4and x < —3. This is impossible, since x cannot be both greater
than 4 and less than —3.

Case 2: x—4 <0 and x+3>0,ie. x <4 and x > —3. This is possible when —3 < x <4. Thus the
inequality holds for the set of all x such that —3 < x < 4.

1.12. Ifa = 0 and b = 0, prove that %(a +b) = ab.

The statement is self-evident in the following cases (1) @ = b, and (2) either or both of « and b zero.
For both a and b positive and a # b, the proof is by contradiction.

Assume to the contrary of the supposition that %(a +b) < +/ab then %(a2 +2ab + b*) < ab.

That is, @° — 2ab + b* = (a — b)*> < 0. Since the left member of this equation is a square, it cannot be
less than zero, as is indicated. Having reached this contradiction, we may conclude that our assumption is
incorrect and that the original assertion is true.

1.13. Ifay, a,,...,a, and by, b,, ..., b, are any real numbers, prove Schwarz’s inequality
@by +arby + -+ ab,)’ £ (@l + a5+ + )b +b3+ -+ b
For all real numbers A, we have
(@h+b) + (@ +b) +--+(@Ar+b,) 20
Expanding and collecting terms yields
AN 2CA+ B 20 )
where
A= +d+ - +d, B=b+b+--+b, C=ab +ayby+---+a,b, %)
The left member of (1) is a quadratic form in A.  Since it never is negative, its discriminant,
4C* — 447 B*, cannot be positive. Thus
CC—AB <0 o C<AB
This is the inequality that was to be proved.
1

1.14. Prove that%+l+—+...+

1 o
ity T < 1 for all positive integers n > 1.
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1 1 1 1
Let S =—4+—-4+—4-.-.
e n=3+g gt oty
1 1 1 1 1
Then iSn: Z+§+“.+2n—l+?
1 1 1 1
Subtracting, ES" =5 Thus S, =1 5T < 1 for all n.

EXPONENTS, ROOTS, AND LOGARITHMS

1.15. Evaluate each of the following:

(@) ﬁ _ ﬂ: g4 _ g2 1
314 314 32 9

. 106 . 102 . —6 . 102
B (CA0DE 109 54 107107 A0 /251010 = 5107 or 000005
§-10° 8 10°

© loma@=x Then @'=F=@'= @ or x= -3

(d) (log,b)(logya) = u. Then log,b = x,log,a =y assuming a,b > 0 and a,b # 1.

Then a* = b, b = a and u = xy.

Since (@*) = @ = b’ = a we have ¥ = o'

or xy = 1 the required value.

M
1.16. If M >0, N >0, and a > 0 but a # 1, prove that logaﬁ =log, M —log, N.
Let log, M = x, log, N =y. Then a¢* =M, ¢ =N and so

—=—=g" or logaﬁ:x—y:logaM—logaN

COUNTABILITY

1.17. Prove that the set of all rational numbers between 0 and 1 inclusive is countable.

Write all fractions with denominator 2, then 3, ... considering equivalent fractions such as % , %, % ...no
more than once. Then the 1-1 correspondence with the natural numbers can be accomplished as follows:

Rational numbers o1 4 1 2 1 312
r¢+T 22T
Natural numbers 1 2 3 4 5 6 7 8 9

Thus the set of all rational numbers between 0 and 1 inclusive is countable and has cardinal number N,
(see Page 5).

1.18. If 4 and B are two countable sets, prove that the set consisting of all elements from 4 or B (or
both) is also countable.

Since 4 is countable, there is a 1-1 correspondence between elements of 4 and the natural numbers so
that we can denote these elements by a;, a5, a3, .. ..

Similarly, we can denote the elements of B by by, b,, b3, . ...
Case 1: Suppose elements of A4 are all distinct from elements of B. Then the set consisting of elements from
A or B is countable, since we can establish the following 1-1 correspondence.
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1.19.

1.20.
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Aor B ap bl ay bz as b3

A
Natural numbers 1 2 3 4 5 6

Case 2: If some elements of 4 and B are the same, we count them only once as in Problem 1.17. Then the set
of elements belonging to 4 or B (or both) is countable.

The set consisting of all elements which belong to 4 or B (or both) is often called the union of 4 and B,
denoted by AU B or 4+ B.

The set consisting of all elements which are contained in both A and B is called the intersection of A and
B, denoted by AN B or AB. 1f A and B are countable, so is 4 N B.

The set consisting of all elements in 4 but nor in B is written A — B. If we let B be the set of elements
which are not in B, we can also write A — B= AB. If A and B are countable, so is 4 — B.

Prove that the set of all positive rational numbers is countable.

Consider all rational numbers x > 1.  With each such rational number we can associate one and only
one rational number 1/x in (0, 1), i.e., there is a one-to-one correspondence between all rational numbers > 1
and all rational numbers in (0, 1). Since these last are countable by Problem 1.17, it follows that the set of all
rational numbers > 1 is also countable.

From Problem 1.18 it then follows that the set consisting of all positive rational numbers is countable,
since this is composed of the two countable sets of rationals between 0 and 1 and those greater than or equal
to 1.

From this we can show that the set of all rational numbers is countable (see Problem 1.59).

Prove that the set of all real numbers in [0, 1] is non-countable.

Every real number in [0, 1] has a decimal expansion .a a,as ... where aj, ay, ... are any of the digits
0,1,2,...,9.

We assume that numbers whose decimal expansions terminate such as 0.7324 are written 0.73240000. . .
and that this is the same as 0.73239999. ...

If all real numbers in [0, 1] are countable we can place them in 1-1 correspondence with the natural
numbers as in the following list:

1 < Oapapapiay...
2 <> 0.a21a22423a24 e
3 <> 0.[131613261336134 .o

We now form a number
0.b1byb3by . ..

where by # ayy, by # anry, by # azs, by # aus, ... and where all b’s beyond some position are not all 9’s.
This number, which is in [0, 1] is different from all numbers in the above list and is thus not in the list,
contradicting the assumption that all numbers in [0, 1] were included.
Because of this contradiction it follows that the real numbers in [0, 1] cannot be placed in 1-1 corre-
spondence with the natural numbers, i.e., the set of real numbers in [0, 1] is non-countable.

LIMIT POINTS, BOUNDS, BOLZANO-WEIERSTRASS THEOREM

1.21.

(a) Prove that the infinite sets of numbers 1,%,%,%, ... 1s bounded. (b) Determine the least

upper bound (l.u.b.) and greatest lower bound (g.1.b.) of the set. (¢) Prove that 0 is a limit point
of the set. (d) Is the set a closed set? (e) How does this set illustrate the Bolzano—Weierstrass
theorem?

(a) Since all members of the set are less than 2 and greater than —1 (for example), the set is bounded; 2 is an
upper bound, —1 is a lower bound.

We can find smaller upper bounds (e.g., %) and larger lower bounds (e.g., —% .
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(b) Since no member of the set is greater than 1 and since there is at least one member of the set (namely 1)
which exceeds 1 — € for every positive number €, we see that 1 is the L.u.b. of the set.
Since no member of the set is less than 0 and since there is at least one member of the set which is
less than 0 + € for every positive € (we can always choose for this purpose the number 1/n where n is a
positive integer greater than 1/€), we see that 0 is the g.1.b. of the set.

(¢) Let x be any member of the set. Since we can always find a number x such that 0 < |x| < § for any
positive number § (e.g. we can always pick x to be the number 1/n where n is a positive integer greater
than 1/8), we see that 0 is a limit point of the set. To put this another way, we see that any deleted §
neighborhood of 0 always includes members of the set, no matter how small we take § > 0.

(d) The set is not a closed set since the limit point 0 does not belong to the given set.

(e) Since the set is bounded and infinite it must, by the Bolzano—Weierstrass theorem, have at least one
limit point. We have found this to be the case, so that the theorem is illustrated.

ALGEBRAIC AND TRANSCENDENTAL NUMBERS

1.22.

1.23.

Prove that +/2 + +/3 is an algebraic number.

Let x = /24 +/3. Then x —+/3=+/2. Cubing both sides and simplifying, we find x> + 9x —2 =
3v/3(x* +1). Then squaring both sides and simplifying we find x® — 9x* — 4x® 4+ 27x% + 36x — 23 = 0.

Since this is a polynomial equation with integral coefficients it follows that ~/2 4+ +/3, which is a
solution, is an algebraic number.

Prove that the set of all algebraic numbers is a countable set.

Algebraic numbers are solutions to polynomial equations of the form agx" + a;x"~!

where «a, ay, ..., a, are integers.

Let P = |ag| + |a;| + - - + |a,| +n. For any given value of P there are only a finite number of possible
polynomial equations and thus only a finite number of possible algebraic numbers.

Write all algebraic numbers corresponding to P = 1, 2, 3,4, ... avoiding repetitions. Thus, all algebraic
numbers can be placed into 1-1 correspondence with the natural numbers and so are countable.

+...+an:0

COMPLEX NUMBERS

1.24.

Perform the indicated operations.

(@) (4—20)+(—6+5)=4—2i—6+5i=4—6+(=2+5)i=-2+3i

(b) (—T+3)—Q—4i)=-T+3i—2+4i=-9+7i

(© G—=20)1+3)=314+3)—=2i(1+3)=3+9—2i—62=3+9%—2i+6=9+7i

5450 =545 44+3i  (=5+5)@+30)  —20 — 15i + 20i + 15

) 4-3i  4-3i 4+3i 16—92 16+9
35450 5(=T+i) -7, 1,
=75 T 25 575
R e R (e R B R AR e R
© 1+ = 1+ - 1+
i 1—i i—P& i+1 1 1,
Sirii—ic1-2- 2 —a2ta!

(/) 13— 4ill4 + 3il = /3 + (=4 @2 + 3 = (5)(5) = 25
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6\ 3
=0+ (~35) =3

1.25. 1If z; and z, are two complex numbers, prove that |z;z;| = |z1]|z,].

L[ [1=3 143

|t _ _ _ =Y
[14+3i 1=3i |1=-92 1-97

|10

(9]

Let zy = x; +iy,, z = x, +iy,. Then

[z122] = [(x1 + iy )2 + )| = [X1X2 — y1y2 + (X132 + x21)]

= \/(xlxz =)+ (s +x) = \/*%’é + 2193 + X103 + X3

= V@D D) = 2 4 0d = il + vl = 1.

1.26. Solve x* —2x —4 =0.

The possible rational roots using Problem 1.7 are 1, 42, +4. By trial we find x = 2 is a root. Then
the given equation can be written (x —2)(x* +2x+2)=0. The solutions to the quadratic equation

b+ Vb —4 —2+/4-8
ax’ +bx+c=0 are X=——— a For a=1, b=2, ¢=2 this gives X=—— =
—2+v-4 242 .
= =—1=i

2 2
The set of solutions is 2, —1 +i, —1 —i.

POLAR FORM OF COMPLEX NUMBERS

1.27. Express in polar form (a) 3+3i, (b) —=1++/3i, (¢) =1, (d) =2 —2+/3i. See Fig. 1-4.

=
240°
-2 4

i) 3 . -
120° 180° _
45° f v 23 4

(@) (b) (©) (d)

Fig. 1-4

(a) Amplitude ¢ = 45° = /4 radians. Modulus p = /3% + 3% = 3v/2. Then 3 + 3i = p(cos ¢ + isin¢) =
3v2(cos w/4 + isinm/4) = 33/ 2cis /4 = 3427

() Amplitude ¢ = 120° = 27/3 radians. Modulus p = (-1 +(/3)?=+v4=2. Then —1+33i =
2(cos27/3 + isin 27/3) = 2cis 27/3 = 267/°

() Amplitude ¢ = 180° = 7 radians. Modulus p = V(D40 =1. Then —1 = I(cos + isinm) =

cisw ="

(d) Amplitude ¢ = 240° = 4r/3 radians. Modulus p=/(-2)* +(—2v/3)*=4. Then —2-23=
4(cosdm/3 + isin4dmn/3) = dcisdn/3 = 4¢3
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1.28. Evaluate (a) (—1++/3)°, (b) (—=1+0)"°.
(a) By Problem 1.27(b) and De Moivre’s theorem,

(=1 + /30" = [2(cos 27t/3 + i sin 27r/3)]'° = 2!%(cos 2077/3 + i sin 207/3)
= 1024[cos(27r/3 + 67) + isin(27/3 4 67)] = 1024(cos 27t/3 4 isin2m/3)

=1024(— 1+ 1+/3i) = =512+ 512/3i
() —1+4i=+/2(cos 135° + isin 135°) = v/2[cos(135° + k - 360°) + isin(135° + k - 360°)]. Then

135° 4+ k - 360° . (135°+ k- 360°
(=1 + 9" = (v2)!3| cos D2 R0 +isin 150 4300
3 3 Py
The results for k=0, 1,2 are » 1655 1
2
V2(cos 45° + isin 45°), t 4
V/2(cos 165° + isin 165°), 285° s
V/2(cos 285° + i sin 285°)
The results for k = 3,4,5,6,7, ... give repetitions of these. These
complex roots are represented geometrically in the complex plane 3
by points Py, P,, P; on the circle of Fig. 1-5. 3
Fig. 1-5

MATHEMATICAL INDUCTION
1.29. Prove that >+ 22+ 3* + 4> ...+ = Lu(n+ DH(2n + ).
The statement is true for n = 1 since 1> = Ima+ne-1+1n=1.

Assume the statement true for n = k. Then
P42+ 3+ k7 =Lk + D2k + 1)

Adding (k + 1)* to both sides,
P 422437 4 I (k1) =Lk + Dk + 1) + (k+ 1) = (k+ DILkQk + 1) +k+ 1]

=Lk + DI + Tk + 6) = L (k + 1)(k +2)(2k + 3)

which shows that the statement is true for n = k + 1 if'it is true for n = k. But since it is true for n = 1, it
follows that it is true forn =14+ 1=2and forn =241 =3,..., i.e., it is true for all positive integers n.

1.30. Prove that x" — )" has x — y as a factor for all positive integers n.

The statement is true for n = 1 since x' — y! = x — y.
Assume the statement true for n = k, i.e., assume that x* — ¥ has x — y as a factor. Consider

Kbl _ bl ekl ok, ke

X
==+ 6" =)
The first term on the right has x — y as a factor, and the second term on the right also has x — y as a factor

because of the above assumption.
Thus x**! — ¥ has x — y as a factor if x* — y* does.
Then since x! — y' has x — y as factor, it follows that x> — y* has x — y as a factor, x* — ) hasx — yasa

factor, etc.
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1.31. Prove Bernoulli’s inequality (1 +x)" > 1 +nxforn=2,3,...iff x> —1, x #0.

The statement is true for n =2 since (1 +x)> = 1 +2x +x° > 1 + 2x.
Assume the statement true for n =k, i.e., (I + x)* > 1+ kx.
Multiply both sides by 1 + x (which is positive since x > —1). Then we have

A+ > A +00 +kx) =1+ (k+ Dx+kx® > 1+ (k+ Dx

Thus the statement is true for n = k + 1 if it is true for n = k.

But since the statement is true for n = 2, it must be true for n =2+ 1 =3, ... and is thus true for all
integers greater than or equal to 2.

Note that the result is not true for n = 1. However, the modified result (1 + x)" = 1 + nx is true for

n=1273,....

MISCELLANEOUS PROBLEMS

1.32. Prove that every positive integer P can be expressed uniquely in the form P = a,2" + ;2" '+
@2" 2 + .- +a, where the @’s are 0’s or 1’s.

Dividing P by 2, we have P/2 = 2" ' + a1 2" 2 + -+ a,_; + a,/2.

Then a, is the remainder, 0 or 1, obtained when P is divided by 2 and is unique.

Let P, be the integer part of P/2. Then P, = ap2" ' +a;2" >+ +a, ;.

Dividing P; by 2 we see that a,_; is the remainder, 0 or 1, obtained when P; is divided by 2 and is

unique.
By continuing in this manner, all the a’s can be determined as 0’s or 1’s and are unique.

1.33. Express the number 23 in the form of Problem 1.32.

The determination of the coefficients can be arranged as follows:

2)23
2)11 Remainder 1
2)5 Remainder 1
2)2 Remainder 1
2)1 Remainder 0
0 Remainder 1

The coefficients are 1 011 1. Check: 23 =1-2*40-2"+1.22+1-2+1.
The number 10111 is said to represent 23 in the scale of two or binary scale.

1.34. Dedekind defined a cut, section, or partition in the rational number system as a separation of al/
rational numbers into two classes or sets called L (the left-hand class) and R (the right-hand class)
having the following properties:

I. The classes are non-empty (i.e. at least one number belongs to each class).
II. Every rational number is in one class or the other.
III. Every number in L is less than every number in R.
Prove each of the following statements:

(a) There cannot be a largest number in L and a smallest number in R.

(b) It is possible for L to have a largest number and for R to have no smallest number. What
type of number does the cut define in this case?

(¢) Ttis possible for L to have no largest number and for R to have a smallest number. What
type of number does the cut define in this case?
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It is possible for L to have no largest number and for R to have no smallest number. What
type of number does the cut define in this case?

Let a be the largest rational number in L, and b the smallest rational number in R. Then either a = b or
a<b.

We cannot have a = b since by definition of the cut every number in L is less than every number
in R.

We cannot have a < b since by Problem 1.9, %(a + b) is a rational number which would be greater

than a (and so would have to be in R) but less than b (and so would have to be in L), and by definition a
rational number cannot belong to hoth L and R.
As an indication of the possibility, let L contain the number % and all rational numbers less than %, while
R contains all rational numbers greater than % In this case the cut defines the rational number % A
similar argument replacing 2 by any other rational number shows that in such case the cut defines a
rational number.

As an indication of the possibility, let L contain all rational numbers less than %, while R contains all
rational numbers greaters than 2. This cut also defines the rational number 2. A similar argument
shows that this cut always defines a rational number.
As an indication of the possibility let L consist of all negative rational numbers and all positive rational
numbers whose squares are less than 2, while R consists of all positive numbers whose squares are
greater than 2. We can show that if @ is any number of the L class, there is always a larger number of
the L class, while if b is any number of the R class, there is always a smaller number of the R class (see
Problem 1.106). A cut of this type defines an irrational number.

From (b), (¢), (d) it follows that every cut in the rational number system, called a Dedekind cut,
defines either a rational or an irrational number. By use of Dedekind cuts we can define operations
(such as addition, multiplication, etc.) with irrational numbers.

Supplementary Problems

OPERATIONS WITH NUMBERS

1.35.

1.36.

1.37.

Given x = -3, y=2,z=5,a=4 and b = — 1, evaluate:
2 2 2 2 2
xy — 2z 3a°h + ab (ax 4+ by)” + (ay — bx)
2x — )3y + 2)(5x — 22), b =, ) saya oy W .
@ @re-p@r+aE=2, 6 o @ Sape @ e

Ans.

(@) 2200, (b) 32, (c) —51/41, (d) 1

Find the set of values of x for which the following equations are true. Justify all steps in each case.

(@) Hx—-2)+32x—-D}+22x+1)=12(x+2)—-2 (©) VX 4+8x+T7—2x+2=x+1
1 1 1 1—x 3

O = D s s

Ans. (a) 2, (b) 6,—4 (¢) —1,1 (d) —%

Prove that - x;x _— + o y;(y = + o= z)Z(z 3 = 0 giving restrictions if any.

RATIONAL AND IRRATIONAL NUMBERS

1.38.

Ans.

(a) 0428571, (b) 2.2360679 ...
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1.39. Show that a fraction with denominator 17 and with numerator 1,2, 3, ..., 16 has 16 digits in the repeating
portion of its decimal expansion. Is there any relation between the orders of the digits in these expansions?

1.40. Prove that (a) /3, (b) ~/2 are irrational numbers.
1.41. Prove that (@) J5— Y3, b) V2 + /3 + /35 are irrational numbers.
1.42. Determine a positive rational number whose square differs from 7 by less than .000001.
1.43.  Prove that every rational number can be expressed as a repeating decimal.
1.44. Find the values of x for which
(@) 23 —=5x> —9x+ 18 =0, (b) 3xX° +4x* —=35x+8=0, (c) x*—21x*+4=0.

Ans. (@) 3,-2,3/2 (b) 8/3, =25 () 15 £ V1T, 1(-5+£V17)

145. [Ifa, b, ¢, d are rational and m is not a perfect square, prove that a + by/m = ¢ + d/m if and only if a = ¢
and b =d.

1.46. Prove that 1+ﬁ+ﬁ— 12v5 - 2V15 + 14f_7.

1—V3+5 1
INEQUALITIES
1.47. Find the set of values of x for which each of the following inequalities holds:
1 3 X x+3
— > < —
(a) x+2x =5, b)) x(x+2) < 24, () |x+2| <|x=15], (d) x+2>3x+1'

Ans. (a) 0 <x = %, b)) -6 =x=4 (c)x<3/2, (dx>3-1<x< —%, orx < —2
148. Prove (a) [x+yl = x|+, (®) Ix+y+zl = IxI+l+1z2l, (© Ix—yl 2 x| =1yl
1.49. Prove that for all real x, y, z, x>+ 1> + 2> = xy 4 yz + zx.
150. If+b =1and P +d° = 1, prove that ac+bd < 1.
n+l1 1 n 1 : e :
1.51.  If x > 0, prove that X" +—— > x" + o where 7 is any positive integer.
X

1.52. Prove that for all real a # 0, |a + 1/a|] = 2.

1.53.  Show that in Schwarz’s inequality (Problem 13) the equality holds if and only if @, = kb,, p=1,2,3,...,n
where k is any constant.

1.54. If ay, a», a3 are positive, prove that %(al +ar + a3) = Yajayas.

EXPONENTS, ROOTS, AND LOGARITHMS

o log, 8 3 a8 . /(0.00004)(25,000) “2log; 5 N3 A2/
1.55. Evaluate (a) 4 , (b) 410g1/8(1zg)> (c) —(0.02)5(0.125) , (d) 3 , (@ (=9 (=27)

Ans. (a) 64, (b) 7/4, (c) 50,000, (d) 1/25, (e) —7/144
1.56. Prove (a) log, MN =log, M +log, N, (b) log, M" = rlog, M indicating restrictions, if any.

1.57.  Prove b'°®“ = q giving restrictions, if any.
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COUNTABILITY

1.58.

1.59.

1.60.

1.61.

1.62.

1.63.

(a) Prove that there is a one to one correspondence between the points of the interval 0 < x < 1 and
—5 =< x < —3. (b) What is the cardinal number of the sets in (a)?
Ans. (b) C, the cardinal number of the continuum.

(a) Prove that the set of all rational numbers is countable. () What is the cardinal number of the set in (a)?
Ans. (b)) N,

Prove that the set of («) all real numbers, (b) all irrational numbers is non-countable.

The intersection of two sets A and B, denoted by 4 N B or 4B, is the set consisting of all elements belonging
to both 4 and B. Prove that if 4 and B are countable, so is their intersection.

Prove that a countable set of countable sets is countable.

Prove that the cardinal number of the set of points inside a square is equal to the cardinal number of the sets
of points on (a) one side, (b) all four sides. (¢) What is the cardinal number in this case? (d) Does a
corresponding result hold for a cube?

Ans. (¢) C

LIMIT POINTS, BOUNDS, BOLZANO-WEIERSTRASS THEOREM

1.64.

1.65.

1.66.

1.67.

1.68.

1.69.

Given the set of numbers 1, 1.1,.9, 1.01, .99, 1.001, .999, .... (a) Is the set bounded? (b) Does the set have
a lu.b. and g1.b.? If so, determine them. (c¢) Does the set have any limit points? If so, determine them.
(d) Is the set a closed set?

Ans. (a) Yes (b) lub.=1.1,glb.=.9 (¢) 1 (d) Yes

Give the set —.9,.9, —.99, .99, —.999, .999 answer the questions of Problem 64.
Ans. (a) Yes (b) Lub.=1,glb.=—-1 (¢) 1,-1 (d) No

Give an example of a set which has («) 3 limit points, (b) no limit points.

(a) Prove that every point of the interval 0 < x < 1 is a limit point.
(b) Are there are limit points which do not belong to the set in (a)? Justify your answer.

Let S be the set of all rational numbers in (0, 1) having denominator 2", n =1,2,3,.... (a) Does S have
any limit points? (b) Is S closed?

(a) Give an example of a set which has limit points but which is not bounded. (b) Does this contradict the
Bolzano—Weierstrass theorem? Explain.

ALGEBRAIC AND TRANSCENDENTAL NUMBERS

1.70.

1.71.

1.72.

Prove that (a) %, (b) V24 /3 + /5 are algebraic numbers.

Prove that the set of transcendental numbers in (0, 1) is not countable.

Prove that every rational number is algebraic but every irrational number is not necessarily algebraic.

COMPLEX NUMBERS, POLAR FORM

1.73.

Perform each of the indicated operations: (a) 2(5—3i) —3(=2+ )+ 5( —=3), (b) (3 =2i)°

5 10 1—-i\" 2—4i
© THtiym @ <1+1’>’ © ‘5+7f

2

(1+ D)2+ 3i)(4 — 2i)

' ) (1+20)%1 =)

Ans. (a) 1—4i, (b)) =9—46i, () L—=2i, (&) -1, () X () L-2i
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z .. .
= u b) |zf| =|z; 1? giving any restrictions.

|Zz|’
L75. Prove (a) lz;+2l £ |zl +lzal, D) lz1 + 22+ 23] S |zl + |zl + |zl () |z — 22| 2 |zi] = |zl

1.74. If z; and z, are complex numbers, prove (a)

Z]

1.76.  Find all solutions of 2x* — 3x* — 7x —8x +6 = 0.
Ans. 3, %, -1+

1.77. Let z; and z, be represented by points P; and P, in the Argand diagram. Construct lines OP; and OP,,
where O is the origin. Show that z; + z, can be represented by the point P;, where OPj is the diagonal of a
parallelogram having sides OP; and OP,. This is called the parallelogram law of addition of complex
numbers. Because of this and other properties, complex numbers can be considered as vectors in two
dimensions.

1.78. Interpret geometrically the inequalities of Problem 1.75.

1.79.  Express in polar form (a) 3v/3+3i, (b) —2—2i, (¢) 1 —~/3i, (d) 5, (e) —5i.
Ans. (a) 6c¢ism/6 (b) 24/2cis5m/4 (¢) 2cis5m/3  (d) 5cis0  (e) Scis3m/2

12cis 16°

1.80. Evaluate (a) [2(cos25° 4 isin25°)][S(cos 110° + isin 110°)], (b) (cis 447)(2.cis 62°)

Ans. (@) =52+ 5v2i, (b) —2i

1.81. Determine all the indicated roots and represent them graphically:
@ @V2+4v20'7, () (=D, (o B=0'7, (@ "
Ans. (a) 2cis 15°,2cis 135°, 2 cis 255°
(b) cis36°, cis 108°, cis 180° = —1, cis 252°, cis 324°
(¢) ¥/2cis110°, /2 cis 230°, /2 cis 350°
(d) cis22.5° cis 112.5°, cis 202.5°, cis 292.5°

1.82. Prove that —1 4+ +/3i is an algebraic number.

1.83. If z; = pycis¢; and z; = pycisy, prove  (a) z;z3 = pypyCis(@y + ¢2), (D) z1/z2 = (p1/ p2) Cis($1 — ¢2).
Interpret geometrically.

MATHEMATICAL INDUCTION
Prove each of the following.

1.84. 143+5+--+Qu—1)=n

1 1 1 n
—_—t

1
1.85. _
13735 573 Y oD T+l

1.86. a+(a+d)+(a+2d)+ - +[a+ (- D)d] = Ln2a+ (n — 1)d]

187 1 N 1 n 1 P 1 _ n(n+3)

1 2372.3.473.4-5 A+ Dn+2)  n+ )+ 2)
"_1

1.88. a+ar+ar’+---+a"! :M, r#1

r—1
1.89. P42 +3 +... 40’ =1+ 1)

54 (4n — 1)5"H!

1.90.  1(5)+ 205 +3(5)° + - +n(5"' = T

1.91. X' 4+? ! is divisible by x+ y forn=1,2,3,....
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1.92.

1.93.

1.94.

1.95.

(cos¢ +isin@)” = cosng + isinng. Can this be proved if n is a rational number?

sin(n + H)x

S+ cosx+cos2x + -+ +cosnx = —
2siny x

, X # 0, 27, +4m, ...

costx —cos(n+1)x

sinx +sin2x+ .. +sinnx = , X #£0,+£27, +4n, ...

2sin%x
(@+b)'=d+,Cd" b+ ,Cd" °H + -+ ,C, b + b,

nn—Hm-2)...n—r+1)  n
rl ]
1. This is called the binomial theorem. The coefficients ,Cq =1, ,C; = n, ,C, =

where ,C, = =,C,_,. Herep!=p(p—1)...1and 0!is defined as
nn—1)

20 0

. 2Cy =1 are

o . . n
called the binomial coefficients. ,C, is also written ( )
’

MISCELLANEOUS PROBLEMS

1.96.

1.97.

1.98.

1.99.

1.100.

1.101.

1.102.

1.103.

1.104.

1.105.

1.106.

Express each of the following integers (scale of 10) in the scale of notation indicated: (a) 87 (two), (b) 64
(three), (c¢) 1736 (nine). Check each answer.
Ans. (@) 1010111, (b) 2101, (c) 2338

If a number is 144 in the scale of 5, what is the number in the scale of (a) 2, (b) 8?

Prove that every rational number p/g between 0 and 1 can be expressed in the form

P4 B G

a2ttt tat
where the a’s can be determined uniquely as 0’s or 1’s and where the process may or may not terminate. The
representation 0.a1a, . ..a, ... is then called the binary form of the rational number. [Hint: Multiply both
sides successively by 2 and consider remainders.}

Express % in the scale of (a) 2, (b) 3, (¢) 8, (d) 10.
Ans. (a) 0.1010101..., (b) 0.2 or 0.2000..., (c) 0.5252..., (d) 0.6666...

A number in the scale of 2 is 11.01001. What is the number in the scale of 10.
Ans.  3.28125

In what scale of notation is 3 + 4 = 12?
Ans. 5

In the scale of 12, two additional symbols ¢ and e must be used to designate the “digits” 10 and 11,
respectively. Using these symbols, represent the integer 5110 (scale of 10) in the scale of 12.
Ans.  2e5t

Find a rational number whose decimal expansion is 1.636363....
Ans. 18/11

A number in the scale of 10 consists of six digits. If the last digit is removed and placed before the first digit,
the new number is one-third as large. Find the original number.
Ans. 428571

Show that the rational numbers form a field.

Using as axioms the relations 1-9 on Pages 2 and 3, prove that

(@) (=3)0)=0, () (=2)(+3)=-6, (o) (=2)(-3)=6.
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1.107. (@) If x is a rational number whose square is less than 2, show that x 4+ (2 — xz)/10 is a larger such number.
(b) If x is a rational number whose square is greater than 2, find in terms of x a smaller rational number
whose square is greater than 2.

1.108. Illustrate how you would use Dedekind cuts to define

(@) V5+3, (b)) V3—=2, (©) (VIWD. (d) V2/V3.



Sequences

DEFINITION OF A SEQUENCE

A sequence is a set of numbers uy, u,, u3, ... in a definite order of arrangement (i.e., a correspondence
with the natural numbers) and formed according to a definite rule. Each number in the sequence is
called a term:; u, is called the nth term. The sequence is called finite or infinite according as there are or
are not a finite number of terms. The sequence uy, uy, us, ... is also designated briefly by {u,}.

EXAMPLES. 1. The set of numbers 2,7,12,17,...,32 is a finite sequence; the nth term is given by
u,=24+5n—-1)=5-3,n=1,2,...,7.

2. The set of numbers 1,1/3,1/5,1/7,... is an infinite sequence with nth term u, = 1/(2n — 1),
n=1,23,....

Unless otherwise specified, we shall consider infinite sequences only.

LIMIT OF A SEQUENCE

A number ! is called the /imit of an infinite sequence u, uy, u3, . .. if for any positive number € we can
find a positive number N depending on € such that |u, — /| < € for all integers n > N. In such case we
write lim u, = /.

n— 00

EXAMPLE . If u, =3+ 1/n = (3n+ 1)/n, the sequence is 4,7/2,10/3, ... and we can show that lim u, = 3.
n— 00

If the limit of a sequence exists, the sequence is called convergent; otherwise, it is called divergent. A
sequence can converge to only one limit, i.e., if a limit exists, it is unique. See Problem 2.8.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence
Uy, Uy, Uz, ... has a limit / if the successive terms get ““closer and closer” to /. This is often used to
provide a “‘guess’ as to the value of the limit, after which the definition is applied to see if the guess is
really correct.

THEOREMS ON LIMITS OF SEQUENCES
If lim a, = 4 and lim b, = B, then
n—oo n—00
1. lim(a,+b,)=1lima,+ limb,=A4A+B
n—o00 n—o00 n—oo
2. lim(a,—b,)=lima,— limb,=4—-B
n—00 n—00 n—00
3. lim(a,-b,) = (lim a,)(lim b,) = AB
n—00 n—o0 n—oo
23
Copyright 2002, 1963 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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a lirglo a4
. n __ n— _4a . . _
S, T himp, s A= EEO
n—00 a
If B=0and 4 #0, lim -~ does not exist.
n—o00 b

n

If B=0and 4 =0, lim Gn may or may not exist.

n—00

5. lim af = (lim a,)” = A”, for p = any real number if A” exists.
n—0o0 n—00

. lim™
6. lim p™ = p.ie = p4,

n—oo

for p = any real number if p? exists.

INFINITY

We write lim a, = oo if for each positive number M we can find a positive number N (depending on
M) such that a, > M for alln > N. Similarly, we write lim a, = —oco if for each positive number M we

n—00
can find a positive number N such that @, < —M for all n > N. It should be emphasized that co and
—oo are not numbers and the sequences are not convergent. The terminology employed merely
indicates that the sequences diverge in a certain manner. That is, no matter how large a number in
absolute value that one chooses there is an n such that the absolute value of a, is greater than that
quantity.

BOUNDED, MONOTONIC SEQUENCES

Ifu, < Mforn=1,2,3,..., where M is a constant (independent of n), we say that the sequence
{u,,} is bounded above and M is called an upper bound. 1f u, = m, the sequence is bounded below and m is
called a lower bound.

If m £ u, £ M the sequence is called bounded. Often this is indicated by |u,|] < P. Every
convergent sequence is bounded, but the converse is not necessarily true.

If u,., = u, the sequence is called monotonic increasing; if u, ., > u, it is called strictly increasing.

Similarly, if u,,; < u, the sequence is called monotonic decreasing, while if u, | < u, it is strictly
decreasing.

EXAMPLES. 1. The sequence 1, 1.1, 1.11, 1.111, ... is bounded and monotonic increasing. It is also strictly
increasing.
2. The sequence 1,—1,1,—1,1,... is bounded but not monotonic increasing or decreasing.
3. The sequence —1, —1.5, =2, —2.5, —3, ... is monotonic decreasing and not bounded. However, it
is bounded above.

The following theorem is fundamental and is related to the Bolzano—Weierstrass theorem (Chapter
1, Page 6) which is proved in Problem 2.23.

Theorem. Every bounded monotonic (increasing or decreasing) sequence has a limit.

LEAST UPPER BOUND AND GREATEST LOWER BOUND OF A SEQUENCE

A number M is called the least upper bound (1.u.b.) of the sequence {u,} if u, < M, n=1,2,3,...
while at least one term is greater than M — € for any € > 0.

A number m is called the greatest lower bound (g.1.b.) of the sequence {u,} ifu, =2 m,n=1,2,3,...
while at least one term is less than m + € for any € > 0.

Compare with the definition of l.u.b. and g.1.b. for sets of numbers in general (see Page 6).
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LIMIT SUPERIOR, LIMIT INFERIOR

A number [ is called the limit superior, greatest limit or upper limit (lim sup or lim) of the sequence
{u,} if infinitely many terms of the sequence are greater than I — € while only a finite number of terms are
greater than / + €, where € is any positive number.

A number [ is called the limit inferior, least limit or lower limit (lim inf or lim) of the sequence {u,} if
infintely many terms of the sequence are less than / + € while only a finite number of terms are less than
[ — €, where € is any positive number.

These correspond to least and greatest limiting points of general sets of numbers.

If infintely many terms of {u,} exceed any positive number M, we define lim sup {u,} =oco. If

infinitely many terms are less than —M, where M is any positive number, we define lim inf {,} = —o0.
If lim u, = oo, we define lim sup {u,} = liminf {x,} = co.
n—00
If lim u, = —oo, we define lim sup {u,,} = liminf {u,} = —oo.
n—oo

Although every bounded sequence is not necessarily convergent, it always has a finite lim sup and
lim inf.
A sequence {u,} converges if and only if lim sup «, = liminf u, is finite.

NESTED INTERVALS

Consider a set of intervals [a,, b,], n =1, 2, 3, ..., where each interval is contained in the preceding
one and lim (a, — b,) = 0. Such intervals are called nested intervals.
n— 00

We can prove that to every set of nested intervals there corresponds one and only one real number.
This can be used to establish the Bolzano—Weierstrass theorem of Chapter 1. (See Problems 2.22 and
2.23)

CAUCHY’S CONVERGENCE CRITERION

Cauchy’s convergence criterion states that a sequence {u,} converges if and only if for each € > 0 we
can find a number N such that |u, —u,| < € for all p, ¢ > N. This criterion has the advantage that one
need not know the limit / in order to demonstrate convergence.

INFINITE SERIES

Let u;, u,, u3, ... be a given sequence. Form a new sequence S, S,, S3, ... where
Si=u,Ss=u+u, Ss=u +uy+uy,....S, =uy+uy+uz+--+u,...

where S, called the nth partial sum, is the sum of the first n terms of the sequence {u,}.
The sequence Sy, S5, S3, ... is symbolized by

o0
M1+M2+M3+"'=Z“n
n=1

which is called an infinite series. 1If lim S, = S exists, the series is called convergent and S is its sum,
. . . . n—00
otherwise the series is called divergent.

Further discussion of infinite series and other topics related to sequences is given in Chapter 11.
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Solved Problems

SEQUENCES

2.1.

2.2.

Write the first five terms of each of the following sequences.

2n—1
@ 3n+2}

1—(-1)"
O

(_l)n—l

© 1746

111 1
(d) {§+Z+§+“‘+F}

(_ l)'771x2"71
e 17—

2n—1)!

135 7 9
O TR,

2 2 2
O 0y
© Lot -1 1
) 334737463468 2463810
dlllllllllllllll
A I R R TS I I TR

X —‘C3 XS —‘C7 ‘C9

Note thatn!=1-2-3-4...n. Thusl!=1,3'=1-2-3=6,5'=1-2-3-4.5=120,ctc. We define
0 =1.

Two students were asked to write an nth term for the sequence 1, 16, 81, 256, ... and to write the
5th term of the sequence. One student gave the nth term as u, = n*. The other student, who did
not recognize this simple law of formation, wrote u, = 10n° — 35n* 4+ 50n — 24. Which student
gave the correct 5th term?

If u, =n*, thenu; = 1* = 1, uy = 2* = 16, uy = 3* = 81, uy = 4* = 256, which agrees with the first four
terms of the sequence. Hence the first student gave the 5th term as us = 5* = 625.

If u, = 101> — 351° + 50n — 24, then u; = 1, up = 16, u3 = 81, u, = 256, which also agrees with the first
four terms given. Hence, the second student gave the 5th term as us = 601.

Both students were correct. Merely giving a finite number of terms of a sequence does not define a
unique nth term. In fact, an infinite number of nth terms is possible.
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LIMIT OF A SEQUENCE

2.3. A sequence has its nth term given by u, =

24.

2.5.

2.6.

3n—1 .

4n+ 5 (a) Write the Ist, 5th, 10th, 100th, 1000th,
n

10,000th and 100,000th terms of the sequence in decimal form. Make a guess as to the limit of

this sequence as n — oo. (b) Using the definition of limit verify that the guess in («) is actually

correct.

@ n=1 n=>5 n=10 n=100 n=1000 n=10,000 == 100,000
“ 22222, .56000... .64444... .73827... .74881... .74988...  .74998...
A good guess is that the limit is .75000. .. = %. Note that it is only for large enough values of n that

a possible limit may become apparent.

(b) We must show that for any given € > 0 (no matter how small) there is a number N (depending on )
such that |u, —3| < € for all n > N.

|3n—1 ‘ 19 € when 19 € or
< —_ <
|4 n+5 4 “l4@n +5) 4(4n + 5)
4@dn+5) 1 19 1/19
TE) D anyss (25
9 e nES > ”>4<4€ )
Choosing N = 1(19/4€ — 5), we see that |u, — 3| < e foralln > N, so that lim = 3 and the proof is

complete.
Note that if € = .001 (for example), N = 4(19000/4 —5) = 11864 L This means that all terms of the
sequence beyond the 1186th term differ from 3 7 in absolute value by less than .001.

Prove that lim ip =0 where ¢ # 0 and p > 0 are constants (independent of ).

n—oon
We must show that for any € > 0 there is a number N such that |¢/n” — 0| < € for all n > N.

¢ le] » _ el e\ lel i .
Now ‘—p’ <ewhen— < ¢ ie,n”>—orn>|—] . Choosing N = (depending on €), we
n n? € € €

see that |¢/n”| < € for all n > N, proving that lim (¢/n”) = 0.
n—o00
142-10" 2

Prove that nli)nolo 1300 = 3

1+2-10" 2
We must show that for any € > 0 there is a number N such that #&_5 <eforalln> N.
1+2-10" 2 -7 .
N | —=| = hen — . when 3(5+3-10") > 1
ow }5_’_3.10,1 3 3G+3. 107 < € when 3(5+3‘10n)<e, Le. when £(5+ ) > /e,

3.10" > 7/3¢ — 5, 10" > é(7/3€ —5)orn> loglo{%(7/3e — 5)} = N, proving the existence of N and thus
establishing the required result.

Note that the above value of N is real only if 7/3¢ — 5 > 0,1i.e.,0 <€ < 7/15. If e = 7/15, we see that
‘1 +2-10" 2

—_— = f .
513107 3‘<e oralln=>0

Explain exactly what is meant by the statements (a) lim 3*"~' = o0, (b) lim (1 —2n) = —
n—oo n—o0

(a) If for each positive number M we can find a positive number N (depending on M) such that a, > M for
all n > N, then we write 11m a, = oo.
2n—1 1 (logM
In this case, 3 >MWhen 2n—1)log3 > logM, ie.,n> = +1)=N.
2\ log3
(b) 1If for each positive number M we can find a positive number N (depending on M) such that a, < —M
for all » > N, then we write lim = —oo.

n—oo

In this case, 1 —2n < —M when 2n—1> M orn> (M +1)=N
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2.7.
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It should be emphasized that the use of the notations co and —oo for limits does not in any way
imply convergence of the given sequences, since co and —oo are not numbers. Instead, these are
notations used to describe that the sequences diverge in specific ways.

Prove that lim x" =0 if |x| < 1.
n— 00

7

Method 1:
We can restrict ourselves to x # 0, since if x = 0, the result is clearly true. Given € > 0, we must show
that there exists N such that |x"| < eforn > N. Now [x"| = |x|" < € when nlog,, |x| < log,y€. Dividing by
S . . log,o € . .
log,, Ix|, which is negative, yields n > loggml | = N, proving the required result.
101X

Method 2:

Let |x| =1/(1 +p), where p > 0. By Bernoulli’s inequality (Problem 1.31, Chapter 1), we have
X" =|x|"=1/(1+p)" <1/(1 +np) <eforalln>N. Thus lim x" =0.
n—o0

THEOREMS ON LIMITS OF SEQUENCES

2.8.

2.9.

2.10.

Prove that if lim u, exists, it must be unique.
n—0oQo
We must show that if lim u, =/, and lim u, =/, then /; = /5.
n—00 n—00
By hypothesis, given any € > 0 we can find N such that
|un—11|<%e when n > N, |un—l2|<%e when n> N
Then
1y = bl =l —uy+u, — bl S |l —uyl + |u, — b <le+le=e

i.e., |l; — b| is less than any positive € (however small) and so must be zero. Thus, /; = /.

If lim a, = 4 and lim b, = B, prove that lim (¢, +b,) = A + B.
n—oo n—oQ

n—oo

We must show that for any € > 0, we can find N > 0 such that |(a, + b,) — (4 + B)| < e foralln > N.
From absolute value property 2, Page 3 we have

[(a, + by) — (A + B)| = (@, — A) + (b, — B)| < |a, — 4|+ |b, — B )
By hypothesis, given € > 0 we can find N; and N, such that
la, — A| <%€ for all n > N, 2)
|b,— Bl <%e  foralln> N, €))
Then from (7), (2), and (3),
|(an+b,7)—(A+B)|<%e+%e:e forallm > N

where N is chosen as the larger of Ny and N,. Thus, the required result follows.

Prove that a convergent sequence is bounded.
Given nlggo a, = A, we must show that there exists a positive number P such that |a,| < P for all n. Now
la,| = la, — A+ A| < la, — A| + |A|
But by hypothesis we can find N such that |a, — 4| < e for alln > N, i.e.,
la,| < e+ |A| foralln > N

It follows that |a,| < P for all n if we choose P as the largest one of the numbers a;, a, ..., ay, € + |A4].
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2.11. If lim b, = B # 0, prove there exists a number N such that |b,| > %|B| foralln > N.

Since B= B — b, +b,, we have: (I) |B| < |B—b,|+ |b,|.
Now we can choose N so that |B—b,| = |b, — B| < %lBl for alln > N, since lim b, = B by hypothesis.
Hence, from (1), |B| < 1|B| + |b,| or |b,| > 1|B| for all n > N. e

2.12. If lim @, = 4 and lim b, = B, prove that lim a,b, = AB.
n—00 n—oo n— 00
We have, using Problem 2.10,

|anbn - AB| = |an(bn - B) + B(an - A)| § |angn - Bl + |B||an - A| (1)
= Plb, — Bl + (1Bl + Dla, — 4|

But since lim a, = 4 and lim b, = B, given any € > 0 we can find N, and N, such that
n—0o0 n—»oo

|bn—13|<£foraun>N1 la, — A] < for all n > N,

¢
2081+ 1)

Hence, from (1), |a,b, — AB| < %e + %e =eforalln > N, where N is the larger of Ny and N,. Thus, the
result is proved.

. . .1 1 . , A
2.13. If lim @, = A and lim b, = B#0, prove (@) lim —=—, (b) lim In _ 2
n—00 n—00 n—00 bn B n—oo b, B

(a) We must show that for any given € > 0, we can find N such that

1 1| _|B=b,
b, B| ™ |Bllb,l

<€ foralln > N (1)

By hypothesis, given any € > 0, we can find N;, such that |b, — B| < %Bze for all n > N;.
Also, since lim b, = B # 0, we can find N, such that |b,| > |B] for all n > N, (see Problem 11).
Then if N is the larger of Ny and N,, we can write (/) as

€ foralln > N

1 1 ‘ |b, — B| 1B
—_ ] = < — ==
b, B IBllb,l ~|Bl-11B]
and the proof is complete.
(b) From part (a) and Problem 2.12, we have
. q . 1 . 1 1 4
Jim g = Jim (a5 ) = Jim o Jim =4 5=

This can also be proved directly (see Problem 41).

2.14. Evaluate each of the following, using theorems on limits.

351 3—5/n 340 3

(a)

I = - _
oS 4 21— 6 S+ 2/n—6/m2 54040 5

. n(n+2) n o P +nt+2n o 1+ 1/n+2/n
) nlgrolo{ n+1 _nz—l—l}_ﬂhﬂr&{m _”lggo m
1+04+0
T(1+0)-(14+0)

© ST i) = fim (T = V) o i =0
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. 31" +4n . 3+4/n
lim — = —
(d) nl>n;lo 2n—1 nLnC;lO 2/}’1 — 1/1’12

Since the limits of the numerator and denominator are 3 and 0, respectively, the limit does not

exist.
3’ +4n 3’ 3 . .
Since }217—%111 > 21 = 7” can be made larger than any positive number M by choosing n > N, we
n— n
30 + 4n _

can write, if desired, lim = 0.
n—

o 2n—1

@ tim (223 2 (im 2230) 2 (2) 216
€ n—oo\2n+7) n—o003+4+7/n —\3) 81

2 — 4n’ i 2/ —4/m° 0

i = — =
U =10 A3 1t — 10jm 3
142 10" 0742 2
(@ fim T2t 102 2 (Compare with Problem 2.5.)

no005 +3-100 noe5-1074+3 3

BOUNDED MONOTONIC SEQUENCES

. 2n—17 . . . .
2.15. Prove that the sequence with nth u, = ;T (a) is monotonic increasing, (b) is bounded
n

above, (c) is bounded below, (d) is bounded, (e) has a limit.
(a) {u,} is monotonic increasing if u,,; = u,, n=1,2,3,.... Now

20n+1)—=17 2n—"7 . .. 2n—=>5 2n—17
> f and only if >
3t 42 = 3ng2 DAOWN TS =302

or 2n—350Gn+2) = 2n—TGBn+5), 6n* —11ln—10 = 60> — 11n — 35, ie. —10= — 35, which is

true. Thus, by reversal of steps in the inequalities, we see that {u,} is monotonic increasing. Actually,
since —10 > —35, the sequence is strictly increasing.

(b) By writing some terms of the sequence, we may guess that an upper bound is 2 (for example). To prove
this we must show that u,, < 2. If 2n—7)/(3n+2) < 2then2n—7 < 6n+4 or —4n < 11, which is
true. Reversal of steps proves that 2 is an upper bound.

(¢) Since this particular sequence is monotonic increasing, the first term —1 is a lower bound, i.e.,
u, 2 —1,n=1,2,3,.... Any number less than —1 is also a lower bound.

(d) Since the sequence has an upper and lower bound, it is bounded. Thus, for example, we can write
lu,| < 2 for all n.

(e) Since every bounded monotonic (increasing or decreasing) sequence has a limit, the given sequence has

. . -7 . 2=T/n 2
a limit. In fact, nlir{}o P )g&m =3

2.16. A sequence {u,} is defined by the recursion formula u,, | = /3u,, u; = 1. (a) Prove that lim u,
exists. () Find the limit in (a). el

(a) The terms of the sequence are u; = 1, u, = /3u, :”73|1/2, uy = By =324
The nth term is given by u, = 3/2F1/4+/2"" 45 can be proved by mathematical induction
(Chapter 1).

Clearly, u,,; = u,. Then the sequence is monotone increasing.

By Problem 1.14, Chapter 1, u,, < 3' =3, ie. u, is bounded above. Hence, u, is bounded (since a
lower bound is zero).

Thus, a limit exists, since the sequence is bounded and monotonic increasing.
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2.17.

2.18.

2.19.

(b) Let x =required limit.  Since lim u,,; = lim /3u,, we have x = +/3x and x =3. (The other

possibility, x = 0, is excluded since u, = 1.)

n—1 . 1 lim=1/2")
1/241/44-+1/2"" _ lim 31 /2" _ 3”1302

n—00

Another method: lim 3 =3'=3

Verify the validity of the entries in the following table.

Monotonic | Monotonic Limit

Sequence Bounded | Increasing | Decreasing | Exists
2,19,18,1.7,...,2—(m—1)/10... No No Yes No
1L—1,1,—1,...,(=D)"", ... Yes No No No

L L TF Tt SUURRY G ) L[ (/ 0 ) N Yes No No Yes (0)

6,.66,.666, ...,3(1 —1/10"), ... Yes Yes No Yes (3
—1,42,-3,+4,-5,...,(=D)'n, ... No No No No

n

. I\, . .
Prove that the sequence with the nth term u,, = (1 + —) is monotonic, increasing, and bounded,
n
and thus a limit exists. The limit is denoted by the symbol e.

1 n
Note: lim (1 + —) = e, where e = 2.71828 ... was introduced in the eighteenth century by
n—00 n

Leonhart Euler as the base for a system of logarithms in order to simplify certain differentiation
and integration formulas.

By the binomial theorem, if n is a positive integer (see Problem 1.95, Chapter 1),

(n—l)Y2+n(n—l)(n—2)x3+.”+n(n—1)---(n—n+l)x,,

no__ n
(1+x)"=14nx+ TR 3 ) P

Letting x = 1/n,

1" 1 -1 1 -1 (n— 1
= (141) = 14plyre=D 1, ez D (mnt ) L
n n 2! n n! n"

1 1 1 1 2
:1+1+2_!(1_;)+§(1_;>(1_5)

+,..+l<1_1)(1_2)..(1_”_1)
n! n n n

Since each term beyond the first two terms in the last expression is an increasing function of #, it follows that
the sequence u,, is a monotonic increasing sequence.
It is also clear that

1\" 11 1 11 1
T ) <Ttldgtot ot <ltltot++

21731 2T T <3

by Problem 1.14, Chapter 1.
Thus, u, is bounded and monotonic increasing, and so has a limit which we denote by e. The value of
e=271828....

. " . . .
Prove that lim <1 + —] = e, where x — oo in any manner whatsoever (i.e., not necessarily along
X—>00 X

the positive integers, as in Problem 2.18).

1 n 1 X 1 n+l
If n = largest integer < x, thenn < x < n+1 and <l +—) < <1 +—) < (l +—> .
n+1 X n

. _ 1y 1\ 1
Since Iim {1+ =lim |1+ 1+ =e
n—00 n+1 n—00 n+1 n—+1
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] 1 n+l ) 1 n 1
and lim (14— =lim|(1+- l+-)=e¢
n—00 n n—o0 n n

1 X
it follows that lim (1 +7> =e.
X—>0C X

LEAST UPPER BOUND, GREATEST LOWER BOUND, LIMIT SUPERIOR, LIMIT INFERIOR

2.20. Find the (a) lub., (b) glb., (¢) limsup(lim), and (d) lim inf (lim) for the sequence
2,-2,1,—-1,1,—-1,1,—1, ....

(a) lu.b. =2, since all terms are less than equal to 2, while at least one term (the 1st) is greater than 2 — €
for any € > 0.

(b) glb. = =2, since all terms are greater than or equal to —2, while at least one term (the 2nd) is less than
—2 + ¢ for any € > 0.

(¢) lim sup or lim = 1, since infinitely many terms of the sequence are greater than 1 — e for any € > 0
(namely, all 1’s in the sequence), while only a finite number of terms are greater than 1 + € for any € > 0
(namely, the 1st term).

(d) lim inf or lim = —1, since infinitely many terms of the sequence are less than —1 + € for any € > 0
(namely, all —1’s in the sequence), while only a finite number of terms are less than —1 — € for any € > 0
(namely the 2nd term).

2.21. Find the (a) Lub., (b) glb., (¢) lim sup (lim), and (d) lim inf (lim) for the sequences in
Problem 2.17.

The results are shown in the following table.

Sequence Lub. | g.b. | lim sup or lim | lim inf or lim
2,19,1.8,1.7,....,2—=(m—1)/10... | 2 | none —c0 -0
L=1,1,=1,....(=D)"", ... 1 —1 1 -1
L T Lt TRUTTY G D Siy/ I ) MR -1 0 0
6,.66,.666, ..., (1 —1/10"), ... 2 6 2 2
—1,42,-3,+4,-5,...,(=D)'n, ... none | none +00 —00

NESTED INTERVALS
2.22. Prove that to every set of nested intervals [a,, b,], n = 1,2, 3, ..., there corresponds one and only

one real number.

By definition of nested intervals, a,,, = a,,b,,; < b,,n=1,2,3,... and lim (a, —b,) = 0.
n—oo

Then a; < a, £ b, £ by, and the sequences {a,} and {b,} are bounded and respectively monotonic
increasing and decreasing sequences and so converge to « and b.
To show that @ = b and thus prove the required result, we note that

bfa:(bfbn)+(bn7an)+(an*a) (1)
‘b_al é |b_bn|+|bn_an|+|an_a| (2)

Now given any € > 0, we can find N such that for all n > N
|b—b,| <¢€/3, |b, —a,| < €/3, la, —al <€/3 3)

so that from (2), |b — a| < €. Since € is any positive number, we must have b —a =0 or a = b.
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2.23. Prove the Bolzano—Weierstrass theorem (see Page 6).

Suppose the given bounded infinite set is contained in the finite interval [a, b]. Divide this interval into
two equal intervals. Then at least one of these, denoted by [a;, b;], contains infinitely many points.
Dividing [ay, b;] into two equal intervals, we obtain another interval, say, [a,, b,], containing infinitely
many points. Continuing this process, we obtain a set of intervals [a,, b,], n = 1,2, 3, ..., each interval
contained in the preceding one and such that

by—a;=(0b-a))2,by—a,= (b —a)/2=0b—a)/2.....b,—a,=(b—a)/2"

from which we see that lim (b, — a,) = 0.
n—oo

This set of nested intervals, by Problem 2.22, corresponds to a real number which represents a limit
point and so proves the theorem.

CAUCHY’S CONVERGENCE CRITERION

2.24. Prove Cauchy’s convergence criterion as stated on Page 25.
Necessity. Suppose the sequence {u,} converges to /. Then given any € > 0, we can find N such that
lu, — 1| < €/2 forall p> N and lug — 1| < €/2 for all g > N
Then for both p > N and ¢ > N, we have
[y —ugl =1y =D+ —u)| < |lu, =l + |l —uyl <€/2+€/2=¢
Sufficiency. Suppose |u, — u,| < € for all p,q > N and any € > 0. Then all the numbers uy, tyi, ...
lie in a finite interval, i.e., the set is bounded and infinite. Hence, by the Bolzano—Weierstrass theorem there

is at least one limit point, say a.
If a is the only limit point, we have the desired proof and lim u, = a.
n—o0

Suppose there are two distinct limit points, say a and b, and suppose b > a (see Fig. 2-1). By definition
of limit points, we have

lu, —al < (b—a)/3 for infinnitely many values of p (/) bh—u b—a
lu, — bl < (b—a)/3 for infinitely many values of ¢ 2 * 3T : EN
: ' b
Then since b —a = (b — u,) + (u, — u,) + (1, — a), we have 4
Ib—al=b—a < |b—u,l+lu, —u,| + u, — al 3) Fig. 2-1

Using (/) and (2) in (3), we see that |u, — u,| > (b — a)/3 for infinitely many values of p and ¢, thus
contradicting the hypothesis that |u, —u,| < € for p,q > N and any € > 0. Hence, there is only one limit
point and the theorem is proved.

INFINITE SERIES

2.25. Prove that the infinite series (sometimes called the geometric series)

o0
atar+at 4+ = E ar"™!
=l

(a) converges to a/(1 —r)if [r| <1, (b) diverges if |r] = 1.

Let S,=a+ar+a’*+-- +ar"!
Then rS, = ar+a’+-+a’ +ar”
Subtract, (1=-nS,=a —ar
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2.26.

2.27.
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1 _
or S, = M
=

1_"
@ I <1, lim S, = im 24 =) _ @
n— 00 n—soo | —r 1—r

by Problem 7.

(b) 1If |[r| > 1, lim S, does not exist (see Problem 44).

Prove that if a series converges, its nth term must necessarily approach zero.

Since S, =uy +uy +---+u,, S, =uy+u,+---+u, ; we have , =S, -8, ;.
If the series converges to S, then

lim u, = lim (S, - S,_;)=lim S, — lim S,_;, =S—-S=0
[e¢]
Prove that the series 1 —1+1—-1+1—-1+-..-= Z:(—l)”’1 diverges.
n=I
Method 1:
lim (—=1)" # 0, in fact it doesn’t exist. Then by Problem 2.26 the series cannot converge, i.e., it diverges.
n—oo
Method 2:
The sequence of partial sumsis 1,1 — 1,1 —1+1,1—-1+1—1,...1e,1,0,1,0,1,0,1,.... Since this

sequence has no limit, the series diverges.

MISCELLANEOUS PROBLEMS

2.28.

2.29.

ul_l’_uz_l’_..._l_un

If lim u, =/, prove that lim ———— =
n—00 n—00 n
Let u, =v,+/. We must show that lim A e =0if lim v, =0. Now
n—o0 n n—oQ
e e +v2+~~-+vp+vp+1 + U2ty
n - n n
so that
vi+ut--tu, < vy +U2+“‘+UP|+|UP+1| +lvppal + -+l )
n n n
Since lim v, = 0, we can choose P so that |v,| < €/2 for n > P. Then
n—00
[vpprl +lvpal + -+ vl €/24€/24---4+€/2 (n—P)/2 €
< = <= 2
n n n 2
After choosing P we can choose N so that forn > N > P,
|U1+U2+"'+Up|<£ (3)

n
Then using (2) and (3), (/) becomes
V] F U+, €

€
" <§+§—e forn> N
thus proving the required result.
Prove that lim (1 +n+n»)"" = 1.
n—00

Let (1 +n+n%)Y" =1+ u, where u, = 0. Now by the binomial theorem,
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T4n+n* =0 +uw) =1+nu,+

-1 —D(n-2
n(nzl )uﬁ+n(n 3)‘(n )u,31 +-tuy,

nn—1mn—2) , 2 6(n* + n)

Then 1+n+n>1+ A u, or 0<un<m.

Hence, lim u2 =0 and lim u, =0. Thus lim (1 +n+m)"" = lim (1 +u,) = 1.
n—o0 n—oo n—o0 n—o0

n
2.30. Prove that lim a—' = 0 for all constants a.

n—o0 n!
n

The result follows if we can prove that lim Zl‘ =0 (see Problem 2.38). We can assume a # 0.
n n—o0 !
Let u, = %. Then 2 — M. If n is large enough, say, n > 2|a|, and if we call N = [2|a| + 1], i.e., the
n! Uy N
greatest integer < 2|a| + 1, then

u 1 u 1 u 1
T

Uy 2uyy 2 Uy 2

Multiplying these inequalities yields o (%)'HV or u, < (%)anuN.
u

N

) ) 1 n—N ) ) )
Since lim (i) =0 (using Problem 2.7), it follows that lim u, = 0.

Supplementary Problems

SEQUENCES

2.31.  Write the first four terms of each of the following sequences:

n+1 n—1 n_2n—1 )
@ < }7 ®) {(_:1)' - }’ (©) {(Z’C)}’ (d) {(_I)Y}’ ) {COS)u }

n+1 @n—1) 1-3:5.-.2n—1) X +n’
V1T V2 3 V4 1 2x 4x° 8x° cosx cos2x cos3x cosdx
Ans. (@) —,—,—,— © =355 == (e) ; 3 20
2737475 1737577 X212 X2 4227 X 4327 w7 4 42
1 1 1 1 —-x X - X’
D T s
®) I 20317 4 ) 1°'1-3’1-.3-5"1-3.5.7

2.32. Find a possible nth term for the sequences whose first 5 terms are indicated and find the 6th term:

_ 2 3 4
(a) ?,g,ﬁ,m,ﬁ,“. (b) 1,0,1,0,1,... (C) 3,0,1,0,3,.4.
o Den- - a3 -
Ans. (@ —Z 75 ®) — © ¥s T2

2.33. The Fibonacci sequence is the sequence {u,} where u, . » = u,, +u, and u; =1, u, = 1. (a) Find the first 6
terms of the sequence. (b) Show that the nth term is given by u, = (a" — b")/+/5, where a = %(1 +4/3),
b=1(1 -3,

Ans. (a) 1,1,2,3,5,8

LIMITS OF SEQUENCES
2.34. Using the definition of limit, prove that:
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2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

2.41.

2.42.

2.43.

2.44.

SEQUENCES [CHAP. 2

4 .
@ m2=2 222 ) im2 Mol (@ im e mse, (@) lim S,
n—o03n =+ 2 3 n—00 n—oo n—oo N

Find the least positive integer N such that |3n+2)/(n—1)—3| <€ for all n> N if (a) e =.01,
(b) € =.001, (c) € =.0001.
Ans. (a) 502, (b) 5002, (c) 50,002
Using the definition of limit, prove that lim (2n — 1)/(3n + 4) cannot be %
n—oo
Prove that lim (—1)"n does not exist.
n—oo

Prove that if lim |u,| = 0 then lim u, = 0. Is the converse true?
n—00 n—00

If lim u, =/, prove that (a) lim cu, = ¢/ where c is any constant, (b) lim > =/, (¢) lim ul =7
n—o00 n—00 n—00 n—00
where p is a positive integer, (d) lim /u, =~/1,1 = 0.
n—0o0

Give a direct proof that lim a,/b, = A/B if lim a, = 4 and lim b, = B#0.
n—00 n—oo n—-oo
Prove that () lim 3" =1, () lim ()""=1, (¢) lim ()'=0.
If r > 1, prove that lim r" = oo, carefully explaining the significance of this statement.
n—0o0

If |r| > 1, prove that lim /" does not exist.
n—oQ

Evaluate each of the following, using theorems on limits:

_ _ 3,2 2 _
(@ lim 22230 () lim Y= n+4 (©) lim (Vi? +n—n)

n—00 2}12 +n n—o00 2n—17

. G = Y +2 . 4.10"—3.10" i
o (PN s e O Jime e

Ans. (a) —3/2, () —1/2, (o) V3/2. (d) —15. (e) 1/2, (/) 3

BOUNDED MONOTONIC SEQUENCES

2.45.

2.46.

2.47.

2.48.

2.49.

Prove that the sequence with nth term u,, = /n/(n + 1) (a) is monotonic decreasing, (b) is bounded below,
(¢) is bounded above, (d) has a limit.

1 1 1 1
If u, = + + 4+ , prove that lim u, exists and lies between 0 and 1.
1+n 24n 34+n n-+n n—00

If U, = u, + I, uy = 1, prove that lim u, = 1(1 +/5).
n—oo

If u, .| = %(un + p/u,) where p > 0 and u; > 0, prove that lim u, = ,/p. Show how this can be used to
determine /2. e

If u, is monotonic increasing (or monotonic decreasing), prove that S, /n, where S, = u; +u, + - - -+ u,, is
also monotonic increasing (or monotonic decreasing).

LEAST UPPER BOUND, GREATEST LOWER BOUND, LIMIT SUPERIOR, LIMIT INFERIOR

2.50.

Find the Lu.b., g.I.b., lim sup (lim), lim inf (lim) for each sequence:
(@ 14, =L L1 (=1)/@en—1),... () 1,-3,5=7,....(=1y"'@n=1),...
) 2, =34 -3 =)+ D)/ +2), ... (d) 1,4,1,16,1,36, ... a0
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Ans. (a) % —1,0,0 (b) 1,—1,1,—1 (c) none, none, 400, —oo (d) none, 1, +o00, 1
2.51.  Prove that a bounded sequence {u,} is convergent if and only if limu, = lim u,.

INFINITE SERIES

o0
2.52. Find the sum of the series Z(%)" Ans. 2

n=1

=

253, Evaluate Y (—1)"""/5". Ans.
n=1

2.54 ProvethatL L-|-L_¢_L_|_ _i¥_1 Hint: 1 _1 1
" 1.2 2.3 3.4 4.5 S+ 1) “an+1)"n n+l

2.55. Prove that multiplication of each term of an infinite series by a constant (not zero) does not affect the
convergence or divergence.

11 1 1 1 1
2.56. Prove that the series 1 + 3 + 3 + .-+ —+--- diverges. |:Hint: Let S, =1+ 3 + 3 +---+—. Then prove
n n

that |S,, — S,| > %, giving a contradiction with Cauchy’s convergence criterion.

MISCELLANEOUS PROBLEMS
257. Ifa, Zu, b, foralln>N,and lim g, = lim b, =/, prove that lim u, = /.

2.58. If lim a, = lim b, = 0, and 6 is independent of n, prove that hm (an cosnf + b, sinnf) = 0. Is the result
— 00 n—o00

n
true when 6 depends on n?

2.59. Letu,=i{1+(-1)"L, n=123,.... IfS,=u +uy+--+u, prove thatlim S,/n=1.
n—o0
2.60. Prove that (a) 11m /" =1, (b) lim (a +n)""" =1 where a and p are constants.

2.61. If lim |u,,/u,| = lal <1, prove that lim u, = 0.
n—o0 n—oo

2.62. 1If |a| < 1, prove that lim n”d" = 0 where the constant p > 0.

n

|
2.63. Prove that lirn2 ’7 =0.
n

2.64. Prove that lim nsinl/n = 1. Hint: Let the central angle, 6, of a circle be measured in radians. Geome-
n—o0
trically illustrate that sin6 <60 <tan6, 0 <6 < 7.
Let 6 = 1/n. Observe that since n is restricted to positive integers, the angle is restricted to the first
quadrant.

2.65. If {u,} is the Fibonacci sequence (Problem 2.33), prove that lim u,/u, = %(1 +/5).
n—00

2.66. Prove that the sequence u, = (1 + l/n)"“, n=1,2,3,...1s a monotonic decreasing sequence whose limit
is e. [Hint: Show that u,/u,_; < 1.]

2.67. Ifa, = b, foralln> N and lim a, = A, hm b, = B, prove that 4 = B.

n—00

2.68. If |u,| < |v,| and lim v, = 0, prove that lim u, = 0.
n— 00 n—o0

1 I 1 1
2.69. Provethat lim —{1+<-4+-+---+-)=0.
n—>00 1 23 n
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2.70.

2.71.

2.72.

2.73.

SEQUENCES [CHAP. 2

Prove that [a,, b,], where a, = (1 + 1/n)" and b, = (1 + 1/n)""!, is a set of nested intervals defining the
number e.

Prove that every bounded monotonic (increasing or decreasing) sequence has a limit.

Let {u,} be a sequence such that u,,, = au,, | + bu, where a and b are constants. This is called a second
order difference equation for u,. () Assuming a solution of the form u, = 1" where r is a constant, prove
that r must satisfy the equation 1> —ar—b=0. (b) Use (a) to show that a solution of the difference
equation (called a general solution) is u, = Ar] + Br3, where A and B are arbitrary constants and r; and
r, are the two solutions of > — ar — b = 0 assumed different. (¢) In case r; = r, in (b), show that a (general)
solution is u, = (4 + Bn)ri.

Solve the following difference equations subject to the given conditions: (@) w40 = g + Uy, g =1,
uy = 1 (compare Prob. 34); (b) u,n =2u,y +3u, uy =3, uy =5; (¢) Uyyn =4ty —duy, up =2, uy = 8.
Ans. (a) Same as in Prob. 34, (b) u, =2(3)""' +(=D)""" () u, =n-2"



Functions, Limits, and
Continuity

FUNCTIONS

A function is composed of a domain set, a range set, and a rule of correspondence that assigns
exactly one element of the range to each element of the domain.

This definition of a function places no restrictions on the nature of the elements of the two sets.
However, in our early exploration of the calculus, these elements will be real numbers. The rule of
correspondence can take various forms, but in advanced calculus it most often is an equation or a set of
equations.

If the elements of the domain and range are represented by x and y, respectively, and f* symbolizes
the function, then the rule of correspondence takes the form y = f(x).

The distinction between f* and f(x) should be kept in mind. f denotes the function as defined in the
first paragraph. y and f(x) are different symbols for the range (or image) values corresponding to
domain values x. However a “common practice” that provides an expediency in presentation is to read
f(x) as, “the image of x with respect to the function /> and then use it when referring to the function.
(For example, it is simpler to write sin x than ‘“‘the sine function, the image value of which is sin x.”)
This deviation from precise notation will appear in the text because of its value in exhibiting the ideas.

The domain variable x is called the independent variable. The variable y representing the corre-
sponding set of values in the range, is the dependent variable.

Note: There is nothing exclusive about the use of x, y, and f to represent domain, range, and
function. Many other letters will be employed.

There are many ways to relate the elements of two sets. [Not all of them correspond a unique range
value to a given domain value.] For example, given the equation y* = x, there are two choices of y for
each positive value of x. As another example, the pairs (a, b), (a, ¢), (a, d), and (a, e) can be formed and
again the correspondence to a domain value is not unique. Because of such possibilities, some texts,
especially older ones, distinguish between multiple-valued and single-valued functions. This viewpoint
is not consistent with our definition or modern presentations. In order that there be no ambiguity, the
calculus and its applications require a single image associated with each domain value. A multiple-
valued rule of correspondence gives rise to a collection of functions (i.e., single-valued). Thus, the rule
y? = xis replaced by the pair of rules y = x'/? and y = —x'/? and the functions they generate through the
establishment of domains. (See the following section on graphs for pictorial illustrations.)
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EXAMPLES. 1. If to each number in —1 < x < | we associate a number y given by x2, then the interval
—1 < x < 1 is the domain. The rule y = x* generates the range —1 < y < 1. The totality
is a function f.
The functional image of x is given by y = f(x) = x*. For example, f(—1) = (—1)* =} is the
image of f% with respect to the function f.

2. The sequences of Chapter 2 may be interpreted as functions. For infinite sequences consider the
domain as the set of positive integers. The rule is the definition of u,, and the range is generated
by this rule. To illustrate, let u, = % with n=1,2,.... Then the range contains the elements
1,4,4,5, ... If the function is denoted by f, then we may write f(n) = 1.

As you read this chapter, reviewing Chapter 2 will be very useful, and in particular com-
paring the corresponding sections.

3. With each time ¢ after the year 1800 we can associate a value P for the population of the United
States. The correspondence between P and ¢ defines a function, say F, and we can write
P = F(1).

4. For the present, both the domain and the range of a function have been restricted to sets of real
numbers. Eventually this limitation will be removed. To get the flavor for greater generality,
think of a map of the world on a globe with circles of latitude and longitude as coordinate
curves. Assume there is a rule that corresponds this domain to a range that is a region of a
plane endowed with a rectangular Cartesian coordinate system. (Thus, a flat map usable for
navigation and other purposes is created.) The points of the domain are expressed as pairs of
numbers (6, ¢) and those of the range by pairs (x, y). These sets and a rule of correspondence
constitute a function whose independent and dependent variables are not single real numbers;
rather, they are pairs of real numbers.

8=

GRAPH OF A FUNCTION

A function f establishes a set of ordered pairs (x, y) of real numbers. The plot of these pairs
(x, f(x)) in a coordinate system is the graph of /. The result can be thought of as a pictorial representa-
tion of the function.

For example, the graphs of the functions described by y = XX, -1 <x<1,and y2 =x,0=x<1,
y = 0 appear in Fig. 3-1.

Fig. 3-1

BOUNDED FUNCTIONS

If there is a constant M such that f(x) < M for all x in an interval (or other set of numbers), we say
that f" is bounded above in the interval (or the set) and call M an upper bound of the function.

If a constant m exists such that f(x) = m for all x in an interval, we say that f(x) is bounded below in
the interval and call m a lower bound.
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If m < f(x) £ M in an interval, we call f(x) bounded. Frequencly, when we wish to indicate that a
function is bounded, we shall write | f(x)| < P.

EXAMPLES. 1. f(x) =3+ xisboundedin —1 < x < 1. An upper bound is 4 (or any number greater than 4).
A lower bound is 2 (or any number less than 2).
2. f(x)=1/xisnot bounded in 0 < x < 4 since by choosing x sufficiently close to zero, f(x) can be
made as large as we wish, so that there is no upper bound. However, a lower bound is given by
1 (or any number less than ).

If f(x) has an upper bound it has a least upper bound (1.u.b.); if it has a lower bound it has a greatest
lower bound (g.1.b.). (See Chapter 1 for these definitions.)

MONOTONIC FUNCTIONS

A function is called monotonic increasing in an interval if for any two points x; and x, in the interval
such that x; < x5, f(x;) < f(x2). If f(x;) < f(x,) the function is called strictly increasing.

Similarly if f(x;) = f(x,) whenever x| < x,, then f(x) is monotonic decreasing; while if f(x;) > f(x,),
it is strictly decreasing.

INVERSE FUNCTIONS. PRINCIPAL VALUES

Suppose y is the range variable of a function f with domain variable x. Furthermore, let the
correspondence between the domain and range values be one-to-one. Then a new function f ~! called
the inverse function of f, can be created by interchanging the domain and range of /. This information is
contained in the form x :f_l(y).

As you work with the inverse function, it often is convenient to rename the domain variable as x and
use y to symbolize the images, then the notation is y = f~!(x). In particular, this allows graphical
expression of the inverse function with its domain on the horizontal axis.

Note: f~' does not mean f to the negative one power. When used with functions the notation /™!
always designates the inverse function to f.

If the domain and range elements of f* are not in one-to-one correspondence (this would mean that
distinct domain elements have the same image), then a collection of one-to-one functions may be created.
Each of them is called a branch. 1t is often convenient to choose one of these branches, called the
principal branch, and denote it as the inverse function, f~'. The range values of f that compose the
principal branch, and hence the domain of £~ are called the principal values. (As will be seen in the
section of elementary functions, it is common practice to specify these principal values for that class of
functions.)

EXAMPLE. Suppose f is generated by y = sinx and the domain is —oo < x < oco. Then there are an infinite
number of domain values that have the same image. (A finite portion of the graph is illustrated below in Fig. 3-2(a.)
In Fig. 3-2(b) the graph is rotated about a line at 45° so that the x-axis rotates into the y-axis. Then the variables are
interchanged so that the x-axis is once again the horizontal one. We see that the image of an x value is not unique.
Therefore, a set of principal values must be chosen to establish an inverse function. A choice of a branch is

accomplished by restricting the domain of the starting function, sinx. For example, choose ) <x=
Then there is a one-to-one correspondence between the elements of this domain and the images in —1 <

X
Thus, /' may be defined with this interval as its domain. This idea is illustrated in Fig. 3-2(c) and Fig. 3-
With the domain of ! represented on the horizontal axis and by the variable x, we write y =sin ' x, =1 < x <

If x = —1, then the corresponding range value is y = T
Note: In algebra, b~! means b and the fact that bb~! produces the identity element 1 is simply a rule of algebra

generalized from arithmetic. Use of a similar exponential notation for inverse functions is justified in that corre-
sponding algebraic characteristics are displayed by f~'[f(x)] = x and f[f~'(x)] = x.
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/

/2

- w2 J'\/Zn -1 1

- —/2
y=sinx —0 <y< oo —n\
(a) (b)
y y
x X
—n/2 < x < 7/2 -l=sx<1
y=sinx y=sin"lx
© , )
Fig. 3-2

MAXIMA AND MINIMA

The seventeenth-century development of the calculus was strongly motivated by questions concern-
ing extreme values of functions. Of most importance to the calculus and its applications were the
notions of local extrema, called relative maximums and relative minimums.

If the graph of a function were compared to a path over hills and through valleys, the local extrema
would be the high and low points along the way. This intuitive view is given mathematical precision by
the following definition.

Definition: If there exists an open interval (a, b) containing ¢ such that f(x) < f(c) for all x other than ¢
in the interval, then f(¢) is a relative maximum of f. If f(x) > f(c¢) for all x in (a, b) other than ¢, then
f(c) is a relative minimum of f. (See Fig. 3-3.)

Functions may have any number of relative extrema. On the other hand, they may have none, as in
the case of the strictly increasing and decreasing functions previously defined.

Definition: 1If ¢ is in the domain of /" and for all x in the domain of the function f(x) < f(c), then f(c) is
an absolute maximum of the function f. If for all x in the domain f(x) = f(c) then f(c) is an absolute
minimum of f. (See Fig. 3-3.)

Note: If defined on closed intervals the strictly increasing and decreasing functions possess absolute
extrema.
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Absolute extrema are not necessarily unique. For example, if the graph of a function is a horizontal
line, then every point is an absolute maximum and an absolute minimum.

Note: A point of inflection also is represented in Fig. 3-3. There is an overlap with relative extrema in
representation of such points through derivatives that will be addressed in the problem set of Chapter 4.

Absolute
maximum

‘ Point of
Rc]?thC Relative inflection
maximum maximum

Relative

minimum
I

minimum
Absolute

minimum
I

Fig. 3-3

TYPES OF FUNCTIONS

It is worth realizing that there is a fundamental pool of functions at the foundation of calculus and
advanced calculus. These are called elementary functions. Either they are generated from a real variable
x by the fundamental operations of algebra, including powers and roots, or they have relatively simple
geometric interpretations. As the title “elementary functions’ suggests, there is a more general category
of functions (which, in fact, are dependent on the elementary ones). Some of these will be explored later
in the book. The elementary functions are described below.

1.

Polynomial functions have the form
S = apx" + X"+t a1 x+a, )

where qy, ..., a, are constants and # is a positive integer called the degree of the polynomial if
agy # 0.

The fundamental theorem of algebra states that in the field of complex numbers every
polynomial equation has at least one root. As a consequence of this theorem, it can be proved
that every nth degree polynomial has n roots in the complex field. When complex numbers are
admitted, the polynomial theoretically may be expressed as the product of # linear factors; with
our restriction to real numbers, it is possible that 2k of the roots may be complex. In this case,
the k factors generating them will be quadratic. (The corresponding roots are in complex
conjugate pairs.) The polynomial x> — 5x% + 11x — 15 = (x — 3)(x> — 2x + 5) illustrates this
thought.

Algebraic functions are functions y = f(x) satisfying an equation of the form

oY + P ()Y T+ P ()Y + pu(x) =0 Q)

where py(x), ..., p,(x) are polynomials in x.

If the function can be expressed as the quotient of two polynomials, i.e., P(x)/Q(x) where
P(x) and Q(x) are polynomials, it is called a rational algebraic function; otherwise it is an
irrational algebraic function.

Transcendental functions are functions which are not algebraic, i.e., they do not satisfy equations
of the form (2).
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Note the analogy with real numbers, polynomials corresponding to integers, rational functions to
rational numbers, and so on.

TRANSCENDENTAL FUNCTIONS

The following are sometimes called elementary transcendental functions.

Exponential function: f(x) =a", a #0,1. For properties, see Page 3.

2. Logarithmic function: f(x) =log,x, a #0,1. This and the exponential function are inverse
functions. If a=e=2.71828..., called the natural base of logarithms, we write
f(x) =log, x = Inx, called the natural logarithm of x. For properties, see Page 4.

3. Trigonometric functions (Also called circular functions because of their geometric interpreta-
tion with respect to the unit circle):
1 1 1 cosx

. sin x
SIn X, COS X, tan x = ——,CSCX = ——, SECX = ,cotx =
COS X sin x COS X

tanx ~ sinx

The variable x is generally expressed in radians (r radians = 180°). For real values of x,
sin x and cos x lie between —1 and 1 inclusive.

The following are some properties of these functions:

sin® x 4 cos*x = 1 1 + tan® x = sec’ x 1 +cot? x = csc? x

sin(x £ y) = sinxcos y &= cos xsin y sin(—x) = —sinx

cos(x £ y) = cosxcosy Fsinxsiny cos(—x) = cosx
tan x & tan

tan(x + y) = Y tan(—x) = —tanx

l Ftanxtany

4. Inverse trigonometric functions. The following is a list of the inverse trigonometric functions
and their principal values:

(@) y=sin"'x, (=n/2 <y < 7/2) (d) y=csc'x=sin""1/x, (/2 £y £ 7/2)
(b) y=cos'x, 0Ly <) (e) y=sec'x=cos'I/x, (0 <y <)
() y=tan'x, (-7/2 <y <n/2) (f) y=cot'x=n/2—tan"'x, (0 <y <m)

5. Hyperbolic functions are defined in terms of exponential functions as follows. These functions
may be interpreted geometrically, much as the trigonometric functions but with respect to the
unit hyperbola.

) et —e " 1 2
(a) sinh x = T (d) cschx = sinh x = m
e e 1 2
b hx=——++— hx = e —
() coshx 3 (e) sechx coshx — o F o

sinhx e —e™" *

coshx e +e”
coshx  e"4e*

(¢) tanhx = (f) cothx =

sinhx e¥—e™~

The following are some properties of these functions:

cosh? x —sinh? x = 1 1 — tanh® x = sech® x coth’ x — 1 = csch? x

sinh(x & y) = sinh x cosh y 4 cosh x sinh y sinh(—x) = —sinh x

cosh(x + y) = cosh x cosh y & sinh xsinh y cosh(—x) = cosh x
tanh x & tanh y

tanh(x £ y) = amn -y = Ty tanh(—x) = —tanh x

1 £ tanh xtanh y
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6. Inverse hyperbolic functions. If x = sinh y then y = sinh™' x is the inverse hyperbolic sine of x.
The following list gives the principal values of the inverse hyperbolic functions in terms of
natural logarithms and the domains for which they are real.

1Vt
(@) sinh™'x=In(x+vx?+1), all x (d) Csch_lx:ln<;+%),)»‘750
T
() cosh' x=In(x+vx>—1),x = 1 (@) sech—‘x:1n<u>,o <x <1
X
1 /1 1 /x+1
() tanh ' x==In(~F) xl <1 (f) cothx=xln(X0) x> 1
PR VI 2 M1

LIMITS OF FUNCTIONS

Let f(x) be defined and single-valued for all values of x near x = x; with the possible exception of
X = x itslef (i.e., in a deleted § neighborhood of x;). We say that the number / is the /imit of f(x) as x
approaches x, and write lim f(x) =/ if for any positive number ¢ (however small) we can find some
positive number § (usuall§ﬁgbending on €) such that | f(x) — /| < € whenever 0 < |x — xy| < 4. In such
case we also say that f(x) approaches / as x approaches x; and write f(x) — [ as x — x.

In words, this means that we can make f(x) arbitrarily close to / by choosing x sufficiently close to

X0

XPif x #£2 .
EXAMPLE. Let f(x) = 0 'f 7"~ . Then as x gets closer to 2 (i.e., x approaches 2), f(x) gets closer to 4. We
thus suspect that hm f (x) =4. To prove this we must see whether the above definition of limit (with / =4) is

satisfied. For thls proof see Problem 3.10.
Note that l_1mzf(x) # f(2), i.e., the limit of f(x) as x — 2 is not the same as the value of f(x) at x = 2 since

f(2) =0 by definition. The limit would in fact be 4 even if f(x) were not defined at x = 2.

When the limit of a function exists it is unique, i.c., it is the only one (see Problem 3.17).

RIGHT- AND LEFT-HAND LIMITS

In the definition of limit no restriction was made as to how x should approach x,. It is sometimes
found convenient to restrict this approach. Considering x and x, as points on the real axis where x is
fixed and x is moving, then x can approach x; from the right or from the left. We indicate these
respective approaches by writing x — xy+ and x — xo—.

If lim f(x)=/ and 11m f(x) =1L, we call [; and /5, respectively, the right- and left-hand limits of
f at x, an& denote them by f(xo—i-) or f(xy 4+ 0) and f(xy—) or f(xo — 0). The ¢, § definitions of limit of
f(x) as x - xp+ or x — xy,— are the same as those for x — x( except for the fact that values of x are

restricted to x > x, or x < X, respectively.
We have lim f(x) =/ if and only if lim+ f(x)= lim f(x)=1
X—>Xg X—>Xg X—>Xg—

THEOREMS ON LIMITS
If lim f(x) = A and lim g(x) = B, then
X—> X

X=X

L lim (f(x) +g(x) = lim f(x) + lim g(x) = 4+ B
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2. lim (f(x) - g(x)) = lim f(x) — lim g(x) =4 - B

3. lim (/()g(x) = ( lim f(x)) (\_lgg g(x)) — 4B
f(‘C) lim f(x)

X—> X .
ol A ippag

o g(x) Tim g(x) B it B#
—>Xp

Similar results hold for right- and left-hand limits.

INFINITY

It sometimes happens that as x — x,, f(x) increases or decreases without bound. In such case it is
customary to write hm f(x) = 400 or hm f(x) = —o0, respectively. The symbols 400 (also written

—>Xg

00) and —oo are redd plus infinity (or mﬁmty) and minus infinity, respectively, but it must be emphasized
that they are not numbers.
In precise language, we say that 11m f(x) = oo if for each positive number M we can find a positive
X—>
number § (depending on M in general) such that f(x) > M whenever 0 < |x — xg| < §. Similarly, we say
that 11m f(x) = —oo if for each positive number M we can find a positive number § such that

f(x) < M whenever 0 < |x — xg| < 8. Analogous remarks apply in case x — xy+ or x — xg—.
Frequently we wish to examine the behavior of a function as x increases or decreases without bound.
In such cases it is customary to write x — +o00 (or 00) or x — —o0, respectively.
We say that Yll;l}_loo f(x)=1, or f(x) = [ as x — o0, if for any positive number € we can find a
positive number N (depending on € in general) such that | f(x) — /| < € whenever x > N. A similar
definition can be formulated for vLimm f(x).

SPECIAL LIMITS

1 lim 22y, Jim LS5 Y _

x—0 X x—0 X
. I .

2. lim (1 —|——> =e, lim (1+x)"" =e

X—00 X x—0+
)'x J— J—

3 imE 1o, im =

x—0 X x—1 Inx
CONTINUITY

Let / be defined for all values of x near x = x; as well as at x = x; (i.e., in a § neighborhood of x;).
The function f is called continuous at x = x; if hm f(x) =f(xp). Note that this implies three conditions

which must be met in order that f(x) be contlnuous at x = xg.

1. lim f(x) =/ must exist.

X—>Xg
2. f(xo) must exist, i.e., f(x) is defined at x.
3. I=1(xp).

In summary, lim f(x) is the value suggested for f at x = x; by the behavior of f in arbitrarily small
X—> X

neighborhoods of xy. If in fact this limit is the actual value, f(x,), of the function at x,, then f is
continuous there.
Equivalently, if f is continuous at x,, we can write this in the suggestive form lim f(x) = f(lim x).
X—> X X—> X
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2
EXAMPLES. 1. Iff(x)= {g . XF ; then from the example on Page 45 lirn2 f(x)=4. Butf(2)=0. Hence
N X = X—
lim2 f(x) # f(2) and the function is not continuous at x = 2.

2. iff(x) = »° for all x, then l_in% f(x) =f(2) =4 and f(x) is continuous at x = 2.

Points where f fails to be continuous are called discontinuities of f and f is said to be discontinuous at
these points.

In constructing a graph of a continuous function the pencil need never leave the paper, while for a
discontinuous function this is not true since there is generally a jump taking place. This is of course
merely a characteristic property and not a definition of continuity or discontinuity.

Alternative to the above definition of continuity, we can define f as continuous at x = x, if for any
€ > 0 we can find § > 0 such that | f(x) — f(xy)| < € whenever |x — xo| < 8. Note that this is simply the
definition of limit with / = f(x,) and removal of the restriction that x # Xx.

RIGHT- AND LEFT-HAND CONTINUITY

If /' is defined only for x = X, the above definition does not apply. In such case we call f continuous
(on the right) at x = x if lim+ f(x) =f(xp), 1.e., if f(xg+) = f(xp). Similarly, f is continuous (on the left)
at x = xo if lim  f(x) Qf(xoo), i.e., f(xo—) = f(xg). Definitions in terms of € and § can be given.
X—Xp—

CONTINUITY IN AN INTERVAL

A function f"is said to be continuous in an interval if it is continuous at all points of the interval. In
particular, if /" is defined in the closed interval ¢ < x < b or [a, b], then f is continuous in the interval if

and only if lim f(x) = f(xo) for a < xo < b, lim f(x)=/(a) and lim f(x) = /().

THEOREMS ON CONTINUITY
Theorem 1. 1f f and g are continuous at x = X, so also are the functions whose image values satisfy the

relations f(x) 4+ g(x), f(x) — g(x), f(x)g(x) and % the last only if g(xy) # 0. Similar results hold for
continuity in an interval.

Theorem 2. Functions described as follows are continuous in every finite interval: (a) all polynomials;
(b) sinx and cosx; (¢) a*',a>0

Theorem 3. Let the function f be continuous at the domain value x = x;. Also suppose that a function
g, represented by z = g(»), is continuous at y,, where y = f(x) (i.e., the range value of /" corresponding to
Xg 1s a domain value of g). Then a new function, called a composite function, f(g), represented by
z = g[f(x)], may be created which is continuous at its domain point x = x,. [One says that a continuous
function of a continuous function is continuous.)

Theorem 4. 1f f(x) is continuous in a closed interval, it is bounded in the interval.

Theorem 5. 1If f(x) is continuous at x = x, and f(xg) > 0 [or f(xy) < 0], there exists an interval about
X = xo in which f(x) > 0 [or f(x) < 0].

Theorem 6. 1If a function f(x) is continuous in an interval and either strictly increasing or strictly
decreasing, the inverse function f' ’1(x) is single-valued, continuous, and either strictly increasing or
strictly decreasing.
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Theorem 7. If f(x) is continuous in [a, b] and if f(a) = A and f(b) = B, then corresponding to any
number C between A4 and B there exists at least one number c¢ in [a, 5] such that f(c) = C. This is
sometimes called the intermediate value theorem.

Theorem 8. 1If f(x) is continuous in [a, b] and if f(a) and f(b) have opposite signs, there is at least one
number ¢ for which f(c) = 0 where @ < ¢ < b. This is related to Theorem 7.

Theorem 9. 1f f(x) is continuous in a closed interval, then f(x) has a maximum value M for at least one
value of x in the interval and a minimum value m for at least one value of x in the interval. Further-
more, f(x) assumes all values between m and M for one or more values of x in the interval.

Theorem 10. 1f f(x) is continuous in a closed interval and if M and m are respectively the least upper
bound (l.u.b.) and greatest lower bound (g.1.b.) of f(x), there exists at least one value of x in the interval
for which f(x) = M or f(x) = m. This is related to Theorem 9.

PIECEWISE CONTINUITY

A function is called piecewise continuous in an interval a < x < b if the interval can be subdivided
into a finite number of intervals in each of which the function is continuous and has finite right- and left-
hand limits. Such a function has only a finite number of discontinuities. An example of a function
which is piecewise continuous in ¢ < x < b is shown graphically in Fig. 3-4 below. This function has
discontinuities at x;, x5, X3, and xy.

S
|

T I

Fig. 3-4

UNIFORM CONTINUITY

Let f be continuous in an interval. Then by definition at each point x; of the interval and for any
€ > 0, we can find § > 0 (which will in general depend on both € and the particular point x;) such that
|f(x) — f(xp)] < e whenever |x — xy| < 8. If we can find § for each € which holds for all points of the
interval (i.e., if § depends only on € and not on x;), we say that f is uniformly continuous in the interval.

Alternatively, f is uniformly continuous in an interval if for any € > 0 we can find § > 0 such that
|f(x1) —f(xy)| < € whenever |x; — x,| < § where x; and x, are any two points in the interval.

Theorem. 1If f is continuous in a closed interval, it is uniformly continuous in the interval.
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Solved Problems

FUNCTIONS

3.1.

3.2.

3.3.

Let f(x) =(x—2)8 —x) for2 < x £ 8. (a) Find f(6) and f(—1). (b) What is the domain of
definition of f(x)? (¢) Find f(1 — 2¢) and give the domain of definition. (d) Find fTf(3)],
JI/B)]. () Graph f(x).
(a) f(6)=(6—-2)(8—-6)=4-2=28

f(=1) is not defined since f(x) is defined only for 2 < x < 8.
(b) The set of all x such that 2 < x < 8.

(&) f(1 —20) = {(1 —21) — 2}{8 — (1 — 20)} = —(1 + 2¢)(7 + 2¢) where ¢ is such that 2 < 1—2¢ < 8, ie.,
—12 <1< —1)2.

d f3)=36-28-3)=5, )
SU@I=/6)=(6-28-5 =9. .
f(5) =9 so that f[f(5)] =f(9) is not defined. 8

(e) The following table shows f(x) for various values of x.

X 2 3 4 5 6 7 8 2.5 |75 4~
f(x)| 0 5 8 9 8 5 0 [2.75(2.75 2
. T T T T 1T T ¢ 7T X
Plot points (2, 0), (3, 5), (4, 8), (5,9), (6, 8), (7, 5), (8, 0), 2 4 6 8
(2.5,2.75), (7.5, 2.75).
These points are only a few of the infinitely many points Fig. 3-5

on the required graph shown in the adjoining Fig. 3-5. This
set of points defines a curve which is part of a parabola.

Let g(x) = (x — 2)(8 — x) for 2 < x < 8. (a) Discuss the difference between the graph of g(x) and
that of f(x) in Problem 3.1. (b) What is the L.u.b. and g.1l.b. of g(x)? (¢) Does g(x) attain its
l.u.b. and g.L.b. for any value of x in the domain of definition? (d) Answer parts (b) and (c) for
the function f(x) of Problem 3.1.

(a) The graph of g(x) is the same as that in Problem 3.1 except that the two points (2,0) and (8, 0) are
missing, since g(x) is not defined at x =2 and x = 8.

(b) The Lu.b. of g(x) is 9. The g.l.b. of g(x) is 0.

(¢) The Lu.b. of g(x) is attained for the value of x = 5. The g.l.b. of g(x) is not attained, since there is no
value of x in the domain of definition such that g(x) = 0.

(d) Asin (b), the L.u.b. of f(x) is 9 and the g.l.b. of f(x) is 0. The Lu.b. of f(x) is attained for the value
x = 5 and the g.l.b. of f(x) is attained at x =2 and x = 8.

Note that a function, such as f(x), which is continuous in a closed interval attains its l.u.b. and g.1.b.
at some point of the interval. However, a function, such as g(x), which is not continuous in a closed
interval need not attain its L.u.b. and g.l.b. See Problem 3.34.

__J 1, if x is a rational number . ” . .
Let f(x) = {O, if x is an irrational number’ (@) Find 1), J(=3), f(1.41423), f(\/j)’
(b) Construct a graph of f(x) and explain why it is misleading by itself.
(@ f3 =1 since s a rational number
f(=5) =1 since —5 is a rational number

f(1.41423) =1 since 1.41423 is a rational number
f(V2) =0 since +/2 is an irrational number
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3.4.

3.5.

3.6.

3.7.

FUNCTIONS, LIMITS, AND CONTINUITY

(b) The graph is shown in the adjoining Fig. 3-6. Because both the
sets of rational numbers and irrational numbers are dense, the
visual impression is that there are two images corresponding to
each domain value. In actuality, each domain value has only
one corresponding range value.

Referring to Problem 3.1: (a) Draw the graph with axes
interchanged, thus illustrating the two possible choices avail-
able for definition of f~'.  (b) Solve for x in terms of y to

Jx)

[CHAP. 3

Fig. 3-6

determine the equations describing the two branches, and then interchange the variables.

(a) The graph of y = f(x) is shown in Fig. 3-5 of Problem 3.1(a).

(b) We have y = (x —2)8 —x) or x> — 10x+ 16 + y = 0. The solu-
tion of this quadratic equation is

x=5£9—y.
After interchanging variables
y=5++v/9—x.

In the graph, AP represents y = 5+ +/9 — x, and BP designates
y=5—+/9—x. Either branch may represent /.
Note: The point at which the two branches meet is called a
branch point.

By interchanging the axes (and the
variables), we obtain the graphical form of Fig. 3-7. This figure illustrates that there are two values of y
corresponding to each value of x, and hence two branches. Either may be employed to define /7!

y=/"'
8 -+
o
o

24

A

(a) Prove that g(x) =5+ +/9 — x is strictly decreasing in 0 < x < 9.

decreasing in this interval?

(a) g(x) is strictly decreasing if g(x;) > g(x,) whenever x; < x,.

(¢) Does g(x) have a single-valued inverse?

If x; <

(b) Is it monotonic

X, then 9 —x; > 9 —x,,

VI=x1 > /9 —x, 5+ 9 —x; > 5+ 9 — x, showing that g(x) is strictly decreasing.

(0)
that g(x;) = g(x,).

(©)

single-valued function of y, i.e., the inverse function is single-valued.

Yes, any strictly decreasing function is also monotonic decreasing, since if g(x;) > g(x,) it is also true
However, if g(x) is monotonic decreasing, it is not necessarily strictly decreasing.

If y=54+/9 —x, then y —5 =4+/9 — x or squaring, x = —16 + 10y—y2 =(»-2)8—y)and x is a

In general, any strictly decreasing (or increasing) function has a single-valued inverse (see Theorem

6, Page 47).

The results of this problem can be interpreted graphically using the figure of Problem 3.4.

xsinl/x,

@ 1o =15

Construct graphs for the functions
integer =< Xx.

(a) The required graph is shown in Fig. 3-8.
and y = —x.
x=1/m,1/2m,1/3m,....

(b) The required graph is shown in Fig. 3-9.
[1.99999] = 1. However, [2] = 2.
the integers.

x>0
x=0"

(b) f(x) = [x] = greatest

Since |xsin 1/x| < |x|, the graph is included between y = x
Note that f(x) =0 when sinl/x=0 or 1/x=,mn, m=1,2,3,4,..., ie., where
The curve oscillates infinitely often between x = 1/7 and x = 0.

If 1 £ x <2, then [x]=1.
Similarly for 2 < x < 3, [x] =2, etc.
The function is sometimes called the staircase function or step function.

Thus [1.8] = 1, [v2] =1,
Thus there are jumps at

(a) Construct the graph of f(x) = tanx. (b) Construct the graph of some of the infinite number

of branches available for a definition of tan™" x.

(¢) Show graphically why the relationship of x
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S 5,77

oot ()] —_

to y is multivalued. (d) Indicate possible principal values for tan~! x.

S
//
, , PR
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nn [\1/271 ]1/7{ )
U X 4 —
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AN —_—

N N i

Fig. 3-8 Fig. 3-9

(e) Using your choice,

evaluate tan~'(—1).

(a) The graph of f(x) = tan x appears in Fig. 3-10 below.

y=f(x)=tanx

[ x)=tan"lx

- —n/2

()

(©)

(d)

(e)

3.8. Show that f(x) =

/2

i
: [
| |
| |
| |
| |
] T
| |
| !
| |
| |
| |

Fig. 3-10 Fig. 3-11

The required graph is obtained by interchanging the x and y axes in the graph of (¢). The result, with
axes oriented as usual, appears in Fig. 3-11 above.

In Fig. 3-11 of (b), any vertical line meets the graph in infinitely many points. Thus, the relation of y to
x is multivalued and infinitely many branches are available for the purpose of defining tan™" x.

To define tan~! x as a single-valued function, it is clear from the graph that we can only do so by
restricting its value to any of the following: —m/2 < tan™' x < 7/2, 7/2 < tan~' x < 37/2, etc. We
shall agree to take the first as defining the principal value.

Note that no matter which branch is used to define tan~'x, the resulting function is strictly
increasing.

tan~!(—1) = —m/4 is the only value lying between —/2 and /2, i.e., it is the principal value according
to our choice in (d).

1
ﬁ+’r

1 # —1, describes an irrational algebraic function.
x

Jx+1

fy= o then (x+ 1)y — 1 = /x or squaring, (x + l)zy2 —2(x+1)y+1—x=0, a polynomial

equation in y whose coefficients are polynomials in x. Thus f(x) is an algebraic function. However, it is not
the quotient of two polynomials, so that it is an irrational algebraic function.
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3.9. If f(x) =coshx = %(e"' +e™), prove that we can choose as the principal value of the inverse
function, cosh ' x = In(x + vx2 — 1), x = 1.
. . . 2yEV47 -4
If y=1(c"+e¢™), e —2pe* +1=0. Then using the quadratic formula, ¢* = % =
y++p* —1. Thus x = In(y £ /% — 1).
VP =1 1
Sincey—\/yz—lz(y—\/y2—1)<y+ yz ): ——, we can also write
y+vy =1 y+vy -1
x==+In(y+,/y*—1) or coshly==xIn(y+,?—1)
Choosing the + sign as defining the principal value and replacing y by x, we have
cosh™'x =In(x++/x2—1). The choice x = 1 is made so that the inverse function is real.
LIMITS
2 X, x#£2 .
310. If (a) f(x)=x", () f(x)= 0 ’ 5 prove that hm2 f(x)=4.
s X = xX—
(¢) We must show that given any € > 0 we can find § > 0 (depending on e in general) such that |x> — 4| < €
when 0 < |x —2| < §.
Choose § <1 sothat 0<|x—2|<lorl<x<3, x#2. Then |x>—4|=|(x=2)(x+2)| =
|x =2||x 4+ 2| < 8|x+ 2| < 56.
Take § as 1 or €/5, whichever is smaller. Then we have |x2 — 4| < e whenever 0 < |x — 2| < §and
the required result is proved.
It is of interest to consider some numerical values. If for example we wish to make \xz — 4| < .05,
we can choose § = €/5 = .05/5 = .01. To see that this is actually the case, note that if 0 < |[x — 2| < .01
then 1.99 < x < 2.01 (x#2) and so 3.9601 < x* < 4.0401, —.0399 < x*> —4 < .0401 and certainly
|x> — 4] < .05 (x* #£4). The fact that these inequalities also happen to hold at x = 2 is merely coin-
cidental.
If we wish to make |x2 — 4| < 6, we can choose § = 1 and this will be satisfied.
(b) There is no difference between the proof for this case and the proof in (a), since in both cases we exclude
x=2.
oo X743
3.11. Prove that lim R -8.
x—1 x—1
2t =6+ 2 43
We must show that for any € > 0 we can find § > 0 such that # — (—8)| < € when
x —
14— 63 4+ 2 213 4y — 3y — 1
0 <|x—1] <$é. Since x # 1, we can write = 6x _:X +3:( * * 3X1 I ):2x3—4x2—
x— x—
3x — 3 on cancelling the common factor x — 1 # 0.
Then we must show that for any € > 0, we can find § > 0 such that \2x3 —4x* —3x+ 5] < € when
0<|x—1] <6 Choosingé <1, wehave 0 <x <2, x # 1.
Now [2x° —4x% —3x+ 5] =[x — 1]|2x2 = 2x — 5] < 8]2x% — 2x — 5| < 8(12x*| + [2x| +5) < (8 + 4+ 5)
8 =175. Taking § as the smaller of 1 and €/17, the required result follows.
lx = 3] 3
312, Let f(x)=3 x—3"~ X# ,  (a) Graph the function. () Find lim f(x). (c¢) Find
0, x=3 x—>3+
lirgl f(x). (d) Find ling f(x).
x—>3— xX—
Ix—=3] x-3
For x > 3 = =1
(a) orvc>,x_3 P
=3 —(x=3) _

-1

F 3,
or X < 3 —
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Then the graph, shown in the adjoining Fig. 3-12, £
consists of the lines y =1, x > 3; y=—1, x <3 and
the point (3, 0).

(b) Asx — 3from the right, f(x) — 1, 1i.e., lin31 fx)=1,
X—3+

as seems clear from the graph. To proVe this we must i

show that given any € > 0, we can find § > 0 such that ) 3,0)

|f(x) = 1] < € whenever 0 < x — 1 < §. 1

Now since x > 1, f(x) = 1 and so the proof con- {
sists in the triviality that |l — 1| <e whenever
0<x—1<3.

(¢) As x—3 from the left, f(x)— —1, Iie,
lim f(x) =—1. A proof can be formulated as in (b).

x—3—

(d) Since lir‘gl f(x) # lirgl f(x), lirré f(x) does not exist.
X— 3+ X—3— xX—

Fig. 3-12

3.13. Prove that lir%xsin 1/x=0.

We must show that given any € >0, we can find § >0 such that |xsinl/x—0] <e when
0<|x—0] <8é.

If 0 < |x| < §, then |xsin1/x| = |x||sin 1/x| < |x| < § since |sin1/x| < 1 for all x # 0.

Making the choice § = €, we see that |xsin 1/x| < € when 0 < |x| < §, completing the proof.

3.14. Evaluate lim ——.
x>0+ 1 eI

As x — 0+ we suspect that 1/x increases indefinitely, e!/* increases indefinitely, e~/ approaches 0,
1+ ¢~ '* approaches 1; thus the required limit is 2.

To prove this conjecture we must show that, given € > 0, we can find § > 0 such that

2
—————2|<e when 0<x<3$§
1 4e /¥
2 2—2-2e 2
No -2| = =
v e I

Since the function on the right is smaller than 1 for all x > 0, any § > 0 will work when ¢ > 1. If
A T T 1 2 1
>— e >——1,—->In|-—1);or0<x<———=6.
€ € X € In(2/e — 1)

2
0<e<1,then71’ < € when
e/~ 41

3.15. Explain exactly what is meant by the statement lim

= oo and prove the validity of this
statement. =l —1)

4

The statement means that for each positive number M, we can find a positive number § (depending on
M in general) such that
1
>
(x=1°

4 when O<|x—1<3$

. 1 s 1 1
To prove this note that ——— > M when 0 < (x —1)" <—or0 < |x— 1| < —.
p G ( ) ” | | Rivi
Choosing § = 1/+/M, the required results follows.

sinf

3.16. Present a geometric proof that Lmr(l) =1.

Construct a circle with center at O and radius O4 = OD = 1, as in Fig. 3-13 below. Choose point B on
OA extended and point C on OD so that lines BD and AC are perpendicular to OD.
It is geometrically evident that
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Area of triangle OAC < Area of sector OAD < Area of triangle OBD B
ie., Isinfcosf <16 < Itano A
Dividing by 1sin6, tan 6
0 1
cost < — < ——
sinf  cosé 0 D
sin 6 1 cosd C
or cosf < — < ——
6 cos6

. . sinf
As 0 — 0, cosf — 1 and it follows that (1915(1)7 =1. Fig. 3-13

THEOREMS ON LIMITS

3.17. If lim f(x) exists, prove that it must be unique.

X—Xg
We must show that if lim f(x) =/, and lim f(x) =1/, then /| = L.
X—>Xg X—Xq
By hypothesis, given any € > 0 we can find § > 0 such that

lf(x)—14| <¢€/2 when 0<|x—xp <$§
lf(x)—b| <e€/2 when 0<|x—x0 <$é

Then by the absolute value property 2 on Page 3,
i =bl =1 —f)+f) =Ll S| =[O+ /() —hl <e/2+e/2=¢

i.e., |/} — b| is less than any positive number € (however small) and so must be zero. Thus /; = /.

3.18. If \hﬁn& g(x) = B #0, prove that there exists § > 0 such that
h lg(x)| > 1|B| for  0<|x—x<$
Since Xliﬁn:g g(x) = B, we can find § > 0 such that |g(x) — B| < %lBl for 0 < |x — xo| < 8.
Writing B = B — g(x) + g(x), we have
|Bl < |B—g(x)| + 1g(x)| <3|B| + |g(x)]

ie., |B| <1|B|+ |g(x)|, from which |g(x)| > }|B|.

3.19. Given \113\10 f(x)=A and xlgr\lo g(x) = B, prove (a) \1Ln30[,f'(x) +g(x)] = A+ B, (b) leHxlU
f(x)g(x) = AB, (¢) Jingog(—t) = % if B£0, (d) Ylingo(% = % if B#0.
(a) We must show that for any € > 0 we can find § > 0 such that
/() +g(x)]—(A+B)l<e when  0<]|x—x|<3é
Using absolute value property 2, Page 3, we have
I/ (x) +g(X)] = (A + B = |[/(x) — A] + [g(x) — Bll = |f(x) — 4| +1g(x) — Bl ()
By hypothesis, given € > 0 we can find §; > 0 and 8, > 0 such that

[ f(x)—A| <¢€/2 when 0 < |x—xg| <6 2)
lg(x) — Bl < €/2 when 0 < |x—xg| <8 3)

Then from (7), (2), and (3),
f(x)+gx)]—(A+B)| <€/2+€/2=¢ when 0<|x—x9| <

where § is chosen as the smaller of §; and §,.



CHAP. 3] FUNCTIONS, LIMITS, AND CONTINUITY 55

(b) We have

1/ (x)g(x) — AB| = |/ (x)[g(x) — B] + B[/ (x) — 4]| 4
= S O)Ng(x) — Bl + Bl f(x) — 4|
= | fO)Ngx) — Bl + (1Bl + DI f (x) — 4]

Since ILm f(x)=A4, we can find 8§, such |[f(x)—A| <1 for 0<|x—xo| <8, ie.,
A-1 <f(x; <\(i4 + 1, so that f(x) is bounded, i.e., | f(x)| < P where P is a positive constant.

Since \li)rr\l g(x)=B, given €>0 we can find §, >0 such that |g(x)— B| <e/2P for
0<|x— x0|(<(802.

Since le f(x)=A, given € >0 we can find 83 >0 such that |f(x)— 4| <
0<|x— Xor <v¥062.

Using these in (4), we have

€ for
2B+ 1)

€
|/ (x)g(x) — 4B <P'ﬁ+(|B|+l)'m:€

for 0 < |x — x| < 8 where 8 is the smaller of §,, 8,, 83 and the proof is complete.

(¢) We must show that for any € > 0 we can find § > 0 such that

1 1 x)—B
‘7_,'_|g(x)7|<g when 0<|x—xp| <8 )

g(x) Bl |Bllg(x)]
By hypothesis, given € > 0 we can find §;, > 0 such that
lg(x) — Bl <1B%¢  when 0 <|x—x| <$
By Problem 3.18, since \ll)ngo g(x) = B#0, we can find 8, > 0 such that
lg(x)l >51Bl  when 0 <|x—x| <8,

Then if § is the smaller of §; and §,, we can write

‘L_l’_lgm—Bl LB

= < =€ whenever 0<|x—xy <$
gy " Bl IBllgv)l " [B|-1IB| ‘

and the required result is proved.
(d) From parts (b) and (c),
. fx) 1
m =

1 1
li = lim f(x)-—— = lim f(x)- lm —=4-—=
X—>Xg g(x) X—Xg f( ) g(‘c) X—Xg f( ) X—Xg g(_x) B

SETIEN

This can also be proved directly (see Problem 3.69).
The above results can also be proved in the cases x — xy+, x = xp—, X — 00, X — —00.

Note: In the proof of (a) we have used the results | f(x) — 4| < €/2 and |g(x) — B| < €/2, so that the final
result would come out to be |f(x) + g(x) — (4 + B)| < e. Of course the proof would be just as valid if we

had used 2¢ (or any other positive multiple of €) in place of €. A similar remark holds for the proofs of (b),
(¢), and (d).

3.20. Evaluate each of the following, using theorems on limits.
(@) limy (x> —6x+4) = lim X+ lim(—6x) + lim 4
X— X— xX—> xX—
= (im (ln 0+ (iny ~6)liny )+ i 4
=D+ (0Q2) +4=—4

In practice the intermediate steps are omitted.
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(+3)2x - CJim 4 3) fim @Y =15 23 3

b lim = = =
& Im 2 lim (7 + 3x - 2) —4 "2
X—>—

4 2 2 3 + !
(© lim 2‘ -3 +31 = tim 2"
X—00 3C+X‘* X ~Y_’°°6+7_73
X X
lim 2+ lim —3+ lim !
X—>00 X—>00 )C X—>00 Y4 % l
- 1 -3
lim 6+ lim —+ lim —- 6 3
X—>00 X—>00 X \»oox
by Problem 3.19.
) lim«/4—|—/1—2_lim«/4—|—/1—2 V4d+h+2
h—0 h - h—0 h NJA+h+2
44+h—4 : 1 1 1

= lim = lim = =-
>0h(VAd+h+2) —>0/d+h4+2 242 4

(@ lim 22X i 3 o hm— lim V¥=1-0=0.

x—0+ ﬁ Y—>0+ X X

Note that in (¢), (d), and (e) if we use the theorems on limits indiscriminately we obtain the so
called indeterminate forms oo/oo and 0/0. To avoid such predicaments, note that in each case the form
of the limit is suitably modified. For other methods of evaluating limits, see Chapter 4.

CONTINUITY

(Assume that values at which continuity is to be demonstrated, are interior domain values unless
otherwise stated.)

3.21. Prove that f(x) = x? is continuous at x = 2.

Method 1: By Problem 3.10, lAin% f(x) =f(2) =4 and so f(x) is continuous at x = 2.

Method 2: We must show that given any € >0, we can find § >0 (depending on ¢€) such that
lf(x)—=fQ2) = |x2 —4| < e when |x — 2| < 8. The proof patterns that are given in Problem 3.10.

xsinl/x, x#0
5, x=0
so that f(x) is continuous at x = 0?

3.22. (a) Prove that f(x) = is not continuous at x = 0. (b) Can one redefine f(0)

(a) From Problem 3.13, hm f(x) =0. But this limit is not equal to f(0) = 5, so that f(x) is discontinuous
at x =0.

(b) By redefining f(x) so that f(0) = 0, the function becomes continuous. Because the function can be
made continuous at a point simply by redefining the function at the point, we call the point a removable
discontinuity.

o 2t -6+ X 4+3
3.23. Is the function f(x) = o ;C —lix + continuous at x = 1?

f(1) does not exist, so that f(x) is not continuous at x = 1. By redefining f(x) so that f(1) = lim
f(x) = —8 (see Problem 3.11), it becomes continuous at x = 1, i.e., x = 1 is a removable disn:ontinuity.x_)1

3.24. Prove that if f(x) and g(x) are continuous at x = x, so also are (a) f(x) + g(x), (b) f(x)g(x),

(1 E ; if f(x0) £ 0.
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3.25.

3.26.

3.27.

3.28.

These results follow at once from the proofs given in Problem 3.19 by taking 4 = f(x,) and B = g(x)
and rewriting 0 < |x — xg| < 8 as |x — xo| < 4, i.e., including x = x.

Prove that f(x) = x is continuous at any point x = Xx.

We must show that, given any € > 0, we can find § > 0 such that |f(x) — f(xy)| = |x — x| < € when
|x —x9] < 8. By choosing § = ¢, the result follows at once.

Prove that f(x) = 2x° + x is continuous at any point x = x,.

Since x is continuous at any point x = x, (Problem 3.25) so also is x- x = x%, ¥* - x = x°, 2x°, and

finally 2x° + x, using the theorem (Problem 3.24) that sums and products of continuous functlons are
continuous.

Prove that if f(x) = +/x—5 for 5 £ x £ 9, then f(x) is continuous in this interval.

If xy is any point such that 5 < xy, <9, then 11m f(x)= lim Vx—=5=/x0—5=f(xg). Also,
— X
hm Vx—=5=0=f(5) and hm Vx—=5=2=1(09). Thus the result follows.

Here we have used the result that hm Vix) =/ llm f(x) = /f(xp) if f(x) is continuous at xy. Ane,§

proof, directly from the definition, can also be employed

For what values of x in the domain of definition is each of the following functions continuous?

(@) f(x)=

Ans. all x except x = £1 (where the denominator is zero)

7]
. 1 +cosx
b)) fx)= 3 isiny Ans. all x
(0 flx)= yﬁ Ans. All x > —10
d) f(x)=10"16 Ans. all x # 3 (see Problem 3.55)

—1/(x-3)
(e flx)= { (1)0 . XF g Ans. all x, since lirrg f(x)=/03)
5 X = X—

IYI

) fx)=

x>0, f()="""=0. Ifx<0,f(x)="1%

continuous for all x except x=0.

=2. Atx=0,f(x)is undefined. Then f(x) is

X — |x|

(& fx)= x
2, x=0

x<0

As in (f), f(x) is continuous for x < 0. Then since

fim T i XY i 222 = 4(0)
x—0— X x—0—- X x—>0—

if follows that f(x) is continuous (from the left) at x = 0.
Thus, f(x) is continuous for all x < 0, i.e., everywhere in its domain of definition.

(h) f(x)=xcscx = sii . Ans. all x except 0, £, +27, £37, ... .
x

() f(x)=xcscx, f(0)=1. Since hn%)xcsc x= hn%)ﬁ =1 =1(0), we see that f(x) is continuous for all x
X—> X

except +m, +2m, £37, ... [compare (h)].
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UNIFORM CONTINUITY

3.29.

3.30.

Prove that f(x) = x* is uniformly continuous in 0 < x < 1.

Method 1: Using definition.

We must show that given any € > 0 we can find § > 0 such that |x2 — x%l < e when |x — x| < §, where §
depends only on € and not on x, where 0 < x; < 1.

If x and x, are any points in 0 < x < 1, then

)
[x* = xgl =[x + XolIx — Xo| < [1 4+ 1[Ix — xo| = 2|x — x|

Thus if |x — xy| < § it follows that |x2 —x(z)l < 28. Choosing § = ¢/2, we see that |x2 —x%l < € when
[x — xo| < 8, where § depends only on € and not on x,. Hence, f(x) = x* is uniformly continuous in
0<x<l.

The above can be used to prove that f(x) = x° is uniformly continuous in 0 < x <1.

Method 2: The function f(x) = x? is continuous in the closed interval 0 < x < 1. Hence, by the theorem
on Page 48 is uniformly continuous in 0 < x < 1 and thusin 0 < x < 1.

Prove that f(x) = 1/x is not uniformly continuous in 0 < x < 1.

Method 1:  Suppose f(x) is uniformly continuous in the given interval. Then for any € > 0 we should be
able to find §, say, between 0 and 1, such that | f(x) — f(x)| < € when |x — x,| < § for all x and x; in the
interval.

8 3
Let x=8 and xp =——. Then |[x — xy| = [§ ——— - s5<s
l+e l+e€ 1+4¢€
1 11 .
However, |- ——| = o _1te —Sse (since 0 < § < 1).
X0 8 8 8

Thus, we have a contradiction and it follows that f(x) = 1/x cannot be uniformly continuous in
0<x<l1.

Method 2: Let x; and x( + & be any two points in (0, 1). Then
r ;‘ __ 5
X0 Xo+8|  Xo(x+9)

1f (x0) = f(x0 + &) =

can be made larger than any positive number by choosing x, sufficiently close to 0. Hence, the function
cannot be uniformly continuous.

MISCELLANEOUS PROBLEMS

3.31.

3.32.

If y = f(x) is continuous at x = x;, and z = g(y) is continuous at y = y, where y, = f(xg), prove
that z = g{f(x)} is continuous at x = Xx;.

Let i(x) = g{f(x)}. Since by hypothesis f(x) and g(y) are continuous at x, and y,, respectively, we
have

Jim f(x) = f(lim x) =£(xo)
Jim g(y) = g(lim y) = g(ro) = g{/(x0)}
Then

Jim h() = lim glf(0} = gllim /() = gl/(x0)} = hxo)

which proves that A(x) = g{f(x)} is continuous at x = Xx.

Prove Theorem 8, Page 48.
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3.33.

3.34.

Suppose that f(a) < 0 and f(b) > 0. Since f(x) is continuous there must be an interval (a, a + h), h > 0,
for which f(x) < 0. The set of points (a, @ + &) has an upper bound and so has a least upper bound which
we call c. Then f(¢) < 0. Now we cannot have f(c) < 0, because if f(c) were negative we would be able to
find an interval about ¢ (including values greater than ¢) for which f(x) < 0; but since c¢ is the least upper
bound, this is impossible, and so we must have f(c¢) = 0 as required.

If /(@) > 0 and f(b) < 0, a similar argument can be used.

(a) Given f(x) = 2x° — 3x* 4+ 7x — 10, evaluate f(1) and £(2). (b) Prove that f(x) = 0 for some
real number x such that 1 < x <2. (¢) Show how to calculate the value of x in (b).

(@ f(1)=2(1)" =301 +7(1) = 10 = =4, £(2) = 2(2)* = 32> + 7(2) — 10 = 8.

(b) If f(x) is continuous in ¢ < x < b and if f(a) and f(b) have opposite signs, then there is a value of x
between « and b such that f(x) = 0 (Problem 3.32).

To apply this theorem we need only realize that the given polynomial is continuousin 1 < x < 2,
since we have already shown in (@) that (1) < 0 and f(2) > 0. Thus there exists a number ¢ between 1
and 2 such that f(¢) = 0.

(¢) f(1.5)=2(1.5)* —=3(1.5> + 7(1.5) — 10 = 0.5. Then applying the theorem of (b) again, we see that the
required root lies between 1 and 1.5 and is “‘most likely” closer to 1.5 than to 1, since f(1.5) = 0.5 has a
value closer to 0 than f(1) = —4 (this is not always a valid conclusion but is worth pursuing in practice).

Thus we consider x = 1.4. Since f(1.4) = 2(1.4)° — 3(1.4)* + 7(1.4) — 10 = —0.592, we conclude
that there is a root between 1.4 and 1.5 which is most likely closer to 1.5 than to 1.4.
Continuing in this manner, we find that the root is 1.46 to 2 decimal places.

Prove Theorem 10, Page 48.
Given any € > 0, we can find x such that M — f(x) < € by definition of the L.u.b. M.

Then so that is not bounded and hence cannot be continuous in view of

1 1 1
—_ >, —_
M—f(x) e M —f(x)
Theorem 4, Page 47. However, if we suppose that f(x) # M, then since M — f(x) is continuous, by

hypothesis, we must have also continuous.  In view of this contradiction, we must have

1
M —f(x)
f(x) = M for at least one value of x in the interval.

Similarly, we can show that there exists an x in the interval such that f(x) = m (Problem 3.93).

Supplementary Problems

FUNCTIONS

3.35.

3.36.

Give the largest domain of definition for which each of the following rules of correspondence support the
construction of a function.

(@) VB=202x+4), () (x—2)/(x*—4), (¢) vsin3x, (d) log,o(x* —3x* —4x + 12).
Ans. (@) =2 £ x <3, (b) all x#A42, (¢) 2mn/3 < x < 2m+ Dn/3, m=0,+1,£2,...,

d) x>3,-2<x<?2.

. 3x+1 (=1 —21(0)+ 3f
1700 =2F 0 w22 fina: @ LEVZHOXYO g rype ) -3
() —f( .
@ f0) 760 x 20 @ IO 00 () s,

6x —8 7
Ans. (a)% (}))2]—5 (c)m,xyéo,%,Z d) 3, x#0,2 (e) m,h#O,Z

10x + 1

<75

, X # =52
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3.37.

3.38.

3.39.

3.40.

3.41.

3.42.

3.43.

3.44.

3.45.

FUNCTIONS, LIMITS, AND CONTINUITY [CHAP. 3

Iff(x) =2x*,0 < x < 2, find (a) the Lu.b. and (b) the glb. of f(x). Determine whether f(x) attains its
Lu.b. and g.1.b.
Ans. (a) 8, (b) 0

Construct a graph for each of the following functions.

(@ f=Ix,-3=x=3 (@D)] \_T[\] where [x] = greatest integer < x
® f(x)zz_lij’iz =x=2 (&) f(x)=coshx

0, x<0 .
© feg=13 x=0 ) fo) ="

I, x>0
@ fo=]"" 2EYE? ® ()= .

X, 0=x=2 (x = D(x—=2)(x—23)
.

(¢) f(x)=xsinl/x,x#0 () f(x)= sin” x

x2

Construct graphs for (a) x*/d* +*/b* =1, (b) x*/a* =2 /B* =1, (¢) y* =2px, and (d) y = 2ax — X,
where a, b, p are given constants. In which cases when solved for y is there exactly one value of y assigned to
each value of x, thus making possible definitions of functions f, and enabling us to write y = f(x)? In which
cases must branches be defined?

(a) From the graph of y = cosx construct the graph obtained by interchanging the variables, and from
which cos™! x will result by choosing an appropriate branch. Indicate possible choices of a principal value
of cos™! x. Using this choice, find cos™'(1/2) — cos~!(=1/2). Does the value of this depend on the choice?
Explain.

Work parts (a) and () of Problem 40 for (a) y =sec™'x, (b) y=cot 'x.

Given the graph for y = f(x), show how to obtain the graph for y = f(ax + b), where a and b are given
constants. Illustrate the procedure by obtaining the graphs of
(a) y=cos3x, (b) y=sin(Sx+m/3), (c) y=tan(n/6— 2x).

x|
s

Construct graphs for (a) y =e~ ®) y=Inlx|, (¢) y=e Msinx.

Using the conventional principal values on Pages 44 and 45, evaluate:

(a) sin"'(=/3/2) (f) sin'x+coslx, -1 <x<1

(b) tan"'(1) — tan"'(=1) (g) sin~'(cos2x),0 < x £ 7/2

(¢) cot™'(1/+/3) = cot 1 (=1/4/3) (h) sin"'(cos2x),7/2 < x < 37/2

(d) cosh™'v2 (/) tanh(csch™'3x),x £ 0

(6) e h '@/ (/) cos(2tan! x?) )
Ans. @ —7/3 () /3 @  @rr-x ) — o 5

_ o
(b) 7/2 (d) In(1 +2) (f) =/2 (h) 2x — 37/2 xvV9x2 41 +x

Evaluate (a) cos{wsinh(In2)}, () coshfl{coth(ln3)},
Ans. (a) —/2/2, (b) In2
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3.46. (a) Prove that tan~' x +cot ! x = 7/2 if the conventional principal values on Page 44 are taken. (b) Is

tan~! x + tan~!(1/x) = 7/2 also? Explain.

x+y
1—xy

347. If f(x) = tan' x, prove that f(x) + /() :f( ), discussing the case xy = 1.
3.48. Prove thattan ¢ —tan"'h=cot™' b —cot ™' a.
3.49. Prove the identities:

(@) 1 —tanh® x =sech’x, (b) sin3x=3sinx—4sin’x, (¢) cos3x =4cos’ x—3cosx, (d) tanh%x =
(sinhx)/(1 4 coshx), (e) In|cscx —cotx| =In|tanix]|.

3.50. Find the relative and absolute maxima and minima of: (a) f(x) = (sinx)/x, f(0) =1; (b) f(x) = (sin’ x)/
x2, f(0) = 1. Discuss the cases when f(0) is undefined or f(0) is defined but # 1.

LIMITS

3.51. Evaluate the following limits, first by using the definition and then using theorems on limits.

o . 1 o xXr—4 . Jx=2 . QC+h*—16
@ fm@ =32 O Jmpg © IniT @ T © fme
N WX
@3] l‘flwrl'

Ans. (@) 2, (b) =L (©4 (@ -1 (@32 (N}

3x—1, x<0
352, Letf(x)=140, x=0. (a) Construct a graph of f(x).
2x+5, x>0

Evaluate (b) lim2 f(x), (o limz f(x), () li%lJr f(x), (e li%‘l ), ) lin}) f(x), justifying your
X— X—>—3 X—> X—>0— X—>

answer in each case.

Ans. (b) 9, (¢) =10, (d) 5, (e) —1, (f) does not exist

S) = f(0+) Sh) —f(0-)
h h

3.53. Evaluate (a) /lir(]gl and (b) /lir(r)l , where f(x) is the function of Prob. 3.52.
h—0+ h—0—

Ans. (a) 2, (b) 3

3.54. (a) If f(x) = x* cos 1/x, evaluate Im% f(x), justifying your answer. (b) Does your answer to («) still remain
the same if we consider f(x) = x* cos 1/x, x #0, f(0) =2? Explain.

3.55. Prove that limx 10763 — ¢ using the definition.
X—>

1+ 1077
3.56. Let f(x)= ﬁ, x#0,f(0)=1 Evaluate (a) liron f(x), (b) lir(r)l f(x), (o) lirr%) f(x), justifying
— R x—=0+ x—>0— X—>
answers in all cases.
Ans. (a) 3, (b) =1, (c) does not exist.
3.57. Find (a) lim m (b) lim m Illustrate your answers graphically.

x—=0+ X x—=0- X

Ans. (a) 1, (b) —1
3.58. If f(x) is the function defined in Problem 3.56, does lirr}) f(]x|) exist? Explain.
3.59. Explain exactly what is meant when one writes:

. 2—X _ . 1/xy _ .
@ m(x—wz__oo’ ) lim (1 —e)=—c0, (9 limz—5=3

2x+5 2
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Cosx

3.60. Prove that (a) lim 107 =0, (b) lim =
X—>00 x—>—00 X + T

3.61. Explain why (a) lim sinx does not exist, (b) lim e *sinx does not exist.
X—>00 X—>00

3x+ |x
362, If f(x) = 7x—75||x||

(e) lim f(x).
Ans. (a) 2, (b) 1/6, (c¢) 2, (d) 1/6, (e) does not exist.

evaluate (a) lim f(x), (b)) lm f(x), (o lim f(x), (d) lm f(x),

3.63. If [x] = largest integer < x, evaluate (a) lim {x—[x]}, (b)) lim {x—[x]}.
Ans. (a) 0, (b) 1 x—2+4 x—2—

3.64. 1If lim f(x) = 4, prove that (a) lim {(f()P =42, (b) Jlim Jf(x) = VA.

What generalizations of these do you suspect are true? Can you prove them?

3.65. If lim f(x) = A and lim g(x) = B, prove that
X—Xg X=X
(@) lim {f(x)—g(x)}=A4—B, (b) lim{af(x)+ bg(x)} = ad + bB where a, b = any constants.
X=X X=X

3.66. If the limits of f(x), g(x), and A(x) are A, B, and C respectively, prove that:
(@) lim{f(x)+gx)+h(x)}=A4+B+C, (b) lim f(x)g(x)h(x) = ABC. Generalize these results.
X—X) X=X

3.67. Evaluate each of the following using the theorems on limits.

2x2 -1 2-3;
* 3x } Ans. (a) —8/21

(@) ,Yliﬂr}zi(zx T2)(5x—3) 2 —5x+3

_ (B3x—1D@2x+3)

b —_— = b) 3/10
@ I e a5 (b) 3/
. 3x 2x
© Jm (2523 ©1
. 1 1 2x
() llir}x—l(x+3_3x+5) (@ 1732
J8+h—2
3.68.  Evaluate lim “T’ (Hint: Let 8 + h = x%). Ans. 1/12
. L . _ . L ) A4
3.69. If lim f(x) = 4 and lim g(x) = B # 0, prove directly that lim —= =—.
X—Xg X—Xq X—Xg g(x) B
3.70. Given l’img =1, evaluate:
. sin3x . 1 —cosx . 6x —sin2x .1 —=2cosx+cos2x
(@ lm=2 © M © I 3smax @ M=
.l —cosx . . .. cosax —cosbx . 3sinzx — sin 37x
() lim— (d) lim(x — 3)cscax N lim—m—— () lim ————
x—0 X x—3 x—0 X x—1 X

Ans. (@) 3, (b) 0, (¢) 1/2, (d) —=1/m, (o) 2/7, (/) 1(* —d*), (9 -1, (h) 47

-1
371, If l_irr(l]e =1, prove that:
—ax —bx X X
— -b tanh
@ 1mS——% —p_a () lmZ & ab>0 (¢ lim 22,
x—=0 X x—0 p b x—=0 X
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3.72.  Prove that lim f(x) =/ if and only if lim+ fx)= lim f(x)=1
X—Xg X—>X( X—>Xg—

CONTINUITY
In the following problems assume the largest possible domain unless otherwise stated.

3.73.  Prove that f(x) = x* — 3x + 2 is continuous at x = 4.
3.74. Prove that f(x) = 1/x is continuous (a) atx=2, (b) inl < x < 3.

3.75. Investigate the continuity of each of the following functions at the indicated points:

. 3
@ f0=""% x20 f0=0 x=0 @ 0=""0 x#2 =3 x=2
. sintx, O0<x<1
B f0)=x— 1 x=0 @ = 1T e

Ans. (a) discontinuous, (b) continuous, (c¢) continuous, (d) discontinuous

3.76. If [x] = greatest integer < X, investigate the continuity of f(x) = x — [x] in the interval (a) 1 <x <2,
b 1=x=2

3.77.  Prove that f(x) = x’ is continuous in every finite interval.

3.78. If f(x)/g(x) and g(x) are continuous at x = x,, prove that f(x) must be continuous at x = x.

3.79.  Prove that f(x) = (tan~' x)/x, f(0) = 1 is continuous at x = 0.

3.80. Prove that a polynomial is continuous in every finite interval.

3.81. If f(x) and g(x) are polynomials, prove that f(x)/g(x) is continuous at each point x = x, for which g(x,) # 0.

3.82. Give the points of discontinuity of each of the following functions.

X
(@) f(x):m () f[x)=y/(x=3)(6—Xx), 3Zx=Z6

(b) f(x)=x"sinl/x, x#0, f(0)=0 @) f ) =1 s
Ans. (a) x=2,4, (b) none, (c) none, (d) x="Tr/6=+2mm, 117/6+2mm,m=0,1,2,...

UNIFORM CONTINUITY
3.83. Prove that f(x) = X is uniformly continuous in (a) 0 <x <2, (b) 0 <x =<2, (c¢) any finite interval.
3.84. Prove that f(x) = x? is not uniformly continuous in 0 < x < co.

3.85. If a is a constant, prove that f(x) = 1/x* is (a) continuous in ¢ < x <oo if @ =20, (b) uniformly
continuous in a < x < o0 if @ > 0, (c¢) not uniformly continuous in 0 < x < 1.

3.86. If f(x) and g(x) are uniformly continuous in the same interval, prove that (@) f(x) & g(x) and (b) f(x)g(x)
are uniformly continuous in the interval. State and prove an analogous theorem for f(x)/g(x).

MISCELLANEOUS PROBLEMS

3.87. Give an “‘¢, §” proof of the theorem of Problem 3.31.

3.88. (a) Prove that the equation tanx = x has a real positive root in each of the intervals 7/2 < x < 37/2,
3n/2 < x < 5m/2, Sw/2 < x < Tm/2,....
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3.89.
3.90.

3.91.
3.92.

3.93.

FUNCTIONS, LIMITS, AND CONTINUITY [CHAP. 3

(b) Iustrate the result in (@) graphically by constructing the graphs of y = tanx and y = x and locating
their points of intersection.

(¢) Determine the value of the smallest positive root of tan x = x.

Ans. (c¢) 4.49 approximately

Prove that the only real solution of sinx = x is x = 0.

(a) Prove that cos xcoshx + 1 = 0 has infinitely many real roots.
(b) Prove that for large values of x the roots approximate those of cosx = 0.
Prove that lim = 50/9 _

x—0 Sin x
Suppose f(x) is continuous at x = x, and assume f(xq) > 0. Prove that there exists an interval
(xo — h, xg + h), where h > 0, in which f(x) > 0. (See Theorem 5, page 47.) [Hint: Show that we can
make | /(x) = f(x0)l <3/ (xo). Then show that f(x) Z f(xg) — |/ (x) —f(xo)| > 5 f(x9) > 0.]

(a) Prove Theorem 10, Page 48, for the greatest lower bound m (see Problem 3.34). (b) Prove Theorem 9,
Page 48, and explain its relationship to Theorem 10.



Derivatives

THE CONCEPT AND DEFINITION OF A DERIVATIVE

Concepts that shape the course of mathematics are few and far between. The derivative, the
fundamental element of the differential calculus, is such a concept. That branch of mathematics called
analysis, of which advanced calculus is a part, is the end result. There were two problems that led to the
discovery of the derivative. The older one of defining and representing the tangent line to a curve at one
of its points had concerned early Greek philosophers. The other problem of representing the instanta-
neous velocity of an object whose motion was not constant was much more a problem of the seventeenth
century. At the end of that century, these problems and their relationship were resolved. As is usually
the case, many mathematicians contributed, but it was Isaac Newton and Gottfried Wilhelm Leibniz
who independently put together organized bodies of thought upon which others could build.

The tangent problem provides a visual interpretation of the derivative and can be brought to mind
no matter what the complexity of a particular application. It leads to the definition of the derivative as
the limit of a difference quotient in the following way. (See Fig. 4-1.)

Tangent line

Secant lines

Fig. 4-1

Let P,(xy) be a point on the graph of y = f(x). Let P(x) be a nearby point on this same graph of the
function f. Then the line through these two points is called a secant line. 1Its slope, my, is the difference
quotient

_ S —f(x) _ Ay

my =———">=—

’ X — Xo AXx
65
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where Ax and Ay are called the increments in x and y, respectively. Also this slope may be written

. = o+ 1) — /(%)

s h
where h = x — xy = Ax. See Fig. 4-2.

y Y

t x
X

Fig. 4-3

We can imagine a sequence of lines formed as # — 0. It is the limiting line of this sequence that is
the natural one to be the tangent line to the graph at Py
To make this mode of reasoning precise, the limit (when it exists), is formed as follows:

S0+ 1) —f(x)
h

As indicated, this limit is given the name f'(x,). It is called the derivative of the function f at its
domain value x,. If this limit can be formed at each point of a subdomain of the domain of f, then f"is
said to be differentiable on that subdomain and a new function ' has been constructed.

This limit concept was not understood until the middle of the nineteenth century. A simple example
illustrates the conceptual problem that faced mathematicians from 1700 until that time. Let the graph
of f be the parabola y = X2, then a little algebraic manipulation yields

f'(x) = lim

2xoh + I
18‘ =
) h

Newton, Leibniz, and their contemporaries simply let # = 0 and said that 2x, was the slope of the
tangent line at Py. However, this raises the ghost of a % form in the middle term. True understanding of
the calculus is in the comprehension of how the introduction of something new (the derivative, i.e., the
limit of a difference quotient) resolves this dilemma.

Note 1: The creation of new functions from difference quotients is not limited to /. If, starting
with /', the limit of the difference quotient exists, then /' may be constructed and so on and so on.

Note 2: Since the continuity of a function is such a strong property, one might think that differ-
entiability followed. This is not necessarily true, as is illustrated in Fig. 4-3.

The following theorem puts the matter in proper perspective:

:2’Co+/’l

Theorem: 1f f is differentiable at a domain value, then it is continuous at that value.

As indicated above, the converse of this theorem is not true.
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RIGHT- AND LEFT-HAND DERIVATIVES

The status of the derivative at end points of the domain of f, and in other special circumstances, is
clarified by the following definitions.
The right-hand derivative of f(x) at x = X is defined as

) —
s = i LD =) )

if this limit exists. Note that in this case (= Ax) is restricted only to positive values as it approaches
Zero.
Similarly, the left-hand derivative of f(x) at x = x; is defined as

/ o Slxo +h) = f(x)
flo) = Jimg =

“

if this limit exists. In this case / is restricted to negative values as it approaches zero.
A function f has a derivative at x = x, if and only if £ (xy) = f/(x,).

DIFFERENTIABILITY IN AN INTERVAL

If a function has a derivative at all points of an interval, it is said to be differentiable in the interval.
In particular if f is defined in the closed interval ¢ < x < b, i.e. [a, b], then f is differentiable in the
interval if and only if /'(x,) exists for each x, such that @ < xy < b and if f{(a) and f(b) both exist.
If a function has a continuous derivative, it is sometimes called continuously differentiable.

PIECEWISE DIFFERENTIABILITY

A function is called piecewise differentiable or piecewise smooth in an interval a < x < b if f/(x) is
piecewise continuous. An example of a piecewise continuous function is shown graphically on Page 48.
An equation for the tangent line to the curve y = f(x) at the point where x = X, is given by

v —f(xg) = [ (x0)(x — x0) (7)

The fact that a function can be continuous at a point and yet not be differentiable there is shown
graphically in Fig. 4-3. In this case there are two tangent lines at P represented by PM and PN. The
slopes of these tangent lines are /' (x,) and f}(xy) respectively.

DIFFERENTIALS
Let Ax = dx be an increment given to x. Then
Ay =f(x+ Ax) —f(x) ¥

is called the increment in y = f(x). If f(x) is continuous and has a continuous first derivative in an
interval, then

Ay = f'(xX)Ax + eAx = f'(x)dx + dx )
where € — 0 as Ax — 0. The expression
dy = f'(x)dx (10)

is called the differential of y or f(x) or the principal part of Ay. Note that Ay # dy in general. However
if Ax = dx is small, then dy is a close approximation of Ay (see Problem 11). The quantity dx, called the
differential of x, and dy need not be small.



68 DERIVATIVES [CHAP. 4

Because of the definitions (8) and (10), we often write

D _ oy = fim LEFAI S A

dx Ax—=0 Ax Av—0 Ax

(1)

It is emphasized that dx and dy are not the limits of Ax and Ay as Ax — 0, since these limits are zero
whereas dx and dy are not necessarily zero. Instead, given dx we determine dy from (10), i.e., dy is a
dependent variable determined from the independent variable dx for a given x.

Geometrically, dy is represented in Fig. 4-1, for the particular value x = X, by the line segment SR,
whereas Ay is represented by QR.

The geometric interpretation of the derivative as the slope of the tangent line to a curve at one of its
points is fundamental to its application. Also of importance is its use as representative of instantaneous
velocity in the construction of physical models. In particular, this physical viewpoint may be used to
introduce the notion of differentials.

Newton’s Second and First Laws of Motion imply that the path of an object is determined by the
forces acting on it, and that if those forces suddenly disappear, the object takes on the tangential
direction of the path at the point of release. Thus, the nature of the path in a small neighborhood
of the point of release becomes of interest. With this thought in mind, consider the following idea.

Suppose the graph of a function f is represented by y = f(x). Let x = xy be a domain value at
which f” exists (i.e., the function is differentiable at that value). Construct a new linear function

dy = f'(xo) dx

with dx as the (independent) domain variable and dy the range variable generated by this rule. This
linear function has the graphical interpretation illustrated in Fig. 4-4.

y

y=/®)

0(0,0)
Fig. 4-4

That is, a coordinate system may be constructed with its origin at Py and the dx and dy axes parallel
to the x and y axes, respectively. In this system our linear equation is the equation of the tangent line to
the graph at P,. It is representative of the path in a small neighborhood of the point; and if the path is
that of an object, the linear equation represents its new path when all forces are released.

dx and dy are called differentials of x and y, respectively. Because the above linear equation is valid
at every point in the domain of " at which the function has a derivative, the subscript may be dropped
and we can write

dy =f'(x)dx

The following important observations should be made. & =f'(x)= lim St A9 = f(x) =
dy Ay dx Ax—0 Ax

. Ay ). .
lim —, thus — is not the same thing as —.
Ax—0 AXx dx £ AX
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. . A .
On the other hand, dy and Ay are related. In particular, AllmoA—y = f'(x) means that for any ¢ > 0
, Ay d oA o .
there exists § > 0 such that —¢ < A—J; - d—i < & whenever |Ax| < 8. Now dx is an independent variable

and the axes of x and dx are parallel; therefore, dx may be chosen equal to Ax. With this choice
—eAx < Ay —dy < eAx

or
dy —eAx < Ay < dy +eAx

From this relation we see that dy is an approximation to Ay in small neighborhoods of x. dy is called
the principal part of Ay.

. d . . . . .
The representation of /" by d_J; has an algebraic suggestiveness that is very appealing and will appear

in much of what follows. In fact, this notation was introduced by Leibniz (without the justification
provided by knowledge of the limit idea) and was the primary reason his approach to the calculus, rather
than Newton’s was followed.

THE DIFFERENTIATION OF COMPOSITE FUNCTIONS

Many functions are a composition of simpler ones. For example, if /' and g have the rules of
correspondence u = x° and y = sinu, respectively, then y = sinx’ is the rule for a composite function
F =g(f). The domain of F is that subset of the domain of F whose corresponding range values are in
the domain of g. The rule of composite function differentiation is called the chain rule and is represented

y DA = g )

In the example

dy d(sinx3) B 3.0
o cos x”(3x“dx)

The importance of the chain rule cannot be too greatly stressed. Its proper application is essential
in the differentiation of functions, and it plays a fundamental role in changing the variable of integration,
as well as in changing variables in mathematical models involving differential equations.

IMPLICIT DIFFERENTIATION

The rule of correspondence for a function may not be explicit. For example, the rule y = f(x) is
implicit to the equation x* +4x)° + 7xy +8 = 0. Furthermore, there is no reason to believe that this
equation can be solved for y in terms of x. However, assuming a common domain (described by the
independent variable x) the left-hand member of the equation can be construed as a composition of
functions and differentiated accordingly. (The rules of differentiation are listed below for your review.)

In this example, differentiation with respect to x yields

2x+4<y5 + 5xy4%> + 7<y+x%) =0

. . d .
Observe that this equation can be solved for Y as a function of x and v (but not of x alone).

dx
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RULES FOR DIFFERENTIATION

If f, g, and h are differentiable functions, the following differentiation rules are valid.

1. f x)+g(x)} =— f (x)+— e g(x) S +g'(x) (Addition Rule)
2 L)~ g0) = S0 — g = £~ 00
X
d d , .
3. —{Cf(x)} =C—f(x)=Cf'(x) where C is any constant
dx dx

d n d d o 4 /
4. g0} =7(0) Z-g(x0) +8(x) = f(¥) =/(x)g (x) +g(x)/ () (Product Rule)

5. {f(x)} g(X) f(X) f(X) g(X) g0/ ) /() ) if g(x) #0 (Quotient Rule)

g(x) [g()] [g(x)]
6. If y = f(u) where u = g(x), then

dy _dy du

bl % = s s )

Similarly if y = f(«) where u = g(v) and v = h(x), then

dx du dv dx

(12)

(I3)

The results (/2) and (/3) are often called chain rules for differentiation of composite functions.

7. If y=f(x), and x = f~'(y); then dy/dx and dx/dy are related by

dy 1
dx  dx/dy

8. If x=/f(¢) and y = g(¢), then

dy _dy/dr _g'(1)
dx  dx/dt f'(1)

Similar rules can be formulated for differentials. For example,
d{f(x) +g(x)} = df (x) + dg(x) = f()dx + g'(x)dx = {f'(x) + g'(x)}dx

d{f(x)g()} = f(x)dg(x) + g(x)d f(x) = {[(x)g'(x) + g(x) /" (x)}dx

(4)

(%)
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DERIVATIVES OF ELEMENTARY FUNCTIONS

In the following we assume that u is a differentiable function of x; if u = x, du/dx = 1. The inverse
functions are defined according to the principal values given in Chapter 3.

1. %(C):O 16. %Cotqu:—ﬁ%

2. %u":nun’l% 17. %sec’luzim/%% !J:;Zi]_l
3. isinu:cosu@ 18. icsc_ltt::F;ﬂ{_%fu>l

dx dx dx uwid —1dx | +ifu<—1

4. %cosu:—sinu% 19. e sinhu:coshu%

S. dii tan u = sec’ u% 20. p coshu = sinh u%

6. E cotu = —csc’ u% 21. di;c tanh u = sech? u%

7. 7 Seeu = secutanu% 22. di;c cothu = —csch? u%

8. % cscu = —cscucotu% 23. diic sechu = —sechutanhu%

9. % log, u = loi“e % a>0,a#1 24. d%c cschu = —csch ucoth u%
10. %logl,uzélnuzég 25. %sinhluz\/ll—uz%
11. %a“:a”lna% 26. %cosh_lu:\h%%
12. %e" = e“% 27. p tanh ™' u = T —1u2 %, lul <1
13. %sin—lu:ﬁ% 28. %coth_lu:ﬁ%, lul > 1
14. T cos ' u= —ﬁ % 29. diic sech™ u = ﬁ %
15. % tan'u = ﬁ % 30. diic esch™'u = _u\/ﬁ %

HIGHER ORDER DERIVATIVES
If f(x) is differentiable in an interval, its derivative is given by f'(x), y’ or dy/dx, where y = f(x). If

2
f'(x) is also differentiable in the interval, its derivative is denoted by f”(x), y” or i<@> 4y

7 dx \dx) ~ dx*>
Similarly, the nth derivative of f(x), if it exists, is denoted by f"(x), y* or y Z, where n is called the
X
order of the derivative. Thus derivatives of the first, second, third, . . . orders are given by f'(x), /" (x),
),

Computation of higher order derivatives follows by repeated application of the differentiation rules
given above.
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MEAN VALUE THEOREMS

These theorems are fundamental to the rigorous establishment of numerous theorems and formulas.
(See Fig. 4-5.)

1. Rolle’s theorem. If f(x) is continuous in [a, b] and differentiable in (a, b) and if f(a) = f(b) = 0,
then there exists a point £ in (a, b) such that f'(£) = 0.
Rolle’s theorem is employed in the proof of the mean value theorem. It then becomes a
special case of that theorem.
2. The mean value theorem. If f(x) is continuous in [a, b] and differentiable in (a, b), then there
exists a point £ in (a, b) such that
fb)—f@ _ .,
e a<g<b (16)
—a
Rolle’s theorem is the special case of this where f(a) = f(b) = 0.

The result (/6) can be written in various alternative forms; for example, if x and x, are in
(a, b), then

) =f(x0) +/'(E)x —xg) & between x and x (7)
We can also write (/6) with b = a + &, in which case § = a 4+ 6h, where 0 < 6 < 1.
The mean value theorem is also called the law of the mean.

3. Cauchy’s generalized mean value theorem. If f(x) and g(x) are continuous in [a, ] and differ-
entiable in (a, b), then there exists a point & in (a, b) such that

) =S (@) _ [
g(b) —gla)  £'(®)

where we assume g(a) # g(b) and f'(x), g'(x) are not simultaneously zero. Note that the special
case g(x) = x yields (16).

a<é&<b (18)

L’HOSPITAL’S RULES
If lim f(x) = 4 and lim g(x) = B, where 4 and B are either both zero or both infinite, lim }% is
X—> X X—> X x—>x9 g(X
often called an indeterminate of the form 0/0 or co/oo, respectively, although such terminology is
somewhat misleading since there is usually nothing indeterminate involved. The following theorems,

called L’Hospital’s rules, facilitate evaluation of such limits.

1. If f(x) and g(x) are differentiable in the interval (a, b) except possibly at a point X, in this
interval, and if g’(x) # 0 for x # x,, then
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S )
»}Ln}o g(x) \ILH’}O g'(x)

whenever the limit on the right can be found. In case f'(x) and g'(x) satisfy the same conditions
as f(x) and g(x) given above, the process can be repeated.

(19)

2. If lim f(x) = o0 and lim g(x) = oo, the result (/9) is also valid.
X=X X=X

These can be extended to cases where x — oo or —oo, and to cases where x, = a or xy = b in which
only one sided limits, such as x — a+ or x — b—, are involved.

Limits represented by the so-called indeterminate forms 0 - oo, ooo, 00, 1%°, and oo — oo can be
evaluated on replacing them by equivalent limits for which the above rules are applicable (see Problem
4.29).

APPLICATIONS

1. Relative Extrema and Points of Inflection

See Chapter 3 where relative extrema and points of inflection were described and a diagram is
presented. In this chapter such points are characterized by the variation of the tangent line, and
then by the derivative, which represents the slope of that line.

Assume that f has a derivative at each point of an open interval and that P; is a point of the graph of
f associated with this interval. Let a varying tangent line to the graph move from left to right through
Py. If the point is a relative minimum, then the tangent line rotates counterclockwise. The slope is
negative to the left of P; and positive to the right. At P; the slope is zero. At a relative maximum a
similar analysis can be made except that the rotation is clockwise and the slope varies from positive to
negative. Because /" designates the change of f’, we can state the following theorem. (See Fig. 4-6.)

Relative minimum Relative maximum

Y /X
N

Counterclockwise Clockwise
rotating tangent rotating tangent

Fig. 4-6

Theorem. Assume that x; is a number in an open set of the domain of f at which f” is continuous and
f" is defined. If f'(x;) =0 and f"(x;) # 0, then f(x,) is a relative extreme of /. Specifically:

(@) If f"(x;) > 0, then f(x,) is a relative minimum,

(b) If f"(x;) <0, then f(x;) is a relative maximum.

(The domain value x, is called a critical value.)

This theorem may be generalized in the following way. Assume existence and continuity of
derivatives as needed and suppose that //(x;) = f"(x;) = -- - /% Y(x;) = 0 and f®(x,) # 0 (p a posi-
tive integer). Then:

(a) [ has a relative minimum at x, if /@ (x;) > 0,

(b) f has a relative maximum at x; if /*”(x,) < 0.
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(Notice that the order of differentiation in each succeeding case is two greater. The nature of the
intermediate possibilities is suggested in the next paragraph.)

It is possible that the slope of the tangent line to the graph of f is positive to the left of P, zero at the
point, and again positive to the right. Then P; is called a point of inflection. 1In the simplest case this
point of inflection is characterized by f'(x;) =0, f"(x;) =0, and f"(x;) # 0.

2. Particle motion

The fundamental theories of modern physics are relativity, electromagnetism, and quantum
mechanics. Yet Newtonian physics must be studied because it is basic to many of the concepts in
these other theories, and because it is most easily applied to many of the circumstances found in every-
day life. The simplest aspect of Newtonian mechanics is called kinematics, or the geometry of motion.
In this model of reality, objects are idealized as points and their paths are represented by curves. In the
simplest (one-dimensional) case, the curve is a straight line, and it is the speeding up and slowing down
of the object that is of importance. The calculus applies to the study in the following way.

If x represents the distance of a particle from the origin and 7 signifies time, then x = f(¢) designates
the position of a particle at time 7. Instantaneous velocity (or speed in the one-dimensional case) is

i f(t+ Ar) change in distance

Ao At change in time
the motion is constant). Furthermore, the instantaneous change in velocity is called acceleration and
d*x
ar’

Path, velocity, and acceleration of a particle will be represented in three dimensions in Chapter 7 on
vectors.

(the limiting case of the formula

d.
represented by ?): = for speed when

represented by

3. Newton’s method

It is difficult or impossible to solve algebraic equations of higher degree than two. In fact, it has been
proved that there are no general formulas representing the roots of algebraic equations of degree five and
higher in terms of radicals. However, the graph y = f(x) of an algebraic equation f(x) = 0 crosses the x-
axis at each single-valued real root. Thus, by trial and error, consecutive integers can be found between
which a root lies. Newton’s method is a systematic way of using tangents to obtain a better approx-
imation of a specific real root. The procedure is as follows. (See Fig. 4-7.)

I
I
I
I
I
I
I
I
I
I
1
r X X0

y=/x
Tangent line at (x, /(xp))
¥ =fxg) —f"(xg) (x —xo)

Fig. 4-7

Suppose that f has as many derivatives as required. Let r be a real root of f(x) =0, i.e., f(r) = 0.
Let x, be a value of x near r. For example, the integer preceding or following r. Let f'(x;,) be the slope
of the graph of y = f(x) at Py[xo, f(xg)]. Let Q1(x;,0) be the x-axis intercept of the tangent line at P,
then

0 —7(x0)

X — Xy T

f'(xo)
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where the two representations of the slope of the tangent line have been equated. The solution of this
relation for x; is

x| =) — A ,(Xo)
J(xo)
Starting with the tangent line to the graph at Pi[x;,f(x;)] and repeating the process, we get
SO) S(xo)  f(x1)

Xy = X —

o) 0T i) S

and in general

Under appropriate circumstances, the approximation x, to the root r can be made as good as
desired.

Note: Success with Newton’s method depends on the shape of the function’s graph in the neighbor-
hood of the root. There are various cases which have not been explored here.

Solved Problems

DERIVATIVES
4.1. (a) Let f(x) = EpE # 3. Evaluate /'(2) from the definition.
f(2+h)—f(2) L [5+h 166
/') = lim %L“éh(l—h 5)‘%35/1 T—h =0

Note: By using rules of differentiation we find

(3-x)’ (3-x)’ IEEE

f'=

at all points x where the derivative exists. Putting x = 2, we find '(2) = 6. Although such rules are
often useful, one must be careful not to apply them indiscriminately (see Problem 4.5).

(b) Let f(x) =+/2x — 1. Evaluate f'(5) from the definition.

15) = f(5+h]z 15 ,IZLO\/9+12
VO9+2h—-3 \/9+2h+3 . 9+2h—-9 . 2 1

= lim = lim = lim =
h—0 h ./94—2 +3 h~>0h(4/9+2h+3) =09 +2h+3 3

d d
By using rules of differentiation we find f'(x) = — 7 ex-D"?=lex-1)7""? g —Q2x-1)=
Qx— 172 Then f(5) =92 =1 "‘ X

4.2. (a) Show directly from definition that the derivative of f(x) = X is 3x2.

- d 1
(b) Show from definition that Eﬁ) NS
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h
}[ + 352 + 3x0% + 1] — X3 = 3% + 3xh + I
Then
709 = lim LA DI _ 50
®) f(v—i—h) —f(x) — lim \/V+h Jx

/1~>0 h—0

The result follows by multiplying numerator and denominator by +/x + & — 4/x and then letting 47 — 0.

4.3. If f(x) has a derivative at x = x;, prove that f(x) must be continuous at x = x;.

f(xo + 1) f(xo).h

So+h) —f(x0) = I . h#0

f(\o +h) —/(x0)

Then 11m j(vco +h)—f(xg) = llm h=f"(x0)-0=0

since f'(x,) exists by hypothesis. Thus
lim f(xo +h) —f(xo) =0 or  lim fCxo +4) = f(xo)
1— h—

showing that f(x) is continuous at x = xj.

x=0"
(a) Is f(x) continuous at x = 0? (b) Does f(x) have a derivative at x = 0?

44, Let f(x) = {xsml/x X #0

(a) By Problem 3.22(b) of Chapter 3, f(x) is continuous at x = 0.

ron o SO+ =FO0) . f()—fO) .. hsinl/h=0_ . .1
&) f10) = lim h =M= = m I = Jim, sin

which does not exist.

This example shows that even though a function is continuous at a point, it need not have a
derivative at the point, i.e., the converse of the theorem in Problem 4.3 is not necessarily true.

It is possible to construct a function which is continuous at every point of an interval but has a
derivative nowhere.

2 .
4.5. Letf(x)z{gsml/x, X;«ég.
’ X =

(a) Ts f(x) differentiable at x = 0? (b) Is f'(x) continuous at x = 0?

2 o3 —
f(h) f(o) i A0 pin Lo
h—0 h h—0 h

(@ f'0)=

by Problem 3.13, Chapter 3. Then f(x) has a derivative (is differentiable) at x = 0 and its value is 0.

(b) From elementary calculus differentiation rules, if x # 0,
1 ,d (.1
fl(x) = (x smx> =¥ (sm;) + (sm )
=x° <cosl> <— %) + (sm )(2\) - cos1 + 2x sinl
X X X X
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1 1
Since hm f'(x) = hn}) (— cos + 2xsin 7> does not exist (because hn}) cos 1/x does not exist), f'(x)

cannot be Contmuous at x =0 1in splte of the fact that £/(0) exists.

This shows that we cannot calculate '(0) in this case by simply calculating #'(x) and putting x = 0,
as is frequently supposed in elementary calculus. It is only when the derivative of a function is
continuous at a point that this procedure gives the right answer. This happens to be true for most
functions arising in elementary calculus.

4.6. Present an “‘¢, 8" definition of the derivative of f(x) at x = x,.
f(x) has a derivative f'(xy) at x = x, if, given any € > 0, we can find § > 0 such that

w_f/(xo) <e€ when 0<|hl<3é

RIGHT- AND LEFT-HAND DERIVATIVES

4.7. Let f(x) = |x|. (@) Calculate the right-hand derivatives of f(x) at x = 0. (b) Calculate the left-
hand derivative of f(x) at x =0. (¢) Does f(x) have a derivative at x = 0? (d) Illustrate the
conclusions in (a), (), and (¢) from a graph.

S f(O) lim |hl — h

=lim-=1
T o0t h >0+ It

@ £i0= lim
since |h| = h for h > 0.

Jh) —f(©0) Al =0 . —h
h hl—>0— T

(b) f1(0) = lim

X
since |h| = —h for h < 0.

(¢) No. The derivative at 0 does not exist if the right and
left hand derivatives are unequal.

Fig. 4-8

(d) The required graph is shown in the adjoining Fig. 4-8.
Note that the slopes of the lines y = x and y = —x are 1 and —1 respectively, representing the right and
left hand derivatives at x = 0. However, the derivative at x = 0 does not exist.

4.8. Prove that f(x) = x? is differentiable in 0 < x < 1.

Let xq be any value such that 0 < x, < 1. Then

S0 +h) —fxo) _ i G0t h)
h

/1~>0

S(x0) = hm 11m(2*c0 +h) = 2x,

At the end point x =0,

f(0+h) —SO) _

110) = i Jim —— = lim /=0
At the end point x = 1,
2
1) = f(1+h) SO _ oy WD =T 0 =2
T hs0- h h—0—

Then f(x) is differentiable in 0 < x < 1. We may write f'(x) = 2x for any x in this interval. It is
customary to write /(0) = f'(0) and f/(1) = /(1) in this case.
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4.9. Find an equation for the tangent line to y = x> at the point where (a) x=1/3, () x=1.

(a) From Problem 4.8, f'(xy) = 2x, so that '(1/3) = 2/3. Then the equation of the tangent line is
y—=f(xo) =f(xo)x —x) or y—g=3(x—1), ie, y=3x—g

(b) Asinpart (a),y—f()=f'Nx—1ory—1=2x—1),ie,y=2x—1.

DIFFERENTIALS

4.10. Ify=f(x)= x* — 6x, find (a) Ay, (b) dy, (¢) Ay—dy.

(@) Ay=f(x+ Ax) —f(x) = {(x + Ax)® — 6(x + Ax)} — {x’ — 6x}
X 4332 Ax 4+ 3x(Ax)? + (Ax)® — 6x — 6Ax — x> + 6x
= (3x% — 6)Ax + 3x(Ax)* + (Ax)®

(b) dy = principal part of Ay = (3x% — 6)Ax = (3x> — 6)dx, since by definition Ax = dx.
Note that /'(x) = 3x> — 6 and dy = (3x% — 6)d, i.c., dy/dx = 3x> — 6. It must be emphasized that
dy and dx are not necessarily small.
(¢) From (a) and (b), Ay — dy = 3x(Ax)* + (Ax)® = eAx, where € = 3xAx + (Ax)*.
Ay —
Note that € — 0 as Ax — 0, i.e., }A & — 0 as Ax — 0. Hence Ay — dy is an infinitesimal of
X

higher order than Ax (see Problem 4.83).
In case Ax is small, dy and Ay are approximately equal.

4.11. Evaluate /25 approximately by use of differentials.

If Ax is small, Ay = f(x + Ax) — f(x) = f(x) Ax approximately.
Let f(x) = &/x. Then </x + Ax — J/x =~ %x‘z/ 3Ax (where ~ denotes approximately equal t0).
If x =27 and Ax = —2, we have

V2T =221~ 1@ (-2),  ie., V253~ -2/27

Then /25~ 3 —2/27 or 2.926.
If is interesting to observe that (2.926)° = 25.05, so that the approximation is fairly good.

DIFFERENTIATION RULES: DIFFERENTIATION OF ELEMENTARY FUNCTIONS

=f (x) g(v) + g(\) f (x), assuming f" and g are differentiable.

By definition,
S(x 4+ Ax)g(x + Ax) — f(x)g(x)

d . .
00} = Jim

Ax
iy L+ AR+ AY) — g} + 2O (x + AY) — /()
Ax—0 AX
= tim s Ao s P

S CEORPELYE)

Another method:
Let u =f(x), v=g(x). Then Au=f(x+ Ax) —f(x) and Av =g(x + Ax) —g(x), i.e, f(x + Ax) =
u+ Au, g(x+ Ax) = v+ Av. Thus
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(u+ Au)(v + Av) — uv uAv 4+ vAu + AuAv
Euv A\—>0 AX Al,\—>0 Ax
— i Av Au A dv du
_A,}CI—I}O(LIEJ’_ _+_, U) Yix +vdx

where it is noted that Av — 0 as Ax — 0, since v is supposed differentiable and thus continuous.

4.13. If y = f(u) where u = g(x), prove that j— = ? ? assuming that /" and g are differentiable.
x

Let x be given an increment Ax # 0. Then as a consequence u and y take on increments Au and Ay
respectively, where

Ay =flu+Adu) —f@),  Au=glx+ Ax)—gx) o)
Note that as Ax — 0, Ay — 0 and Au — 0.
A
If Au# 0, let us write e:—y—@ so that € — 0 as Au — 0 and
Au  du
Ay:@Au—i-eAu 2
du

If Au =0 for values of Ax, then (/) shows that Ay =0 for these values of Ax. For such cases, we
define € = 0.

It follows that in both cases, Au # 0 or Au =0, (2) holds. Dividing (2) by Ax # 0 and taking the limit
as Ax — 0, we have

dy _ i A}’_Al.mo(dy Au M) dy im Au . Au

dx  ASoAx du Ax S Ax di Ao Ax + Alizloe ' Al.g—{l()?x
_dydu 0 du dy du

Tdudx " dx  du dx

)

. d . . .
4.14. Given E(sm X) = Ccosx an = —sinx, derive the formulas

= sec’ x, (b) i(sin_l X) = 1
dx

(@)

— X

d d
d (sinx) _ cosx— (sin x) — sin X (COS X)
dx cos? x

_ (cosx)(cosx) — (sinx)(—sinx) 1 .

d
(a) — (tan X) = onx

cos® x cos® x
() If y=sin"'x, then x =siny. Taking the derivative with respect to x,
dy dy 1 1 1

l=cosy— or —=——= =
Yax dx cosy \/l—sinzy N

We have supposed here that the principal value —z/2 < sin”!x < /2, is chosen so that cosy is

positive, thus accounting for our writing cos y = /1 — sin’ y rather than cosy = +,/1 — sin’ .

. d 1 di . . . .
4.15. Derive the formula d—(loga u) = 08¢ d_u (a > 0,a # 1), where u is a differentiable function of x.
X u X
Consider y = f(u) = log, u. By definition,
dy f(u +Au)—f(w) . log,(u+ Au) —log, u
- — 2~ — lim
du AHO Au Au—0 Au

u/Au
— lim — log <”+ A“) — lim 11oga<1 +%>
u u

Au—0 Au Au—0U
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Since the logarithm is a continuous function, this can be written

1 ) Au u/Au 1
—log,{ lim {1 +— =-log,e
u Au—0 u u

by Problem 2.19, Chapter 2, with x = u/Au.

d _ log, e du
Then by Problem 4.13, %(loga u) = 0 dx
4.16. Calculate dy/dx if (a) xy° —=3x> =xy+5, (b) ¢” 4 ylnx = cos2x.

(a) Differentiate with respect to x, considering y as a function of x. (We sometimes say that y is an implicit
function of x, since we cannot solve explicitly for y in terms of x.) Then
d 5 d o d d 2, 3 ,
()= —=GBx)=——(»)+--06) or  (NEY)+EN)—bx=x®0)+0)N()+0
dx dx d dx

X

where y' = dy/dx. Solving, y' = (6x — y* + )/(3x)" — x).
d .. d d " y .
— (Y —(Inx)=— 2 e (xy’ = Inx)y’ = -2 2x.
(b) e )+ dx(y nx) I (cos 2x), er(xy +y)+ o + (Inx)y sin 2x

A oy
Solving Y= 2xsin2x + xye” +y
’ x2e¥ + xInx

4.17. If y =cosh(x’ —3x+ 1), find (a) dy/dx, (b) d*y/dx".
(a) Let y = coshu, where u = x> —3x+ 1. Then dy/du = sinhu, du/dx = 2x — 3, and

ﬂ = @ . @ = (sinhu)2x —3)=(2x—3) sinh(x* — 3x + 1)
dx du dx

d*y d (dy\ d (.., du . d*u du\?
22 =2 (Z) == (sinhu— ) = sinhu—s hu(—
(b) 2 dv < dx) o (sm u dx) sinhu e + cos u( dx)

= (sinh u)(2) + (coshu)(2x — 3)* = 2sinh(x® — 3x 4+ 1) + (2x — 3)* cosh(x* — 3x + 1)

4.18. If X’y +)' =2 find (a) ¥/, (b) y” at the point (1, 1).
(a) Differentiating with respect to x, x>’ + 2xy + 3)°y’ = 0 and

’ - ny

1
) =——=—-at(],1
J X2+ 3x)? Za( )

) v =Lon=d ( —2xy ): C(+357)2xy" +2y) — 2xp)(2x + 6yy”)
dx dx \x? + 3)? (62 + 3y%)?

: M — y — r__ 1 " o__ 3
Substituting x =1, y =1, and y’ = —3, we find y" = —3.

MEAN VALUE THEOREMS

4.19. Prove Rolle’s theorem.

Case 1: f(x)=0in[a, b]. Then f'(x) =0 for all x in (a, b).
Case 2: f(x) #0in [a,b]. Since f(x) is continuous there are points at which f(x) attains its maximum and
minimum values, denoted by M and m respectively (see Problem 3.34, Chapter 3).

Since f(x) # 0, at least one of the values M, m is not zero. Suppose, for example, M # 0 and that
f(&) = M (see Fig. 4-9). For this case, f(E+h) £ f(§).
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4.20.

4.21.

4.22.

4.23.

4.24.

Ifh>0, thenw <0 and )
) f(€+h) ® _, 0
o
If h <0, then w > 0 and M
/(€+h) —f(%)
/1—>0— (2) a 5 b .
But by hypothesis f(x) has a derivative at all points Fig. 4-9

in (a,b). Then the right-hand derivative (/) must be
equal to the left-hand derivative (2). This can happen only if they are both equal to zero, in which case

f'(§) = 0 as required.

A similar argument can be used in case M =0 and m # 0.

Prove the mean value theorem.

Define F(x) = f(x) — f(a) — (x — a)

Then F(a) =0 and F(b) =

Also, if f(x) satisfies the conditions on continuity and differentiability specified in Rolle’s theorem, then
F(x) satisfies them also.

Then applying Rolle’s theorem to the function F(x), we obtain

S) —fla) (b) S(a)
—da

fO) ~fla

b—a

S) - f(@) (b) f @

F'@=1'®- =0, a<é<b or [f®= <é<b

Verify the mean value theorem for f(x) = 22 —Ix+10,a=2,b=>5.

f(2) =4, f(5) =25,1'(§) =46 — 7. Then the mean value theorem states that 46 — 7 = (25 — 4)/(5 — 2)
or £ =3.5. Since 2 < & < 5, the theorem is verified.

If /(x) = 0 at all points of the interval (a, b), prove that f(x) must be a constant in the interval.

Let x; < x, be any two different points in («, b). By the mean value theorem for x; < & < x,,

J(x2) —f(x)

Xy — X

=/'® =

Thus, f(x;) = f(x,) = constant. From this it follows that if two functions have the same derivative at all
points of (a, b), the functions can only differ by a constant.

If £'(x) > 0 at all points of the interval (a, b), prove that f(x) is strictly increasing.

Let x; < x, be any two different points in (@, b). By the mean value theorem for x; < & < x5,

fG) = f(x)

Xy — X

=/'®>0

Then f(x,) > f(x;) for x, > x;, and so f(x) is strictly increasing.

b— b—a .
(a) Prove that 274 tan'b—tan'a < —c12 ifa<b.
l+a

1+ 57
3 4 71
h thtf — <t —<—+-
(b) Show a4+25< an~ 3<4+6

(@) Let f(x)=tan"'x. Since f'(x)=1/(1 +x?) and f'(§) = 1/(1 + &%), we have by the mean value
theorem
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tan_lb—tan_lai 1
b—a 148

a<é<b

Since £ > a, 1/(1 4+ &) < 1/(1+4%). Since & <b, 1/(1 +&) > 1/(1 +b%. Then

1 tan"'h—tan"'a 1
< <
1+ b2 b—a 1 +d?

and the required result follows on multiplying by b — a.
() Let b=4/3 and a =1 in the result of part (¢). Then since tan~' 1 = 7/4, we have

1

3 L 4 4 1 T 3 4
— <tan  ——tan 1 <-— or — 4+ — < tan 3

4
25 3 6 4725 337"

4.25. Prove Cauchy’s generalized mean value theorem.

Consider G(x) = f(x) — f(a) — af{g(x) — g(a)}, where « is a constant. Then G(x) satisfies the conditions
of Rolle’s theorem, provided f(x) and g(x) satisfy the continuity and differentiability conditions of Rolle’s

S —f(@)

theorem and if G(a) = G(b) = 0. Both latter conditions are satisfied if the constant o = .
§(b) — g(a)

Applying Rolle’s theorem, G'(£§) = 0 for a < £ < b, we have

1'® _f)~f(@
g® " gb)—g@’

f'®—eg'®=0

a<é<b

as required.

I’HOSPITAL’S RULE

4.26. Prove L’Hospital’s rule for the case of the “indeterminate forms” (a) 0/0, (b) oco/cc.

(a) We shall suppose that f(x) and g(x) are differentiable in @ < x < b and f(xy) =0, g(xy) = 0, where
a<xy<b.
By Cauchy’s generalized mean value theorem (Problem 25),

[ _ [ =fxo) _f®)
gx)  gx)—glxo) g'(®

Xg<é<x

Then

tim 7 i LSO _ iy O
e () T @) s g'(0)

since as x — xy+, § = Xy~
Modification of the above procedure can be used to establish the result if x — xo—, x — x,
X — 00, X = —00.
(b) We suppose that f(x) and g(x) are differentiable in ¢ < x < b, and lim f(x) =00, lim g(x)= o0
where a < xy < b. et ot
Assume x; is such that @ < xy < x < x; <b. By Cauchy’s generalized mean value theorem,

[ —fG) _f'®
g(x) —glx)  £g'(®)

x<€&<x

Hence

SO —fC) [ 1=SGen/f ) _['®)
g(x) —glx) glx) 1—glx)/gx) g'(6)
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from which we see that
) _['® 1= gx1)/glx) )
gx)  g'(® 1—f(x)/f(x)
Let us now su im /) = i

ppose that x223+ 70 L and write (/) as

f@) _ (f’(é) ~ ) (1 - g(x»/g(x)) (1 - g(x»/g(x))

e \e© "I\i=rcore) T e @

We can choose x; so close to x, that | f'(§)/g'(&) — L| < e.

xli)gg+ <%> =1 since xli)gz+ f(x) =00 and ‘ll)rr\lu g(x) =00

Keeping x| fixed, we see that

Then taking the limit as x — xg+ on both sides of (2), we see that, as required,

fm LY g L

g e g()

Appropriate modifications of the above procedure establish the result if x — xy—, x — X,
X — 00, X —> —00.

2x

1 ;
427. Evaluate (a) lim ¢ (b) lim —COSTX
X—>

x—1x2 —2x+1

All of these have the “indeterminate form” 0/0.

e —1 267
li =1 =2
([1) Yir(l) X \lir(l) 1
®) lim I +cosmx im —msinmgx im —]T2COST[x_T[2
x—>lx2=2x4+1 x>1 2x—2 x>l 2 2

Note: Here L’Hospital’s rule is applied twice, since the first application again yields the “indeter-
minate form” 0/0 and the conditions for L’Hospital’s rule are satisfied once more.

3P —x+5 . -
4.28. Evaluate (@) JLIEO #&: b) JEEO Xle

X

All of these have or can be arranged to have the “indeterminate form” oco/oo.

(a) lim 3 —x+5 = lim ox—1 _ im 375
x>005x2 +6x —3 x>0 l0x+6 x>o0l0 5

2

. “x .X° . 2x .2
(b) lim %™ = lim = = lim = = lim = =0
X—00 x—00 @~ x—00 ¥ x—o00 e’

4.29. Evaluate lim x*Inx.
x—0+

Inx . 1/x =X

lim ¥*Inx = lim = lim —
x—0+ 2

7 = m 3
x—0+ x—0+1/x x—0+—2/x

=0

The given limit has the “indeterminate form™ 0 - co. In the second step the form is altered so as to give
the indeterminate form co/oo and L’Hospital’s rule is then applied.

4.30. Find 1ir%(cosx)'/x2.
X—

Since lin}) cosx = 1 and lin% 1/x> = oo, the limit takes the “indeterminate form” 1%.
X—> X—>
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4.31.

4.32.

4.33.
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Let F(x) = (cos x)l/xz. Then In F(x) = (Incos x)/x> to which L'Hospital’s rule can be applied. We
have

Incos x
— =

im (—sin x)/(cos x) 1 —sinx . —Ccos x 1

x—=0 X

lim = lim - =
x—0 2x x—>02xCcosx x—0—2xsinx 4+ 2cosx 2

Thus, lin(l) InF(x) = — % But since the logarithm is a continuous function, lin}) In F(x) = ln(lir% F(x)). Then
X xX— X—

In(lim F()) = -1 or  lim F(x) = lim(cos )/ = ¢™'/2
x—0 x—0 x—0

If F(x) = (™ = 5x)', find  (a) lim F(x) and  (b) lim F(x).

The respective indeterminate forms in (¢) and (b) are 0o” and 1%°.

In(e™ — 5>
Let G(x) = In F(x) = M. Then lim G(x) and lin}) G(x) assume the indeterminate forms co/oco
X X—>00 X—

and 0/0 respectively, and L’Hospital’s rule applies. We have

(@) ki = lim —- = lim — = lim ——=
X—>00 X x—o00 X — Sx x—03e"¥ — 5 x—>00 Q¢ ¥

. In(® —5x) 3¢ =5 9¢> 276
m -

Then, as in Problem 4.30, lim (¢** — 5x)'/* = ¢°.
X—>00

3x 3x
) lim In(e 5x) — lim 3e 5

= =-2 and lim(e* — 5x)1/% = 2
x—0 X x>0 — S5x x—>0

Suppose the equation of motion of a particle is x = sin(¢;¢ + ¢,), where ¢; and ¢, are constants.
(Simple harmonic motion.) (¢) Show that the acceleration of the particle is proportional to its
distance from the origin. (b) If ¢; = 1, ¢, = &, and ¢ > 0, determine the velocity and acceleration
at the end points and at the midpoint of the motion.

2

X .
— = —cf sin(cit+ ¢) = —c%x.

x
— = ¢y cos(cit + ¢y), 7

@ 2

This relation demonstrates the proportionality of acceleration and distance.

(b) The motion starts at 0 and moves to —1. Then it oscillates between this value and 1. The absolute value
of the velocity is zero at the end points, and that of the acceleration is maximum there. The particle
coasts through the origin (zero acceleration), while the absolute value of the velocity is maximum there.

Use Newton’s method to determine +/3 to three decimal points of accuracy.

V3 is a solution of x*> — 3 =0, which lies between 1 and 2. Consider f(x) = x> — 3 then f’(x) = 2x.
The graph of f crosses the x-axis between 1 and 2. Let xy=2. Then f(xy) =1 and f'(xy) = 1.75.

According to the Newton formula, x; = x, 7}/:/(;‘*0)) =2-.25=1.5.
J (X0
Then x, = x; —;,((xl)) =1.732. To verify the three decimal point accuracy, note that (1.732)> = 2.9998
X

and (1.7333)? = 3.0033.
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MISCELLANEOUS PROBLEMS

4.34. If x = g(r) and y = f(1) are twice differentiable, find (a) dy/dx, (b) d*y/dx’.
(a) Letting primes denote derivatives with respect to ¢, we have

dy _dy/dt _f'(1)

& dga g Te0#0

d <f’(f)> d <f’(t)>
&y d(dy) d (f’(t)>_dt ) _ai\g0

O e w\ax) " w\ew) T e T 20
_ ! g’(r)f”(t)—f’(r)g”(t)}:g’(t)f”(t)—f’(r)g”(t) it o) £ 0
g’m{ [ 0T £ 0T e

4.35. Let f(x) = {gl/xza x?fg. Prove that (a) £'(0)=0, (b) £"(0) = 0.
s X =

2 2
=) g
@ f+0)= hlir(l)lJr h _hlg& h _lzlg(r)14r h

If h = 1/u, using L’Hospital’s rule this limit equals

2 . 2 . )
lim ue™ = lim u/e" = lim 1/2ue" =0
U—>00 U—>00 U—>00

Similarly, replacing h — 0+ by & — 0— and u — oo by u — —oo, we find f/(0) =0. Thus
/(0) = f2(0) = 0, and so /'(0) = 0.

2 2
Sy =f10) . eMapT o 27Vt
=1 =1 =1 =1 _
&) 1+ O /7Lr(r)]+ h hg(r)lJr h hg(r)lJr K o e 0
by successive applications of L’Hospital’s rule.
Similarly, /”(0) = 0 and so f"(0) = 0.
In general,f(”)(O) =0forn=1,273,...

4.36. Find the length of the longest ladder which can be carried around the corner of a corridor, whose
dimensions are indicated in the figure below, if it is assumed that the ladder is carried parallel to

the floor.
o
The length of the longest ladder is the same as the shortest %
straight line segment AB [Fig. 4-10], which touches both outer

walls and the corner formed by the inner walls.
As seen from Fig. 4-10, the length of the ladder 4B is L

L =asec6+ bcscH
L is a minimum when

dL/d6 = asecOtan® — bcscOcotd = 0

B
ie., asin@=bcos’®  or tan6 = /b/a
2/3 L p2/3 TERSTE
Then secl = @ ) csch = @ Fig. 4-10
a b3
so that L =asech+besch = (a¥? + b*3) >

Although it is geometrically evident that this gives the minimum length, we can prove this analytically
by showing that @>L/d6” for 6 = tan™' /b/a is positive (see Problem 4.78).
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Supplementary Problems
DERIVATIVES
4.37. Use the definition to compute the derivatives of each of the following functions at the indicated point:
(@) Bx—4)/2x+3),x=1; () =32 4+2x=5x=2; () Jx.x=4 (d) J6x—4, x=2.
Ans. (a) 17/25, (b) 2, (0L (@)}
o d d 3+x 6
4.38. Show fi fi h Tt =44 £ -2
38. Show from definition that (a) dx\ x, (b) 3« (3—x)2’ xX#3
439, Let f(x) — Xsinl/x, x#0 N . _ s
.39. et f(x) = 0 eo Prove that (a) f(x) is continuous at x =0, (b) f(x) has a derivative at
x=0, (¢) f'(x)is continuous at x = 0.
o1/
4.40. Let f(x)= {86 tox# 8 Determine whether f(x) (@) is continuous at x = 0, (b) has a derivative at
s X =
x=0.
Ans. (a) Yes; (b) Yes, 0
4.41. Give an alternative proof of the theorem in Problem 4.3, Page 76, using ‘¢, § definitions”.
4.42. If f(x) = ¢*, show that f'(x;) = ¢ depends on the result llin})(eh - 1)/h=1.
4.43.  Use the results ]lin%(sin h)y/h=1, Ilirr(l)(l —cosh)/h =0 to prove that if f(x) = sinx, f'(x,) = cos x,.

RIGHT- AND LEFT-HAND DERIVATIVES

4.44.

4.45.

4.46.

4.47.

4.48.

Let f(x) = x|x|. (a) Calculate the right-hand derivative of f(x) at x=0. (b) Calculate the left-hand
derivative of f(x) at x = 0. (¢) Does f(x) have a derivative at x = 0? (d) Illustrate the conclusions in («),
(b), and (c¢) from a graph.

Ans. (a) 0; (b) 0; (c¢) Yes, 0

Discuss the (@) continuity and (b) differentiability of f(x) = x” sin 1/x, f(0) = 0, where p is any positive
number. What happens in case p is any real number?

. 2x-3, 0<x<2
Let-f(x):{x§f3 2oxz4

0<x=<4.

Discuss the (a) continuity and (b) differentiability of f(x) in

Prove that the derivative of f(x) at x = x; exists if and only if /{(xq) =/~ (x0).

(a) Prove that f(x) = x* — x* + 5x — 6 is differentiable in @ < x < b, where ¢ and b are any constants.
(b) Find equations for the tangent lines to the curve y = x> — x> +5x—6 at x =0 and x = 1. Illustrate
by means of a graph. (¢) Determine the point of intersection of the tangent lines in (b). (d) Find

AN WA €O W AK O WALTE) N

Ans. (b) y=5x—6,y=6x—7; (¢) (1,=1); (d) 3x* —=2x+5,6x—2,6,0,0,0, ...

4.49. If f(x) = x*|x|, discuss the existence of successive derivatives of f(x) at x = 0.
DIFFERENTIALS
450. Ify=f(x)=x+1/x,find (a) Ay, (b) dy, (c) Ay—dy, (d) (Ay—dy)/Ax, (e) dy/dx.
Ax 1 (Ax)? Ax 1
Ans. Ax——++—, (b 1—-——=])Ax, ) ———-—, (d) —————, ) 1 ——.
ns. (@) Ax x(x + Ax) ) ( xz) X (© X2(x + Ax) @ X2(x + Ax) @ x2

Note: Ax = dx.
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451, Iff(x)=x*+3x,find (a) Ay, (b) dy, (¢) Ay/Ax, (d) dy/dx, and (e) (Ay —dy)/Ax,if x =1 and
Ax = .01.
Ans. (a) 0501, (b) .05, (c) 5.01, (d) 5, (e) .01

4.52. Using differentials, compute approximate values for each of the following: (a) sin31°, (b) In(1.12),
(c) V/36.
Ans. (a) 0.515, (b) 0.12, (c) 2.0125

4.53. If y =sinx, evaluate (a) Ay, (b) dy. (c¢) Prove that (Ay —dy)/Ax — 0 as Ax — 0.
DIFFERENTIATION RULES AND ELEMENTARY FUNCTIONS
d d d d . d . d
4.54. Prove: (@) ——{/(x)+g)}=—/(x)+——gx). ) —{f/(x)—g()}=—1f(x)——-gx),
dx dx d. dx dx dx

4[] g ) — (X))
©

dx | g = ) B

4.55. Evaluate (a) dii (F*In(x* —2x+35}atx=1, (b) % {sin’(3x + 7/6)} at x = 0.
Ans. (a) 3Ind, (b) 3V3

d di d di
4.56. Derive the formulas: (a) aa“ —d'ma, > 0,a#1; (b T oseu = —cscucotud—z;

dx’
d > du . . . .
(¢) —tanhu = sech” u— where u is a differentiable function of x.
dx dx
d. d d . d _1 . .
4.57. Compute (a) —tan x, (b)) —csc " x, (¢) —sinh™ x, (d) — coth™ x, paying attention to the
dx dx dx dx
use of principal values.

4.58. If y =x", computer dy/dx. [Hint: Take logarithms before differentiating.]
Ans. x*(1 +Inx)

459. If y = (In(3x + 2™ @9 find dy/dx at x = 0.

T 2Inln2
/6
Ans. <4ln2+ NG )(ln2)

dy dy du dv . . .
= dn v d assuming f, g, and & are differentiable.
4.61. Calculate (a) dy/dx and (b) d*y/dx* if xy —Iny = 1.

Ans. (a) ¥ /(1 —xy), ) Gy —2x3%/(1 — xp)® provided xy # 1

4.60. If y = f(u), where u = g(v) and v = h(x), prove that

4.62. If y = tanx, prove that y” = 2(1 + y*)(1 + 3)?).
4.63. If x=sectand y =tant, evaluate (a) dy/dx, (b) d*y/dx%, (¢) d’y/dx, att = /4.
Ans. (@) V2, (b) =1, (¢) 332
&dy 4 dx\*
4.64. Prove that —}2 =-— —)ZC & , stating precise conditions under which it holds.
dx dy dy

4.65. Establish formulas () 7, (b) 18, and (c) 27, on Page 71.

MEAN VALUE THEOREMS

4.66. Letf(x)=1—(x—1*0 < x <2. (a) Construct the graph of /(x). () Explain why Rolle’s theorem is
not applicable to this function, i.e., there is no value & for which f'(€) =0, 0 < £ < 2.
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4.67.
4.68.

4.69.

4.70.
4.71.

4.72.

4.73.

4.74.

DERIVATIVES [CHAP. 4

Verify Rolle’s theorem for f(x) = x*(1 —x)*, 0 < x < 1.

Prove that between any two real roots of e* sin x = 1 there is at least one real root of ¢* cosx = —1. [Hint:
Apply Rolle’s theorem to the function e™ — sin x.]

(a) If 0 < a < b, prove that (1 —a/b) <Inb/a < (b/a—1)
(b) Use the result of (a) to show that § <In1.2 <1,

Prove that (/6 4+ +/3/15) < sin™! .6 < (7r/6 + 1/8) by using the mean value theorem.

Show that the function F(x) in Problem 4.20(«a) represents the difference in ordinants of curve 4CB and line
AB at any point x in (a, b).

(a) If f'(x) < 0 at all points of (a, b), prove that f(x) is monotonic decreasing in (a, b).
(b) Under what conditions is f(x) strictly decreasing in (a, b)?

(a) Prove that (sinx)/x is strictly decreasing in (0, 7/2). (b) Prove that 0 < sinx < 2x/m for
0= x=m/2

sinb — sina

(a) Prove that c = cot&, where & is between « and b.

osa —cosh
(b) By placing @ = 0 and b = x in (a), show that & = x/2. Does the result hold if x < 0?

L’HOSPITAL’S RULE

4.75.

Evaluate each of the following limits.

X — sin x+3
(@) lim*—5F (e) lim x*Inx () lim(1/x —cscx)  (m) lim x 1n(” + )

=0 X x—0+ x—0 xX—00 x—3
() lim ¢ =2 +1 (f) imG* —2%)/x  (j) lim x¥* o lim (S .

x—0 cos 3x — 2cos 2x + cos x 77 x=0 * U x—0 * ! x—0\ X
() lim (x* — 1) tanmx/2 (g) Lim (1 —3/x)* (k) lim(1/x*> —cot’x) (o) lim (x + &* + *)/*

x—>14 X—>00 x—0 X—00

—1 |
" tan X — SIn X
: 3 —2x : 1/3x : : : 1/Inx

@ Hgxe @ I +2970 O I (s @ 2RO

Ans. @ L B) —1, (© —4m D0, @0, () W32 @t WL H0 ()1
®F 05 me e (0 F (p)e

MISCELLANEOUS PROBLEMS

4.76.

4.77.

4.78.

4.79.

4.80.

4.81.

I—x In(l1+4+x)
"
I+x  sin"'x

If Af(x)=f(x+ Ax)—f(x), (a) Prove that A{Af(x)} = A%f(x) = f(x 4 2Ax) — 2f (x + Ax) + f(x),

. . i . e . A0 y
(b) derive an expression for A”f(x) where n is any positive integer, (c¢) show that Allmo (Aj;(;,) :j(”)(x)

Prove that <lif0<x<.

if this limit exists.

Complete the analytic proof mentioned at the end of Problem 4.36.

Find the relative maximum and minima of f(x) = x%, x > 0.
Ans.  f(x) has a relative minimum when x = ¢ .

A train moves according to the rule x = 57 + 30¢, where ¢ and x are measured in hours and miles,
respectively. (a) What is the acceleration after 1 minute? (b) What is the speed after 2 hours?

A stone thrown vertically upward has the law of motion x = —16/* +967. (Assume that the stone is at
ground level at ¢ = 0, that 7 is measured in seconds, and that x is measured in feet.) (¢) What is the height of
the stone at r =2 seconds? (b) To what height does the stone rise? (¢) What is the initial velocity, and
what is the maximum speed attained?
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4.82.

4.83.

4.84.

4.85.

4.86

4.87.

4.88.

4.89.

4.90.

4.91.

A particle travels with constant velocities v; and v, in mediums I and II, p [ )
respectively (see adjoining Fig. 4-11). Show that in order to go from point 0, Medium I
P to point Q in the least time, it must follow path PAQ where A4 is such I velocity v,
that y

(sin6,)/(sin 6;) = vy /v, o eduml

velocity v,
Note: This is Snell’s Law; a fundamental law of optics first discovered ‘ 0
experimentally and then derived mathematically.
Fig. 4-11

A variable « is called an infinitesimal if it has zero as a limit. Given two

infinitesimals « and B, we say that « is an infinitesimal of higher order (or the same order) if lima/B = 0 (or
lima/B = I # 0). Prove that as x — 0, (a) sin’2x and (1 — cos3x) are infinitesimals of the same order,
(b) (x* —sin® x) is an infinitesimal of higher order than {x — In(1 + x) — 1 + cos x}.

x?sinl/x

Why can we not use L’Hospital’s rule to prove that hn% = 0 (see Problem 3.91, Chap. 3)?

2
Can we use L'Hospital’s rule to evaluate the limit of the sequence u, = n’e™ , n=1,2,3,...2 Explain.

(1) Determine decimal approximations with at least three places of accuracy for each of the following
irrational numbers. (a) v/2, ®) V5, (¢ 7173

(2) The cubic equation x* —3x”+x—4 =0 has a root between 3 and 4. Use Newton’s Method to
determine it to at least three places of accuracy.

Using successive applications of Newton’s method obtain the positive root of (a) x° —2x* —2x —7 =0,
(b) 5sinx = 4x to 3 decimal places.
Ans.  (a) 3.268, (b) 1.131
If D denotes the operator d/dx so that Dy = dy/dx while D*y = d*y/dx*, prove Leibnitz’s formula
D"(uv) = (D"u)v + ,C1(D" L) (Dv) + ,Co(D" 2u)(D*v) + - - - 4+ ,C(D""u)(D"v) + - - - + uD"v

where ,C, = (}) are the binomial coefficients (see Problem 1.95, Chapter 1).

n
Prove that % (x*sinx) = (x* — n(n — D} sin(x + n7/2) — 2nx cos(x + n/2).

X
If /' (xg) = " (x0) = - - - = @ (xp) = 0 but /¥ D(x) # 0, discuss the behavior of f(x) in the neighborhood
of x =x,. The point x; in such case is often called a point of inflection. This is a generalization of the

previously discussed case corresponding to n = 1.

Let f(x) be twice differentiable in (a, ) and suppose that f'(a) = f'(b) = 0. Prove that there exists at least
one point & in (a, b) such that |f"(§)| =

® )2 {f(b) —f(a)}. Give a physical interpretation involving
—a
velocity and acceration of a particle.



Integrals

INTRODUCTION OF THE DEFINITE INTEGRAL

The geometric problems that motivated the development of the integral calculus (determination of
lengths, areas, and volumes) arose in the ancient civilizations of Northern Africa. Where solutions were
found, they related to concrete problems such as the measurement of a quantity of grain. Greek
philosophers took a more abstract approach. In fact, Eudoxus (around 400 B.c.) and Archimedes
(250 B.c)) formulated ideas of integration as we know it today.

Integral calculus developed independently, and without an obvious connection to differential
calculus. The calculus became a “whole” in the last part of the seventeenth century when Isaac Barrow,
Isaac Newton, and Gottfried Wilhelm Leibniz (with help from others) discovered that the integral of a
function could be found by asking what was differentiated to obtain that function.

The following introduction of integration is the usual one. It displays the concept geometrically and
then defines the integral in the nineteenth-century language of limits. This form of definition establishes
the basis for a wide variety of applications.

Consider the area of the region bound by y = f(x), the x-axis, and the joining vertical segments
(ordinates) x = @ and x = b. (See Fig. 5-1.)

y
A
y=f@ =T :
|
//IT [ :
sl ! : !
) | |
| | | . . . | |
| ' | |
|
| ' 1 I |
| ! | | |
[ I ! [
! | I | 1 x
al x &Hx &3 x3 xn—Zé_/ Yoo &y b
n—1
Fig. 5-1
90
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Subdivide the interval ¢ £ x < b into n sub-intervals by means of the points x;, x», ..., x,_; chosen
arbitrarily.  In each of the new intervals (a, xy), (X1, X3), ..., (x,_1, b) choose points &, &,,...,&,
arbitrarily. Form the sum

SEDC — a) + [(E2)(xa — x1) + f(53)(x3 — x2) + -+ - + [(E)(D — x,-1) (1)
By writing xy = a, x,, = b, and x; — x;_; = AXxy, this can be written
D FENk — X)) =) f(E)AX &)
k=1 k=1

Geometrically, this sum represents the total area of all rectangles in the above figure.

We now let the number of subdivisions n increase in such a way that each Ax;, — 0. If as a result
the sum (/) or (2) approaches a limit which does not depend on the mode of subdivision, we denote this
limit by

b n
| seoax = tim Y~ reoan )
a k=1

This is called the definite integral of f(x) between a and b. 1In this symbol f(x) dx is called the integrand,
and [a, b] is called the range of integration. We call a and b the limits of integration, a being the lower
limit of integration and b the upper limit.

The limit (3) exists whenever f(x) is continuous (or piecewise continuous) ina < x < b (see Problem
5.31). When this limit exists we say that /" is Riemann integrable or simply integrable in [a, b].

The definition of the definite integral as the limit of a sum was established by Cauchy around 1825.
It was named for Riemann because he made extensive use of it in this 1850 exposition of integration.

Geometrically the value of this definite integral represents the area bounded by the curve y = f(x),
the x-axis and the ordinates at x = ¢ and x = b only if f(x) = 0. If f(x) is sometimes positive and
sometimes negative, the definite integral represents the algebraic sum of the areas above and below the x-
axis, treating areas above the x-axis as positive and areas below the x-axis as negative.

MEASURE ZERO

A set of points on the x-axis is said to have measure zero if the sum of the lengths of intervals
enclosing all the points can be made arbitrary small (less than any given positive number €). We can
show (see Problem 5.6) that any countable set of points on the real axis has measure zero. In particular,
the set of rational numbers which is countable (see Problems 1.17 and 1.59, Chapter 1), has measure
Zero.

An important theorem in the theory of Riemann integration is the following:

Theorem. 1f f(x) is bounded in [a, b], then a necessary and sufficient condition for the existence of
b . . . o
J,, f(x)dx is that the set of discontinuities of f(x) have measure zero.

PROPERTIES OF DEFINITE INTEGRALS
If f(x) and g(x) are integrable in [a, b] then
b

b b
1 [ () + () dx = [ F(x) dx iJ () d

a a

b b
2. J Af(x)dx = AJ f(x)dx where A4 is any constant



92 INTEGRALS [CHAP. 5

b ¢ b
3. J f(x)dx = J f(x)dx +J f(x)dx provided f(x) is integrable in [«a, ¢] and [c, b].

a a

4. Jb f(x)ydx =— J S(x)dx

a b

5. Jaf(x)dx =0

a

6. Ifina

I\

x £ b,mZ f(x) £ M where m and M are constants, then

b
mb —a) < [ f(x)dx < M(b—a)

Ja

7. Ifina £ x £ b, f(x) £ g(x) then

Jb S dx < Jb () dx

a a

b
< J |f(x)| dx ifa<b

a

J: f(x)dx

MEAN VALUE THEOREMS FOR INTEGRALS

As in differential calculus the mean value theorems listed below are existence theorems. The first
one generalizes the idea of finding an arithmetic mean (i.e., an average value of a given set of values) to a
continuous function over an interval. The second mean value theorem is an extension of the first one
that defines a weighted average of a continuous function.

By analogy, consider determining the arithmetic mean (i.e., average value) of temperatures at noon
for a given week. This question is resolved by recording the 7 temperatures, adding them, and dividing
by 7. To generalize from the notion of arithmetic mean and ask for the average temperature for the
week is much more complicated because the spectrum of temperatures is now continuous. However, it
is reasonable to believe that there exists a time at which the average temperature takes place. The
manner in which the integral can be employed to resolve the question is suggested by the following

example.
Let /" be continuous on the closed interval ¢ < x < b. Assume the function is represented by the
correspondence y = f(x), with f(x) > 0. Insert points of equal subdivision, a = xg, X1, ..., X, = b.

Then all Ax;, = x;, — x;,_; are equal and each can be designated by Ax. Observe that b — a = nAx.
Let &, be the midpoint of the interval Ax; and f (&) the value of f/ there. Then the average of these
functional values is

JE)+---+fE) _[fE)+---+/E)Ax 1
n - b—a _b_

—> fE)AL,
k=1

This sum specifies the average value of the n functions at the midpoints of the intervals. However,
we may abstract the last member of the string of equalities (dropping the special conditions) and define

R L
eSS ICE ] WO

as the average value of f on [q, b].
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Of course, the question of for what value x = & the average is attained is not answered; and, in fact,
in general, only existence not the value can be demonstrated. To see that there is a point x = & such that
f(&) represents the average value of f on [a, b], recall that a continuous function on a closed interval has
maximum and minimum values, M and m, respectively. Thus (think of the integral as representing the
area under the curve). (See Fig. 5-2.)

F E_

ul

g

sk ———
LN
S
o

b—a
Fig. 5-2
b

mw—M§JfUMx§M®—®

a

or

m =

b
ljfwng
b—a),

Since f is a continuous function on a closed interval, there exists a point x = £ in (a, b) intermediate
to m and M such that

b
10 =5 | rwax

While this example is not a rigorous proof of the first mean value theorem, it motivates it and
provides an interpretation. (See Chapter 3, Theorem 10.)

1. First mean value theorem. If f(x) is continuous in [a, b], there is a point & in (a, b) such that

b
| ey =6 - arree o)
2. Generalized first mean value theorem. If /(x) and g(x) are continuous in [a, b], and g(x) does not
change sign in the interval, then there is a point & in (a, b) such that
b

b
qummw:mﬁgmw 3)

a

This reduces to (4) if g(x) = 1.
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CONNECTING INTEGRAL AND DIFFERENTIAL CALCULUS

In the late seventeenth century the key relationship between the derivative and the integral was
established. The connection which is embodied in the fundamental theorem of calculus was responsible
for the creation of a whole new branch of mathematics called analysis.

Definition: Any function F such that F'(x) = f(x) is called an antiderivative, primitive, or indefinite
integral of f.

The antiderivative of a function is not unique. This is clear from the observation that for any
constant ¢

(F)+0'=F'(x) =f(x)

The following theorem is an even stronger statement.

Theorem. Any two primitives (i.e., antiderivatives), F and G of f differ at most by a constant, i.e.,
F(x)—G(x)=C.

(See the problem set for the proof of this theorem.)

3

EXAMPLE. If F'(x) = x?, then F(x) = [xzdx = % + ¢ is an indefinite integral (antiderivative or primitive) of x*.

The indefinite integral (which is a function) may be expressed as a definite integral by writing
| reax = s

The functional character is expressed through the upper limit of the definite integral which appears
on the right-hand side of the equation.

This notation also emphasizes that the definite integral of a given function only depends on the limits
of integration, and thus any symbol may be used as the variable of integration. For this reason, that
variable is often called a dummy variable. The indefinite integral notation on the left depends on
continuity of /" on a domain that is not described. One can visualize the definite integral on the
right by thinking of the dummy variable ¢ as ranging over a subinterval [¢, x]. (There is nothing unique
about the letter #; any other convenient letter may represent the dummy variable.)

The previous terminology and explanation set the stage for the fundamental theorem. It is stated in
two parts. The first states that the antiderivative of f is a new function, the integrand of which is the
derivative of that function. Part two demonstrates how that primitive function (antiderivative) enables
us to evaluate definite integrals.

THE FUNDAMENTAL THEOREM OF THE CALCULUS

Part 1 Let f be integrable on a closed interval [a, b]. Let ¢ satisfy the condition ¢ < ¢ < b, and
define a new function

F(x) = J f(de if a<x<b

Then the derivative F'(x) exists at each point x in the open interval (a, b), where f is continuous and
F'(x) = f(x). (See Problem 5.10 for proof of this theorem.)

Part 2 As in Part 1, assume that f is integrable on the closed interval [, b] and continuous in the
open interval (a, b). Let F be any antiderivative so that F'(x) = f(x) for each xin (a,b). Ifa <c < b,
then for any x in (a, b)

J Fydi = F(x) - F(©)

c
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If the open interval on which f is continuous includes a and b, then we may write
b
J f(x)dx = F(b) — F(a). (See Problem 5.11)
a

This is the usual form in which the theorem is used.

2 3 2

EXAMPLE. To evaluateJ x*dx we observe that F'(x)=x", F(x) =%+c and J xdx = (23—3-1—0)—
3

(';Z + c) = % Since ¢ subtracts out of this evaluation it is convenient to exclude it and simply write e

1 1

GENERALIZATION OF THE LIMITS OF INTEGRATION

The upper and lower limits of integration may be variables. For example:

COS X t2 cosx
J tdt = |:§:| = (cos2 x — sin® x)/2

sinx .
sin x

In general, if F’(x) = f(x) then

v(X)
[, 7= Foon = Py

CHANGE OF VARIABLE OF INTEGRATION

If a determination of [ f(x)dx is not immediately obvious in terms of elementary functions, useful
results may be obtained by changing the variable from x to ¢ according to the transformation x = g(¢).
(This change of integrand that follows is suggested by the differential relation dx = g'(¢) dt.) The funda-
mental theorem enabling us to do this is summarized in the statement

[f(x) dx = Jf{g(t)}g/(t) dt ©)

where after obtaining the indefinite integral on the right we replace ¢ by its value in terms of x, i.e.,
t= g_l(x). This result is analogous to the chain rule for differentiation (see Page 69).
The corresponding theorem for definite integrals is

b B
J f(x)dx:J e (1) de %)

where g(o) = a and g(B) = b, i.e., a =g '(a), B=g '(b). This result is certainly valid if /(x) is con-
tinuous in [a, ] and if g(¢) is continuous and has a continuous derivative in o < 1 < B.

INTEGRALS OF ELEMENTARY FUNCTIONS

The following results can be demonstrated by differentiating both sides to produce an identity. In
each case an arbitrary constant ¢ (which has been omitted here) should be added.
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10.

12.

13.

14.

15.

16.

17.

un+]

" du = n+#—1
v n+1 a
di
—uzlnlul
u
sinudu = —cosu

cosudu = sinu

tanu du = In | sec u|

= —In|cosu|

cotudu = In|sin u|

secudu = In|secu + tan u|
= In|tan(u/2 + 7/4)|

cscudu = In|cscu — cot ul
=In|tanu/2|

sec’ udu = tanu

csc® udu = —cotu

secutanudu = secu

cscucotudu = —cscu

u au

a' du = a>0,a#1
Ina

elldu:ell

sinh u du = coshu

coshudu = sinhu

tanh u du = Incosh u

INTEGRALS
18. | cothudu = In|sinh u|
19. sech u du = tan_l(sinh u)
20. cschudu = — coth™ (coshu)
21. sech’ u du = tanh u
22. csch® udu = —cothu
23. sech utanh u du = —sech u
24. csch ucothudu = —cschu
25. du =sin"'= or —cos™' =
§2 — u?
du
26. |——==Inju+ Vit +ad?|
Vi + a?
di 1 1
27. 27“2:7&111—1% or ——cot™! 4
Ju +a a a a a
du 1 u—a
28. = —
w—a* 2a |lu+a
du 1 u
29. =-1In
wat+ur @ la+attu?
di 1 1
30. Jiu = —cos™! 4 or —sec”! “
uvii—q> a u a a
31. J\/uz:I:azdu:g\/uz:ta2
2
:I:%ln|u+\/u2:|:a2|
2
32. Va2—u2du:g\/a2—u2+%sin’lg
33. | e™sinbudu= e"(asin 127u — i)cos bu)
ac+b
30 [ o™ cos budu — e™(acos bu + b sin bu)

@ + b?

[CHAP. 5
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SPECIAL METHODS OF INTEGRATION

1. Integration by parts.
Let u and v be differentiable functions. According to the product rule for differentials

duw) =udv+vdu
Upon taking the antiderivative of both sides of the equation, we obtain
uy = Judv—}— Jvdu
This is the formula for integration by parts when written in the form
Judv =uv— Jvdu or Jf(x)g/(x) dx = f(x)g(x) — Jf/(x)g(x) dx
where u = f(x) and v = g(x). The corresponding result for definite integrals over the interval
[a, b] is certainly valid if f(x) and g(x) are continuous and have continuous derivatives in [a, b].
See Problems 5.17 to 5.19.

P
2. Partial fractions. Any rational function % where P(x) and Q(x) are polynomials, with the

degree of P(x) less than that of Q(x), can be written as the sum of rational functions having the
Ax+ B

form X - where r = 1, 2, 3, ... which can always be integrated in terms of
@x 157 @ +bx oy Y &
elementary functions.
EXAMPLE 1. St S S———
(4x—3)2x+5)7 4x-3 (2x+5° (@x+5)7 2x+5
2 —
EXAMPLE 2. SxT—x+2 Ax+ B Cx+D E

= +
P H2x+4(x—1) (F4+2x+4P xXF+2x+4 x—1

The constants, 4, B, C, etc., can be found by clearing of fractions and equating coefficients of like powers of x
on both sides of the equation or by using special methods (see Problem 5.20).

3. Rational functions of sin x and cos x can always be integrated in terms of elementary functions by
the substitution tan x/2 = u (see Problem 5.21).

4. Special devices depending on the particular form of the integrand are often employed (see
Problems 5.22 and 5.23).

IMPROPER INTEGRALS

If the range of integration [a, b] is not finite or if f(x) is not defined or not bounded at one or more
points of [a, b], then the integral of f(x) over this range is called an improper integral. By use of
appropriate limiting operations, we may define the integrals in such cases.

M
= lim tan"'M = /2

0 M—o0

= lim tan'x

dx . JM dx
o 14+x? Moo

00
EXAMPLE 1. J —
0

1+X2:M1—I>noo

(! dx

ol 1
EXAMPLE 2. J — = lim J ﬂ: lim 2/x| = lim 2 —2/e€) =2
0A/X =0+ ). ﬁ e—>0+ ¢ €0+
1 g 1 1
EXAMPLE 3. [ @: lim J @: lim Inx| = lim (—Ine)
Jo X e~>0+ ) X e—0+ ¢ €0+

Since this limit does not exist we say that the integral diverges (i.e., does not converge).
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For further examples, see Problems 5.29 and 5.74 through 5.76. For further discussion of improper
integrals, see Chapter 12.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

Numerical methods for evaluating definite integrals are available in case the integrals cannot be
evaluated exactly. The following special numerical methods are based on subdividing the interval [a, b]
into n equal parts of length Ax = (b — a)/n. For simplicity we denote f(a + kAx) = f(x;) by y;, where
k=0,1,2,...,n. The symbol ~ means “approximately equal.” In general, the approximation
improves as n increases.

1. Rectangular rule.

b
J J(x)dx~ Ax{yg+y1+y2+---+ 1} or Ax{yr+yo+yit+-c ®
a

The geometric interpretation is evident from the figure on Page 90. When left endpoint
function values yy, y1, ..., y,—1 are used, the rule is called “the left-hand rule.” Similarly, when
right endpoint evaluations are employed, it is called ‘“‘the right-hand rule.”

2. Trapezoidal rule.

b
Ax
[ O e ©

a

This is obtained by taking the mean of the approximations in (§). Geometrically this
replaces the curve y = f(x) by a set of approximating line segments.

3. Simpson’s rule.

b
AXx
J f(x)dx ~ =5 ot 4+ 20 +4y3+ 2+ 4ys+ -+ 2y Ay ) (10)
a
The above formula is obtained by approximating the graph of y = g(x) by a set of parabolic
arcs of the form y = ax® + bx +¢. The correlation of two observations lead to 10. First,

h
J [ax® 4+ bx + ¢]dx = g[Zuh2 + 6c]
—h

The second observation is related to the fact that the vertical parabolas employed here are
determined by three nonlinear points. In particular, consider (-4, yy), (0, y1), (A, y,) then
Vo = a(—=h)* + b(=h) + ¢, y; = ¢, y, = al® + bh+ ¢. Consequently, yo + 4y, + v, = 2ah* + 6¢.
Thus, this combination of ordinate values (corresponding to equally space domain values) yields
the area bound by the parabola, vertical segments, and the x-axis. Now these ordinates may be
interpreted as those of the function, f, whose integral is to be approximated. Then, as illu-
strated in Fig. 5-3:

h Ax
Zgb’kq Tt ] = o+ Ay + 20+ 4y + 2y +4vs o+ 2y H Ay Tl
k=1

The Simpson rule is likely to give a better approximation than the others for smooth curves.

APPLICATIONS

The use of the integral as a limit of a sum enables us to solve many physical or geometrical problems
such as determination of areas, volumes, arc lengths, moments of intertia, centroids, etc.
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Approximating parabolic
segments

ARC LENGTH

As you walk a twisting mountain trail, it is possible to determine the distance covered by using a
pedometer. To create a geometric model of this event, it is necessary to describe the trail and a method
of measuring distance along it. The trail might be referred to as a path, but in more exacting geometric
terminology the word, curve is appropriate. That segment to be measured is an arc of the curve. The
arc is subject to the following restrictions:

1. It does not intersect itself (i.e., it is a simple arc).
2. There is a tangent line at each point.
3. The tangent line varies continuously over the arc.

These conditions are satisfied with a parametric representation x = f(¢), y = g(t),z = h(t),a < t £ b,
where the functions f, g, and /& have continuous derivatives that do not simultaneously vanish at any
point. This arc is in Euclidean three space and will be discussed in Chapter 10. In this introduction to
curves and their arc length, we let z = 0, thereby restricting the discussion to the plane.

A careful examination of your walk would reveal movement on a sequence of straight segments,
each changed in direction from the previous one. This suggests that the length of the arc of a curve is
obtained as the limit of a sequence of lengths of polygonal approximations. (The polygonal approx-
imations are characterized by the number of divisions # — oo and no subdivision is bound from zero.
(See Fig. 5-4.)

Y- = T (Xn yn)

(X Y0)

|
|
|
i
RIRA !
|
|
|
|
|
L

Fig. 5-4

Geometrically, the measurement of the kth segment of the arc, 0 < ¢ < s, is accomplished by
employing the Pythagorean theorem, and thus, the measure is defined by



100 INTEGRALS [CHAP. 5

lim > {(Ax)” + (A}
n—0o0 k:l

or equivalently

n Ap 2]
: Yk
1 1 — AS
nggog[ +<Axk) } (Axp)

where Axp = X — X and Ayy = yp — V1.
Thus, the length of the arc of a curve in rectangular Cartesian coordinates is

b ) 5172
L=| {[f/(z)2]+[g’(z)]2}“2dz:H(i’;) (%) ] i

(This form may be generalized to any number of dimensions.)
Upon changing the variable of integration from ¢ to x we obtain the planar form

/0) o121
L= J 1+ [—y}
(@ dx
(This form is only appropriate in the plane.)

The generic differential formula ds® = dx* + dy” is useful, in that various representations algebrai-
cally arise from it. For example,

ds

dt

expresses instantaneous speed.

AREA

Area was a motivating concept in introducing the integral. Since many applications of the integral
are geometrically interpretable in the context of area, an extended formula is listed and illustrated below.

Let /" and g be continuous functions whose graphs intersect at the graphical points corresponding to
x=aand x=b,a <b. If g(x) = f(x) on [a, b], then the area bounded by f(x) and g(x) is

b
A= j {g(x) — /() dx

If the functions intersect in (a, b), then the integral yields an algebraic sum. For example, if
g(x) = sinx and f(x) = 0 then:

2
=0

2
J sin x dx = cos x
0

0

VOLUMES OF REVOLUTION

Disk Method

Assume that /" is continuous on a closed interval ¢ < x < b and that f(x) = 0. Then the solid
realized through the revolution of a plane region R (bound by f(x), the x-axis, and x = a and x = b)
about the x-axis has the volume

b
V= nJ [/ ()] dx
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This method of generating a volume is called the disk method because the cross sections of revolution
are circular disks. (See Fig. 5-5(a).)

@ Fig. 5-5 ®)

EXAMPLE. A solid cone is generated by revolving the graph of y = kx, k > 0 and 0 < x < b, about the x-axis.
Its volume is

= b
0 3, 3

Shell Method

Suppose f is a continuous function on [a, b], a = 0, satisfying the condition f(x) = 0. Let Rbe a
plane region bound by f(x), x = a, x = b, and the x-axis. The volume obtained by orbiting R about the
y-axis is

b
V= J 2x f(x) dx
a
This method of generating a volume is called the shell method because of the cylindrical nature of the
vertical lines of revolution. (See Fig. 5-5(b).)

EXAMPLE. If the region bounded by y = kx, 0 < x < b and x = b (with the same conditions as in the previous
example) is orbited about the y-axis the volume obtained is

b ’C3 b b}
V= 271J x(kx)dx = 27k —| = 2mk —
0 3o 3
By comparing this example with that in the section on the disk method, it is clear that for the same
plane region the disk method and the shell method produce different solids and hence different volumes.

Moment of Inertia

Moment of inertia is an important physical concept that can be studied through its idealized geo-
metric form. This form is abstracted in the following way from the physical notions of kinetic energy,
K= %mvz, and angular velocity, v = wr. (m represents mass and v signifies linear velocity). Upon
substituting for v

K =imo*? = L(m?)w?
When this form is compared to the original representation of kinetic energy, it is reasonable to
identify mr? as rotational mass. It is this quantity, / = mr? that we call the moment of inertia.
Then in a purely geometric sense, we denote a plane region R described through continuous func-
tions f and g on [a, b], where ¢ > 0 and f(x) and g(x) intersect at ¢ and » only. For simplicity, assume
g(x) = f(x) > 0. Then
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b
/= J Plg(x) —f(0)] dx

a

By idealizing the plane region, R, as a volume with uniform density one, the expression
[f(x) — g(x)] dx stands in for mass and % has the coordinate representation X2, (See Problem 5.25(b)
for more details.)

Solved Problems

DEFINITION OF A DEFINITE INTEGRAL

5.1. If f(x) is continuous in [a, b] prove that

11m

45 (0020 [ o

Since f(x) is continuous, the limit exists independent of the mode of subdivision (see Problem 5.31).
Choose the subdivision of [a, b] into n equal parts of equal length Ax = (b — a)/n (see Fig. 5-1, Page 90). Let
& =a+k(b—a)/n,k=1,2,...,n. Then

Jim Z SEDAX, =
k=1

Zf( k(b a)) J 1) dx
L k .
5.2. Express lim —Z f—) as a definite integral.
n—oo n i n
Let a=0,b5 =1 in Problem 1. Then
1 [k !
lim — - :J X) dx
n—00 n;f(n> 0 f( )

1
5.3. (a) Express J x? dx as a limit of a sum, and use the result to evaluate the given definite integral.

0
(b) Interpret the result geometrically.

(a) If f(x) = ¥, then f(k/n) = (k/n)* = k*/n*. Thus by Problem 5.2,
1 kl 1
lim — — = J x? dx
n—-oo N ; n2 0
This can be written, using Problem 1.29 of Chapter 1,

1 2 2 2 2 2 2
1{1? 2 24224
szdx: lim _(_2+_7+..,+”_2): “m#
n

0 n—oo N \n n- n—00 n’

— lim nn+ 1)2n+1)

n—00 6n°
i (UF l/n)6(2 +1/n) :%

which is the required limit.

Note: By usmg the fundamental theorem of the calculus, we observe that
P dy = (P/3)h = 17/3 - 03/3=1/3

(b) The area bounded by the curve y = x?, the x-axis and the line x = 1 is equal to . 3



CHAP. 5] INTEGRALS 103

5.4. Evaluate lim ;—l—;—i—-u—l— ! .
n—oo|ln+1 n+2 n+n

The required limit can be written

lim ! ! + ! +- ! lim 1i !
nsocon |1+1/n 142/n 1 +n/n _rHoonk «1+k/n

1
dx
Lm =In(l +x)|) =In2

using Problem 5.2 and the fundamental theorem of the calculus.

Lo 2t .
5.5. Prove that lim — {sm —+sin —+---+sin
n n

n—oo n

(n—1t] 1-—-cost
n o r

Let a=0,b =1, f(x) =sinx in Problem 1. Then

t < kt ('
lim —Zsin—: [ sinxdx =1—cost
n—00 nk:l n Jo

and so

1=kt 1 —cost
lim — sin — =
n—00 nk:l n t

. . sint
using the fact that lim = 0.
n—oo

MEASURE ZERO

5.6. Prove that a countable point set has measure zero.

Let the point set be denoted by xi, x», X3, x4, ... and suppose that intervals of lengths less than
€/2,€/4,€/8,€/16, ... respectively enclose the points, where € is any positive number. Then the sum of
the lengths of the intervals is less than €/2 + /4 + €/8 4+ --- = € (let @ = €¢/2 and r = 1 in Problem 2.25(a) of
Chapter 2), showing that the set has measure zero.

PROPERTIES OF DEFINITE INTEGRALS

Jb f(x)dx

a

b
5.7. Prove that =< J | f(X)|dx if a<b.

a

By absolute value property 2, Page 3,

Zf (&) Axy
pm

< ; |f (E)Axy| = ; L (&) Axy

Taking the limit as n — oo and each Ax; — 0, we have the required result.

2T o
. sin nx
5.8. Prove that lim 5 5 dx = 0.
n—oo Jg X +n
2T o v J I 27
sin nx sin nx dx 2w
J 5] zdxé{ 2 2““317:7
0 X“+n 0 |X"+n o n n
. 2T sin nx .
Then lim — 5 dx| =0, and so the required result follows.
n—oo| Jg X +n
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MEAN VALUE THEOREMS FOR INTEGRALS

5.9. Given the right triangle pictured in Fig. 5-6: (a) Find the
average value of 4. (b) At what point does this average value
occur? (¢) Determine the average value of

f(x)=sin"'x,0 < x < % (Use integration by parts.)

(d) Determine the average value of f(x) = cos?x,0 < x < g x

H . .
(a) h(x)= 3 According to the mean value theorem for integrals, Fig. 5-6

the average value of the function /4 on the interval [0, B] is

1 (PH H
A=—| Zxdv=2
BJOB‘ Y3

(b) The point, &, at which the average value of /1 occurs may be obtained by equating /(&) with that average

. H H B
value, i.e., ES =5 Thus, & = 3

FUNDAMENTAL THEOREM OF THE CALCULUS
X
5.10. If F(x) = J f(¢)dt where f(x) is continuous in [a, b], prove that F'(x) = f(x).

a

: h) — X+-h X et
=20 s [ roal =3[ roa

=f(§) & between x and x+h

by the first mean value theorem for integrals (Page 93).
Then if x is any point interior to [a, b],

F) :}lim F(x+h})l—F(x) _

—0

lim /(&) = /()

since / is continuous.
If x = a or x = b, we use right- or left-hand limits, respectively, and the result holds in these cases as

well.

5.11. Prove the fundamental theorem of the calculus, Part 2 (Pages 94 and 95).

By Problem 5.10, if F(x) is any function whose derivative is f(x), we can write

X

Hn:ffmm+c

a

where ¢ is any constant (see last line of Problem 22, Chapter 4).

b b
Since F(a) = c, it follows that F(b) = J £(t) dt + F(a) or J () dt = F(b) — F(a).

5.12. If f(x) is continuous in [a, b], prove that F(x) = J f(t)dt is continuous in [a, b].

a

If x is any point interior to [a, b], then as in Problem 5.10,
lim F(x+h) — F(x) =1lim i f(&) =0
h—0 h—0
and F(x) is continuous.

If x = a and x = b, we use right- and left-hand limits, respectively, to show that F(x) is continuous at
x=aand x =b.
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Another method:

105

By Problem 5.10 and Problem 4.3, Chapter 4, it follows that F’'(x) exists and so F(x) must be con-

tinuous.

CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

5.13. Prove the result (7), Page 95, for changing the variable of integration.

Let F(x) = [ f(x)dx and G(¢) = } fle(H)}g'(f) dt, where x = g(1).
Then dF = f(x)dx, dG = f{g(¢)} g(¢) dt.

Since dx =g'(¢t)dt, it follows that f(x)dx =f{g(t)}g'(f)dt so that dF(x)=dG(t), from which

F(x)=G(t) + c.

Now when x = a, t = @ or F(a) = G(a) + ¢. But F(a) = G(a) =0, so that ¢ = 0. Hence F(x) =

Since x = b when ¢ = 8, we have

b B
J F(x)dx = J e ¢ty dr

as required.

5.14. Evaluate:

. B i ! dx V2 g sin~! 52
@ Jorsne sa-on @ [ Giooey J, e
cot(ln x) Cx l—x xdx
(b) j < dx (d) JZ tanh 2 ™ dx €2 Jixz —

G(1).

(a) Method 1: Let x* +4x —6 =u. Then Qx4 4)dx = du, (x +2)dx = % du and the integral becomes

[ 1 1
EJsinudu =3 cosu+c= ) cos(x’ +4x — 6) + ¢
Method 2:
1 1
J(x+2) sin(x* 4 4x — 6) dx = ij.sin(x2 +4x — 6)d(x* 4+ 4x — 6) = —icos(x2 +4x—-6)+c

() LetInx =u. Then (dx)/x = du and the integral becomes

Jcotudu =In|sinu| + ¢ = In|sin(lnx)| + ¢

(¢) Method I: J al J d”‘ o J a

\/(x+2)(3—x): \/6+x—x2:4[\/6—(x2—x): \/25/4—(x—%)2

Letting x — % = u, this becomes

du - 1(2x —1
m—sln %-FC—SIH T +c

Jl L —sin! <2x _ 1) l —sin~! <l> —sin”! <—§>
1/(x+2)(3—x) 5 1 5 5

=sin"' 2+sin"'.6

Then
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Method 2: Let x — % =y as in Method 1. Now when x = —1, u = f%; and when x =1, u = % Thus
by Formula 25, Page 96.

Jl dx _Jl dx _J'/z du i 172
V)G =x) e 54 (x ,%)2 —3/24/25/4 —u? 5/21 50

=sin' .2 +sin!.6

(d) Let2'™ =u. Then —2'¥(In2)dx = du and 2 "dx = — %, so that the integral becomes
fijtl nhudi = ——— Incosh2' ™ 4 ¢
2in2 | T Ty O ¢
2x dx

1
() Letsin'x®>=u. Then du=———2xdx=

/1—()62)2 _vl—x4

and the integral becomes

1 1 1 . _
EJudu:Zu2+c:Z(sm 1xz)Z—}—c
V2 5in ! 32 1 Wy N s
Th Xsin X D! 22 LY DO .
us Jo N X 4(sm x7) . 7] sin 3 144
o J xdx 1J2x+1—1 d 1[ 2x +1 1 dx
= — X==]—————dx— —-—
VXex+1 2l r s 2) e+ x+1 2+ x+1

Lf > —1/2 702 1 dx
— @ ) Pa -2 |
2J 2
Y+ +3
=V +x+1-Ilnx+i+ /(x+)*+3+¢

2 dx 1
1 (2 —2x+4)7 6
2 dx

e =17+ 377
u=tan"' 0 =0; when x =2, u=tan"' 1//3 =x/6. Then the integral becomes

5.15. Show that J

Write the integral as J Let x — 1 =+/3tanu, dx = V3sec?udu. When x = 1,

/6 1

/6 1
== cosudu=—sinu| =-
o [3sec?u]’? 3Jo 3 o 6

J”/" V3sec® udu 7J'”/6\/§sec2uduil
o [B43tanul?

2

4
5.16. DetermineJ L3
¢ x(Inx)

Let Inx =y, (dx)/x =dy. When x =e, y = |; when x = ¢?, y = 2. Then the integral becomes
>3

8

[&-2
1 }’3 -2

1

5.17. Findjx”lnxdxif (@) n# -1, (b) n=—1.
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(a) Use integration by parts, letting u = In x, dv = x" dx, so that du = (dx)/x, v=x"t'/(n+1). Then

xn+l J xn+1 dx

Jx”lnxdx:Judv:uv—J.vdu:’—lnx
n+1 n+1 x

xn+ 1 n+1

=——Ihx——+¢
n+1 (n+1)

(b) J x 'nxdx = Jlnx d(lnx) = %(lnx)z +c.

5.18. Find JWX“ dx.

Let v2x +1 =y, 2x+ 1 =3 Then dx = ydy and the integral becomes J3y -ydy.

Integrate by parts, letting u = y, dv = 3" dy; then du = dy, v = 3"/(In 3), and we have

. o B B _}’,.}V_J 3,1‘ _},‘3}'_ 3y
J3 yd}_Judv_uv Jvdu_ 3 lnde_ 3 (1n3)2+c

1

5.19. Find J xIn(x + 3) dx.

0
d X , .
Let u = In(x + 3), dv = xdx. Then du= Y—+x3 v= % Hence on integrating by parts,

2 2 2
X I (x“dx x 1 9
Jaln(x+3)dx:71n(x+3)—ijx+3:iln(x+3)—§.|.<x73+x+3)dx

2 2
X 1]x
:711'1(.’(—’-3)—5{7-3)(-’-911’1()(-’—3)}+C

! 5 9
Then J xln(x+3)dx:z—4ln4+§ln3
0

6—x
s

Use the method of partial fractions. Let

5.20. Determine J

6—x A4 n B
(x=3)(2x+5 x-3 2x+5

Method 1: To determine the constants 4 and B, multiply both sides by (x — 3)(2x + 5) to obtain
6—x=A2x+5)+B(x—3) or 6—x=54—-3B+ 24+ B)x (1)
Since this is an identity, 54 —3B=6,24+ B=—1and 4 =3/11, B=—17/11. Then

6—x 3/11 —-17/11 3 17
x = x =—In|x — 3| — = In|2i :
J(x73)(2x+5)dx Jx73dx+J2X+5 dx T n|x—3| > n|2x+ 5] +c¢

Method 2: Substitute suitable values for x in the identity (/). For example, letting x = 3 and x = —5/2 in
(1), we find at once 4 =3/11, B=—17/11.

X
5.21. Evaluate | ———— by using the substitution tan x/2 = u. 2
JS + 3cosx Y £ / m u
From Fig. 5-7 we see that 2
1 1
sinx/2 = " cosx/2 =

N V1i+a? Fig. 5-7
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1—d
Th = cos® x/2 — sin® x/2 = .
en cosx =cos” x/ sin” x/ T
1 24
Also du=—sec’ x/2dx or dx=2cos’x/2du= uz'
2 l+u
Thus the integral becomes Jidu ltan’] /24 ¢ ltdn’] 1tdn x/2)+c¢
. — ¢ u — _ts ~tan :
£ 242 2 2
T xsinx
5.22. EvaluateJ ——
o 1+cos“x
Let x =7 —y. Then
7 xsinx T(mr—y)siny T siny T ysiny
1= 5 X = 5 =71 — ) — P
o I +cos”x o 1+4+cosy ol +cos y o 1l +cos=y
T d A
= —nJ Ls{)—l = —mtan '(cosy)[f — I =n*/2 =1
o 1l+cos™y

ie, I=m/2—1 or I=n"/4.

/2 [
5.23. Prove that J L dx ="
0 +/sinx 4+ /cosx 4

Letting x = /2 — y, we have
/2 Vsin x /2 /oSy /2 Jcosx
I = —————dx= ——————dy= ——————dx
0 +/sinx+ 4/cosx 0 /COSy+ /siny 0 4/Cosx+ +/sinx
Then
/2 A/sin; /2 /€os )
I+I:J bixdquJ. 7‘C,dx
0 /sinx -+ \/cosx 0 A/COSX + +/sin x
7J”/Z«/sin.x—i—«/cosxdxfJ"/zdxin
" Jo sinx+ ./cosx T

=], 3
from which 27 = n/2 and I = /4.
The same method can be used to prove that for all real values of m,

/2 sin” x b
T A=
o sin” x4 cos” x 4

(see Problem 5.89).
Note: This problem and Problem 5.22 show that some definite integrals can be evaluated without first
finding the corresponding indefinite integrals.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

1
> . . . .
5.24. Evaluate J sz approximately, using (a) the trapezoidal rule, (») Simpson’s rule, where the
0 X
interval [0, 1] is divided into n = 4 equal parts.

Let f(x)=1/(1 +x°). Using the notation on Page 98, we find Ax = (b — a)/n = (1 — 0)/4 = 0.25.
Then keeping 4 decimal places, we have: y, = f(0) = 1.0000, y; = f(0.25) = 0.9412, y, = £(0.50) = 0.8000,
y3 = £(0.75) = 0.6400, y4 = f(1) = 0.50000.

(a) The trapezoidal rule gives
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% o +2y1 + 2y, + 25+ y4) = %{1.0000 =+ 2(0.9412) 4 2(0.8000) + 2(0.6400) + 0.500}
=0.7828.
(b) Simpson’s rule gives
Ax 0.25
3 o+4n +2m+4y3+ ) = = {1.0000 + 4(0.9412) 4 2(0.8000) + 4(0.6400) + 0.5000}
=0.7854.

The true value is /4 ~ 0.7854.

APPLICATIONS (AREA, ARC LENGTH, VOLUME, MOMENT OF INTERTIA)

5.25. Find the (a) area and (b) moment of inertia about the y-axis of the region in the xy plane
bounded by y = 4 — x* and the x-axis.

(a) Subdivide the region into rectangles as in the figure on Y
Page 90. A typical rectangle is shown in the adjoining
Fig. 5-8. Then < Axy [«
Required area = lim f (&) Axy,
n—oo ; i }
) A
= lim Y (@4 —£&)Ax i :
Hw;( 5) Axy | v
2 i 5
32 i ©
:J (@4=)dr =" | b
) 1 =
: ~
() Assuming unit density, the moment of inertia about the y- 30 EI 3 O+
axis of the typical rectangle shown above is & f(&,) Ax;. 2.0 e (209

Then Fig. 5-8

n n
Required moment of inertia = lim Z & f(&) Ax, = lim Z £(4 — &) Ax,
n—00 =1 n—00 =1

2 128

2 2
= x(4—x)dx=——
J_2V( X~) dx 5

5.26. Find the length of arc of the parabola y = x? from x =0 to x = 1.

1 1
Required arc length = [ V1 + (dy/dx)* dx = [ 1+ (2x)*dx
Jo JO
1 1 2
:J \/1+4x2dx:§J V1+u?du
0 0
=uy/1 4+ + 3@+ T+ )5 =15 + 1@ +V/5)

5.27. (a) (Disk Method) Find the volume generated by revolving the region of Problem 5.25 about the
X-axis.
n 2
Required volume = lim ) " myiAxy = rrj (4 — xH?dx = 5127/15.
n—0o0 /&:1 -2

(b) (Disk Method) Find the volume of the frustrum of a paraboloid obtained by revolving f(x) = vkx,
0 <a £ x £ b about the x-axis.
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b
V= rr[ kx dx :%‘(b2 — ).

Ja

(¢) (Shell Method) Find the volume obtained by orbiting the region of part (b) about the y-axis.
Compare this volume with that obtained in part (b).

b
V= 271J x(kx) dx = 27kb® /3
0

The solids generated by the two regions are different, as are the volumes.

MISCELLANEOUS PROBLEMS

5.28 If f(x) and g(x) are continuous in [a, b], prove Schwarz’s inequality for integrals:

2 b

b b
(J ore dx) < J P dxj (g0}’ d

a a

We have

b b b b
j ) + Ag()) dx = J O dx + 2AJ S g(x) dx + 22 J (P dx = 0

for all real values of A. Hence by Problem 1.13 of Chapter 1, using (/) with

b b b
A2=J gV dv, B = [ P dx, C=Jf(x)g<x)dx

a

we find C* < 4%B?, which gives the required result.

M dx T
5.29. Prove that lim J - =
M- g x*+4 8
We have x* +4 =x* +4x2 +4 — 43" = (? +2)° — 2x)° = (* + 2 + 2%)(x* + 2 — 2x).
According to the method of partial fractions, assume
1 Ax+B Cx+D
X4 2 42x4+2 x2—-2x42
Then 1=(A4+ CO)x*+(B—24+2C+ D)x* + (24 —2B+2C +2D)x + 2B+ 2D
sothat A4+ C=0,B—24+2C+D=0,24—-2B+2C+2D=0,2B+2D =1
Solving simultaneously, 4 =%, B=1 C=—1 D=4 Thus

[ dx IJ x+2 / IJ x—=2 d
=- dx — - x
Jx*+4 8)xT+4+2x+2 8)x2—2x+2

1 x+1 1 dx 1 x—1 1 dx
== ——dx+ —— = s—dxt g | ——5—
8l(x+1)"+1 8J(x+1)y+1 8J(x—1)y+1 8J(x—1)y+1

:1—16111()(2 +2x+2)+étan*1(x+ 1) —1—161n(x2 - 2x+2)+étan*1(x— H+C

Then
M 2
. dx . 1 M +2M +2 I, | b4
dm ], s A}‘L‘;{ﬁ ‘(m) Fglan (D glan (M= =g
L < dx . . . . . . .
We denote this limit by L called an improper integral of the first kind. Such integrals are considered
0 X

further in Chapter 12. See also Problem 5.74.
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Jy sin £dt

5.30. Evaluate lim 3
x—0 X

The conditions of L’Hospital’s rule are satisfied, so that the required limit is

A sin e ar 4 gin
. dx )y e . osinx® dx 6Ny 3cosxd 1
li = lim = lim & =lim——F—=-
x—0 i(x4) x—0 4x x—0 i(4\’3) x—0 12x 4
dx ™ dx"

b
5.31. Prove that if f(x) is continuous in [a, b] then J f(x)dx exists.

Leto = Z [ (&) Axy, using the notation of Page 91. Since f(x) is continuous we can find numbers M

and my, repre’éélting the Lu.b. and g.l.b. of f(x) in the interval [x;_;, x;], i.e., such that m; < f(x) < M.
We then have

m(b—a)gs:kaAxk <o = ZMkAxk:SéM(b—a) (1)
k=1 le=1
where m and M are the g.1.b. and L.u.b. of f(x) in [@, b]. The sums s and S are sometimes called the lower and
upper sums, respectively.

Now choose a second mode of subdivision of [a, b] and consider the corresponding lower and upper
sums denoted by s” and S’ respectively. We have must

s'<8 and N 2

To prove this we choose a third mode of subdivision obtained by using the division points of both the first
and second modes of subdivision and consider the corresponding lower and upper sums, denoted by 7 and 7,
respectively. By Problem 5.84, we have

s<t<T LS and s’

IIA

t T

IIA
IIA

N )

which proves (2).

From (2) it is also clear that as the number of subdivisions is increased, the upper sums are monotonic
decreasing and the lower sums are monotonic increasing.  Since according to (/) these sums are also
bounded, it follows that they have limiting values which we shall call § and S respectively. By Problem
5.85,5 £ S. In order to prove that the integral exists, we must show that § = S.

Since f(x) is continuous in the closed interval [a, b], it is uniformly continuous. Then given any € > 0,
we can take each Ax; so small that M, —m, < ¢€/(b —a). It follows that

S—s= Z(Mk —mp)Ax; < ﬁz Ax =€ “
k=1 k=1

Now S —s=(S—8) + (S —5) + (5§ — s) and it follows that each term in parentheses is positive and so is less
than € by (4). In particular, since S — 5 is a definite number it must be zero, i.e., S = 5. Thus, the limits of
the upper and lower sums are equal and the proof is complete.

Supplementary Problems

DEFINITION OF A DEFINITE INTEGRAL
1
5.32. (a) Express J x*dx as a limit of a sum. (b) Use the result of (a) to evaluate the given definite integral.
0
(¢) Interpret the result geometrically.

Ans. (b) %

2 6
5.33.  Using the definition, evaluate (@) [ GBx+ Ddx, (b) [ (x2 —4x) dx.
Ans. (a) 8, (b) 9 J0 73
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n n n i
5.34. Prove that nlgrgo{m +m+ .. +m} =7

5.35. Prove that lim

n—00

{1P+2"+31’+~~-+n1‘_ 1

s 7p+1}1fp>—1.

b
5.36. Using the definition, prove that J Fdx=e — e

a

5.37. Work Problem 5.5 directly, using Problem 1.94 of Chapter 1.

1 1
5.38. Prove that lim 4+ -+ =In(1 +v2).
e w{ \/nz+22 \/n2+n2}

tan™! x
5.39. Prove that llm ZW T if x # 0.
PROPERTIES OF DEFINITE INTEGRALS
5.40. Prove (a) Property 2, (b) Property 3 on Pages 91 and 92.

b rC

5.41. If f(x) is integrable in (a, ¢) and (c, b), prove that J f(x)dx = J f

b b
5.42. If f(x) and g(x) are integrable in [a, b] and f(x) < g(x), prove that [ f(x)dx < [ g(x)dx.
Ja Ja

5.43. Prove that 1 —cosx = xz/n for0 < x < n/2.

1
5.44. Prove that J cosnx dx' < In2 for all n.
0 X =+ 1

5.45. Prove that X

[ V3 o gin x
= 12¢

J1 x2+1

MEAN VALUE THEOREMS FOR INTEGRALS

5.46. Prove the resultb(5), Page 92. [Hint: If m < f(x) < M, then mg(x) =< f(x)g(x) < Mg(x).

and divide by J g(x)dx. Then apply Theorem 9 in Chapter 3.

5.47. Prove that there exist values & and &, in 0 < x < [ such that

J" sin rx v 2 —Zsinné
o2 +1 B+ 4 2

Hint: Apply the first mean value theorem.

T

b
(x)dx + J S(x)dx.

[CHAP. 5

Now integrate

5.48. (a) Prove that there is a value £ in 0 < x < 7 such that | ¢ *cosxdx = sin&. (b) Suppose a wedge in the

0
shape of a right triangle is idealized by the region bound by the x-axis, f(x) = x, and x = L. Let the weight
distribution for the wedge be defined by W(x) = x> + 1. Use the generalized mean value theorem to show

LI*+2

that the point at which the weighted value occurs is — ——
4 1243
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CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

1 3 b h2
5.49. Evaluate: (a)J e cos i dx, (b) J 1+[2t dr, (¢ JI\/% () J.CSC\/&\/; du,
© JZ &
-2 16 — ’Cz.
Ans. (a) Lo Y e, (b) 732, (0) 1/3, (d) —2cothute, (o) ln3.
1 dx V3 dx x2—1
5.50. Show that (q) Lm_ﬁ’ ) J -

5.51. Prove that (a) [\/u +ddu=1uid £d® £1d Inju+ Vi £
(b) J\/a —u du—f va? —u +1a sin”~ u/a—|—c, a>0.

‘ xd
5.52. FdeL. Ans. V24 2x+5—In|x+ 14V +2x+ 5| +c
VX2 4+2x+5

5.53. Establish the validity of the method of integration by parts.

5.54. Evaluate (a) [ xcos 3xdx, (b)J " dx. Ans. (@) =2/9, (b)) —l1e (X' +6x7 +6x+3)+c
Jo

! 1 1
5.55. Show that (a) J xtan~! xdx ——n——+-1 2

27 66
(b) [ Vx?+x+ ldx ——+¥+§1 (;%2:/2)

5.56. (a) If u=f(x) and v = g(x) have continuous nth derivatives, prove that
J.uv(") dx = ") — "D oy =1 Ju(”)v dx

called generalized integration by parts. (b) What simplifications occur if u™ =0? Discuss. (c) Use (a) to
T

evaluate J x*sinxdx. Ans. (¢c) 7t — 1277 +48
0

5.57.  Show that J v _m-2
o(x+ DX+ 8

. . . . X A B Cx+D
[Hint: Use partial fractions, i.e., assume +

= + +
(x+12x2+1) (x+1)? x+1 P2 +1

and find 4, B, C, D.]

T
1>
5.58. Prove that J @ d , a> 1.
0 —COSX o —1

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

1
5.59. Evaluate J 10_1:6 approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, taking n = 4.
0 X

Compare with the exact value, In2 = 0.6931.
/2
5.60. Using («a) the trapezoidal rule, (b) Simpson’s rule evaluate sin” x dx by obtaining the values of sin® x

0
at x =0°,10°%...,90° and compare with the exact value /4.

5.61. Prove the (@) rectangular rule, (b) trapezoidal rule, i.e., (/6) and (I7) of Page 98.

5.62. Prove Simpson’s rule.
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. . . . 2 dx ! >
5.63. Evaluate to 3 decimal places using numerical integration: (a) =l (b) | coshx”dx.
1 X 0

Ans. (a) 0.322, (b) 1.105.

APPLICATIONS

5.64. Find the (¢) area and () moment of inertia about the y-axis of the region in the xy plane bounded by
y=sinx, 0 £ x < & and the x-axis, assuming unit density.
Ans. (a) 2, (b) i*—4

5.65. Find the moment of inertia about the x-axis of the region bounded by y = x> and y = x, if the density is
proportional to the distance from the x-axis.
Ans. %M, where M = mass of the region.

5.66. (a) Show that the arc length of the catenary y = coshx fromx =0tox =1In2is %. (b) Show that the length
ofarcof y=x%, 2 < x < 5is 3 221172

5.67. Show that the length of one arc of the cycloid x = a(@ — sin6), y = a(l — cos ), (0 < 6 < 2x) is 8a.

5.68. Prove that the area bounded by the ellipse x*/a* +1?/b* = 1 is 7ab.

5.69. (a) (Disk Method) Find the volume of the region obtained by revolving the curve y =sinx, 0 < x < 7,
about the x-axis. Ans. (a) 7%/2
(b) (Disk Method)  Show that the volume of theb frustrum of a paraboloid obtained by revolving

k

f(x)=+kx, 0 <a < x < b, about the x-axis is 7 | kxdx = ’%(b2 —d). (c¢) Determine the volume
obtained by rotating the region bound by f(x) = 3, g(;) =5—x"on -2 £ x £ V2. (d) (Shell Method)
A spherical bead of radius a has a circular cylindrical hole of radius b, b < a, through the center. Find the
volume of the remaining solid by the shell method. (e) (Shell Method) Find the volume of a solid whose
outer boundary is a torus (i.e., the solid is generated by orbiting a circle (x — a)* + y* = b* about the y-axis
(a > b).

5.70. Prove that the centroid of the region bounded by y = va*> — x?, —a £ x < a and the x-axis is located at
(0, 4a/3m).

5.71. (a) If p = f(¢) is the equation of a curve in polar coordinates, show that the area bounded by this curve and

1 (%2
the lines ¢ =¢; and ¢ = ¢, is EJ p’dp.  (b) Find the area bounded by one loop of the lemniscate
0° = a*cos 2. 4
Ans. (b) &
()

5.72.  (a) Prove that the arc length of the curve in Problem 5.71(«) is J Vo2 + (dp/d)* dp. (b) Find the length
of arc of the cardioid p = a(l — cos ¢). 1
Ans. (b) 8a

MISCELLANEOUS PROBLEMS

5.73.

5.74.

5.75.

Establish the mean value theorem for derivatives from the first mean value theorem for integrals. [Hint: Let

f(x) = F'(x) in (4), Page 93.]

4—¢ 3 1—e
. dx . dx . dx b4 .
Prove that (a) élga Jo T 4, () Elir& L % =6, (o éli\l(r)l+ L =33 and give a geo-

metric interpretation of the results.

[These limits, denoted usually by J4 dx J.g dx and J] _dx respectively, are called impro
| ovE=—x" Jo/x 0v1—x2 ’

per integrals of the second kind (see Problem 5.29) since the integrands are not bounded in the range of

integration. For further discussion of improper integrals, see Chapter 12.]

M
Prove that (a) A}imJ e ¥dx=41=24, (b) lim
— Jo €e—0+

J 2—e dx T

1 /X2 —x) T2
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5.76.

5.77.

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.84.

5.85.

5.86.

5.87.

5.88.

5.89.

5.90.

5.91.

5.92.

> /2 sin2 ©  dx
Evaluate (a)J 7’(3 (b) J ?mif/}dx, (¢) J I
0 1+x 0 (sinx) 0 x+vx24+1

2
Ans. (@) —= (b) 3 (c¢) does not exist
(@) 33 ®) 3 (o)

2 /2 sint
X - 4 dt
Evaluate lim ex’/m —em/4+ '[‘ ¢ .
x—>m/2 1 + cos2x

Ans. e/2m

3

Prove: (a) diJ FHt+Ddr=3°+x"-23+32-2x, 2
x )

1~

d

J cos 2 dt = 2xcos x* — cos x°.
X

X

T /2
Prove that (a) J Vifsinxdc =4, (b) J B (a4
'l

0 0 Sinx 4 cosx
d d
Explain the fallacy: 1= J al 5 = —J Y 5
—1 1 + X —1 1 +y
But 7 = tan"!(1) — tan"}(=1) = n/4 — (—7/4) = 7/2. Thus 7/2 = 0.

= —1, using the transformation x = 1/y. Hence I = 0.

(172 cosmx 1 1
Prove that J dx £ - tan~' =.
0 /1 + x2 4 2
V 1+ 24 - ++42n—-1
Evaluate lim { rtltvnt 3/2+ ten } Ans. %(2\/5 -1
n—00 n

1 if x is irrational

0if x is rational is not Riemann integrable in [0, 1].

Prove that f(x) = {

[Hint: In (2), Page 91, let &, k = 1,2, 3, ..., n be first rational and then irrational points of subdivision and
examine the lower and upper sums of Problem 5.31.]

Prove the result (3) of Problem 5.31. [Hint: First consider the effect of only one additional point of
subdivision.]

In Problem 5.31, prove that § < S. [Hint: Assume the contrary and obtain a contradiction.]

b
If f(x) is sectionally continuous in [a, b], prove that | f(x)dx exists. [Hint: Enclose each point of disconti-

a
nuity in an interval, noting that the sum of the lengths of such intervals can be made arbitrarily small. Then
consider the difference between the upper and lower sums.

2x 0<x<1 2
If f(x)=13 x=1 , find J f(x)dx. Interpret the result graphically. Ans. 9

6x—1 1<x<2 0
3
Evaluate J {x —[x]+ %} dx where [x] denotes the greatest integer less than or equal to x. Interpret the result

0
graphically. Ans. 3

/2 sin” x T
(a) Prove that J S x  cos" x dx = 1 for all real values of m.
o sin”x+cos”x

2 dx

(b) Prove that Jo T4 tanix =7

/2 o
sin x .
Prove that J —— dx exists.
0

X
0.5 —1 X

Show that J dx = 0.4872 approximately.

0

T 2
Show that J _xdy T
ol4cos’x 22



CHAPTER 6

Partial Denrivatives

FUNCTIONS OF TWO OR MORE VARIABLES

The definition of a function was given in Chapter 3 (page 39). For us the distinction for functions of
two or more variables is that the domain is a set of n-tuples of numbers. The range remains one
dimensional and is referred to an interval of numbers. If n =2, the domain is pictured as a two-
dimensional region. The region is referred to a rectangular Cartesian coordinate system described
through number pairs (x, ), and the range variable is usually denoted by z. The domain variables are
independent while the range variable is dependent.

We use the notation f(x, y), F(x,y), etc., to denote the value of the function at (x, y) and write
z=f(x,y), z=F(x,y), etc. We shall also sometimes use the notation z = z(x, y) although it should be
understood that in this case z is used in two senses, namely as a function and as a variable.

EXAMPLE. If f(x,)) = x> +2)°, then /(3, —1) = 3)* + 2(=1)* = 7.

The concept is easily extended. Thus w = F(x, y, z) denotes the value of a function at (x, y, z) [a
point in three-dimensional space], etc.

EXAMPLE. If z =./1 — (x*> +)?), the domain for which z is real consists of the set of points (x,y) such that
x> +37 < 1, ie., the set of points inside and on a circle in the xy plane having center at (0, 0) and radius 1.

THREE-DIMENSIONAL RECTANGULAR COORDINATE SYSTEMS

A three-dimensional rectangular coordinate system, as referred to in the previous paragraph,
obtained by constructing three mutually perpendicular axes (the x-, y-, and z-axes) intersecting in
point O (the origin). It forms a natural extension of the usual xy plane for representing functions of
two variables graphically. A point in three dimensions is represented by the triplet (x, y, z) called
coordinates of the point. In this coordinate system z = f(x, y) [or F(x, y, z) = 0] represents a surface,
in general.

EXAMPLE. The set of points (x, y, z) such that z = /1 — (x> + »?) comprises the surface of a hemisphere of radius
1 and center at (0, 0, 0).

For functions of more than two variables such geometric interpretation fails, although the termi-
nology is still employed. For example, (x, y, z, w) is a point in four-dimensional space, and w = f(x, y, z)
[or F(x, y, z, w) = 0] represents a hypersurface in four dimensions; thus x* + y* + z> + w? = &’ represents
a hypersphere in four dimensions with radius @ > 0 and center at (0,0, 0, 0). w = \/a? — (x? + )2 + %),
x> 4 % 4+ 22 < o* describes a function generated from the hypersphere.
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NEIGHBORHOODS

The set of all points (x, y) such that |x — xq| < 8, |y — yg| < 8 where § > 0, is called a rectangular §
neighborhood of (xq, yy); the set 0 < |x — x| <8, 0 < |y — yg| < § which excludes (xg, yo) is called a
rectangular deleted § neighborhood of (xy, yo). Similar remarks can be made for other neighborhoods,
e.g., (x — x0)* + (v — yo)? < 8% is a circular 8 neighborhood of (xg, yo). The term “open ball” is used to
designate this circular neighborhood. This terminology is appropriate for generalization to more
dimensions. Whether neighborhoods are viewed as circular or square is immaterial, since the descrip-
tions are interchangeable. Simply notice that given an open ball (circular neighborhood) of radius §
there is a centered square whose side is of length less than /28 that is interior to the open ball, and
conversely for a square of side § there is an interior centered of radius of radius less than §/2. (See Fig.
6-1.)

A point (xg, yo) is called a limit point, accumulation point, or cluster point of a point set S if every
deleted & neighborhood of (x, yg) contains points of S. As in the case of one-dimensional point sets,
every bounded infinite set has at least one limit point (the Bolzano—Weierstrass theorem, see Pages 6 and
12). A set containing all its limit points is called a closed set.

Q

Fig. 6-1 Fig. 6-2

REGIONS

A point P belonging to a point set S is called an interior point of S if there exists a deleted §
neighborhood of P all of whose points belong to S. A point P not belonging to S is called an exterior
point of S if there exists a deleted § neighborhood of P all of whose points do not belong to S. A point P
is called a boundary point of S if every deleted § neighborhood of P contains points belonging to S and
also points not belonging to S.

If any two points of a set S can be joined by a path consisting of a finite number of broken line
segments all of whose points belong to S, then S is called a connected set. A region is a connected set
which consists of interior points or interior and boundary points. A closed region is a region containing
all its boundary points. An open region consists only of interior points. The complement of a set, S, in
the x—y plane is the set of all points in the plane not belonging to S. (See Fig. 6-2.)

Examples of some regions are shown graphically in Figs 6-3(a), (b), and (c) below. The rectangular
region of Fig. 6-1(«a), including the boundary, represents the sets of pointsa < x £ b, ¢ £ y £ d which
is a natural extension of the closed interval ¢ < x < b for one dimension. Theseta <x <b,c <y <d
corresponds to the boundary being excluded.

In the regions of Figs 6-3(a) and 6-3(b), any simple closed curve (one which does not intersect itself
anywhere) lying inside the region can be shrunk to a point which also lies in the region. Such regions are
called simply-connected regions. In Fig. 6-3(c) however, a simple closed curve 4ABCD surrounding one of
the “holes” in the region cannot be shrunk to a point without leaving the region. Such regions are called
multiply-connected regions.
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&

(a) (b) (©)

Fig. 6-3

LIMITS

Let f(x,y) be defined in a deleted § neighborhood of (x, yy) [i-e.,f(x,y) may be undefined at
(x9,v0)].  We say that [ is the limit of f(x,y) as x approaches x, and y approaches y, [or (x, )

approaches (xg, yo)] and write lim f(x, y) =/ [or ( )lir(n ) f(x,y) =[] if for any positive number € we
e X,3)—>(x0.50
=0

can find some positive number § [depending on € and (xg, ), in general] such that |f(x,y) —1/| <€
whenever 0 < |[x — xy| <8 and 0 < |y — yo| < 8.

If desired we can use the deleted circular neighborhood open ball 0 < (x — xq)* + (y — y,)* < 8
instead of the deleted rectangular neighborhood.

0 if (x,»=(1,2)’
3(1)(2) = 6 and we suspect that l,i“} f(x,y)=6. To prove this we must show that the above definition of limit with

EXAMPLE. Let /(x, ) = { 3y A0CO)#(L2) - Ac L Land y — 2 [or (x, ) — (1, 2)], £(x, ) gets closer to

! = 6 is satisfied. Such a proof‘ Ein be supplied by a method similar to that of Problem 6.4.
Note that lin} fx,») #f(1,2)since f(1,2) = 0. The limit would in fact be 6 even if f(x, y) were not defined at

y—2
(1,2). Thus the existence of the limit of f(x, y) as (x, y) — (xg, ¥o) is in no way dependent on the existence of a value
of f(x, y) at (xo, yo)-

Note that in order for ( )lilgl ) f(x,y) to exist, it must have the same value regardless of the
x.3)=(¥0.50

approach of (x,y) to (xg,10). It follows that if two different approaches give different values, the
limit cannot exist (see Problem 6.7). This implies, as in the case of functions of one variable, that if a
limit exists it is unique.

The concept of one-sided limits for functions of one variable is easily extended to functions of more
than one variable.

EXAMPLE 1. lim tan~'(y/x) = 72, lim tan”'(y/x) = —7/2.

=1 y—>1

EXAMPLE 2. Hl‘l} tan~!( y/x) does not exist, as is clear from the fact that the two different approaches of Example
y—=1

1 give different results.

In general the theorems on limits, concepts of infinity, etc., for functions of one variable (see Page
21) apply as well, with appropriate modifications, to functions of two or more variables.
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ITERATED LIMITS
The iterated limits lim I lim f(x, y)} and lim [ lim f(x, y)}, [also denoted by lim lim f(x, y) and
y=>yo | X=Xy

X=>Xo | V=)o X=X Y=o

lim lim f(x,y) respectively] are not necessarily equal. Although they must be equal if ]LI% f(x,y)isto

Y=Y X=X

exist, their equality does not guarantee the existence of this last limit.

y=y0

EXAMPLE. If /(x,7) =2 then lim <lim o _y) = lim (1) = 1 and lim <lim al _y) —lim(~1)= —1. Thus
xX+y x=>0\y—=0 x+y x—0 y=0\x=0 X +y y—0

the iterated limits are not equal and so ling f(x, y) cannot exist.

=0

CONTINUITY

Let f(x, y) be defined in a § neighborhood of (xg, yy) [i-e., f(x, y) must be defined at (xy, y,) as well as
near it]. We say that f(x, y) is continuous at (xy, yo) if for any positive number ¢ we can find some
positive number § [depending on € and (x,, yo) in general] such that | f(x, y) — f(xg, ¥o)| < € whenever
|x — xo| < 8 and |y — yo| < 8, or alternatively (x — xo)* + (y — yy)* < 8°.

Note that three conditions must be satisfied in order that f(x, y) be continuous at (xg, yo)-

1. lim  f(x,y) =1 ie., the limit exists as (x, y) = (xg, Vo)

(x.3)=>(x0.%0)

2. f(xy, yo) must exist, i.e., f(x, y) is defined at (xg, yg)
3. 1= f(x0, y0)

If desired we can write this in the suggestive form lim f(x, y) = f(lim x, lim y).
X=X X—>Xo y=>)o
y=ro

0 (X’y) = (112), (x,»)—(1,2
uous at (1,2). If we redefine the function so that f(x, y) = 6 for (x, y) = (1, 2), then the function is continuous at
(1,2).

EXAMPLE. If /(x, y):{3xy N #ELD) pen tim S(r.3) =6 #(1.2). Hence, f(x.) s not contin-

If a function is not continuous at a point (x, yg), it is said to be discontinuous at (x,, y,) which is then
called a point of discontinuity. 1If, as in the above example, it is possible to redefine the value of a
function at a point of discontinuity so that the new function is continuous, we say that the point is a
removable discontinuity of the old function. A function is said to be continuous in a region # of the xy
plane if it is continuous at every point of Z.

Many of the theorems on continuity for functions of a single variable can, with suitable modifica-
tion, be extended to functions of two more variables.

UNIFORM CONTINUITY

In the definition of continuity of f(x, y) at (xg, ¥g), § depends on € and also (xy, yy) in general. Ifin a
region # we can find a § which depends only on € but not on any particular point (xg, yy) in Z [i.e., the
same 8 will work for a/l points in #], then f(x, y) is said to be uniformly continuous in Z. As in the case
of functions of one variable, it can be proved that a function which is continuous in a closed and
bounded region is uniformly continuous in the region.

PARTIAL DERIVATIVES

The ordinary derivative of a function of several variables with respect to one of the independent
variables, keeping all other independent variables constant, is called the partial derivative of the function
with respect to the variable. Partial derivatives of f(x, y) with respect to x and y are denoted by
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Aen 2 }and o lorhtwn g

it is needed to emphasize which variables are held constant.

By definition,

Y _ oy TEH ALY () S _ iy LY+ AY) —fx )
X Ax—0 Ax ’ dyy  Ay—0 Ay

of
ax

] respectively, the latter notations being used when

()

when these limits exist. The derivatives evaluated at the particular point (xg, y,) are often indicated by
f

of .
™ = fx(x0, o) and —— = f,(xg, yo), respectively.

(x0,30) 3} (x0,0)

EXAMPLE. 1If f(x,)) =2x' +3x)%, then f, = df/dx =6x>+3)% and f, = df/dy=6xp.  Also, fu(1,2) =
617 +32° = 18, £,(1,2) = 6(1)(2) =

If a function f has continuous partial derivatives df /dx, 9f /dy in a region, then / must be continuous
in the region. However, the existence of these partial derivatives alone is not enough to guarantee the
continuity of f (see Problem 6.9).

HIGHER ORDER PARTIAL DERIVATIVES

If f(x, y) has partial derivatives at each point (x, y) in a region, then df/dx and 9f/dy are themselves
functions of x and y, which may also have partial derivatives. These second derivatives are denoted by

f 82f of 82]‘ o\ *f o\
ax (3x) ax? =/ ay (3}> dy? =hw ax (8y> " oxdy =y dy (3x> Ty oax =/ @

If £, and f, are continuous, then f,, = f,, and the order of differentiation is immaterial; otherwise they
may not be equal (see Problems 6.13 and 6.41).

EXAMPLE. Iff(x,y) = 2x° 4 3x)? (see preceding example), then f,, = 12x, f,,, = 6x, f, = 6y =f,,. Insuch case
fa(1,2) =12, £,,(1,2) = 6, £,,(1,2) = f,(1,2) = 12.

3

In a similar manner, higher order derivatives are defined. For example
of /" taken once with respect to y and twice with respect to x.

= fyxx 18 the derivative
ox? 8y :

DIFFERENTIALS

(The section of differentials in Chapter 4 should be read before beginning this one.)
Let Ax = dx and Ay = dy be increments given to x and y, respectively. Then

Az =f(x+ Ax,y+ Ay) —f(x.p) = Af &)
is called the increment in z = f(x, y). If f(x, y) has continuous first partial derivatives in a region, then
of of 0z
Az 8—Ax+a Ay+ € Ax+ e Ay = —dx+a—dy+eldx+62dy=Af “)
X y
where €; and €, approach zero as Ax and Ay approach zero (see Problem 6.14). The expression
0 0 9 9
z=2Sax+Zay or  df = fdx+ f (5)
ax ay

is called the rotal differential or simply differential of z or f, or the principal part of Az or Af. Note that
Az # dz in general. However, if Ax = dx and Ay = dy are “small,” then dz is a close approximation of
Az (see Problem 6.15). The quantities dx and dy, called differentials of x and y respectively, need not be
small.
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z
Py (x030) xo+ Ay, o+ Ay
Ay v
X0V ||
LA LA Ax
Xo+Ax, o+ AY
dz Tangent plane
x to surface at P,

af af

=9 o+ 8L
dz I dx ay dy
P 7 dy
dx
Fig. 6-4

The form dz = f,.(xy, yo)dx + f,(xo, yo)dy signifies a linear function with the independent variables dx
and dy and the dependent range variable dz. In the one variable case, the corresponding linear function
represents the tangent line to the underlying curve. In this case, the underlying entity is a surface and
the linear function generates the tangent plane at Py. In a small enough neighborhood, this tangent
plane is an approximation of the surface (i.e., the linear representation of the surface at Py). If y is held
constant, then one obtains the curve of intersection of the surface and the coordinate plane y = y,. The
differential form reduces to dz = f.(xg, yo)dx (i.e., the one variable case). A similar statement follows
when x is held constant. See Fig. 6-4.

If f'is such that Af (or Az) can be expressed in the form (4) where €, and €, approach zero as Ax and
Ay approach zero, we call f differentiable at (x,y). The mere existence of f, and f, does not in itself
guarantee differentiability; however, continuity of f, and f, does (although this condition happens to be
slightly stronger than necessary). In case f, and f, are continuous in a region #, we shall say that f is
continuously differentiable in A.

THEOREMS ON DIFFERENTIALS

In the following we shall assume that all functions have continuous first partial derivatives in a
region 4, i.e., the functions are continuously differentiable in £.

1. If z=f(x,xs,...,x,), then

9 ) 9
df:'_fdxl +-_fdx2+..._|_'_f
ax; 09X, ax,,
regardless of whether the variables x|, x,, ..., x, are independent or dependent on other vari-
ables (see Problem 6.20). This is a generalization of the result (5). In (6) we often use z in place

of f.

2. Iff(x{, x5,...,x,) = ¢, aconstant, then df = 0. Note that in this case x{, x», ..., x,, cannot all
be independent variables.

dx, ©)
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3. The expression P(x, y)dx + Q(x, y)dy or briefly Pdx + Qdy is the differential of f(x, y) if and
0P 9 .
only if = aQ. In such case Pdx + Qdy is called an exact differential.
) X
vf _ o
ydx  dxdy

oP 00 . .
Note: Observe that — = —Q implies that
ay  ox

4. The expression P(x,y,z)dx+ Q(x,y,z)dy + R(x,y,z)dz or briefly Pdx + Qdy+ Rdz is the
oP 090 o dR OR dP
differential of f(x,y,z) if and only if — = —Q LY =—,—=—. In such case
ay 0x 9z Jdy ox oz
Pdx+ Qdy+ Rdz is called an exact differential.

Proofs of Theorems 3 and 4 are best supplied by methods of later chapters (see Chapter 10,
Problems 10.13 and 10.30).

DIFFERENTIATION OF COMPOSITE FUNCTIONS
Let z = f(x, y) where x = g(r, s), y = h(r, s) so that z is a function of r and s. Then

0z 0z ox 0z Jy 0z 0z ox 0z Jy

o oxar Tayor s avas | ap s @
In general, if u = F(xy, ..., x,) where x; = fi(r1,.... 1), ..., X, = fu(r1, ..., 7p), then
If in particular x;, x5, ..., x, depend on only one variable s, then
du _ Ou dxy  Ou dx; . ou dx,

ds  dx; ds ' Ox, ds B ax, ds ©)

These results, often called chain rules, are useful in transforming derivatives from one set of variables
to another.

Higher derivatives are obtained by repeated application of the chain rules.

EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

A function represented by F(x;, x,, ..., x,) is called homogeneous of degree p if, for all values of the
parameter A and some constant p, we have the identity

FOAXxy, Axy, ..., AX,) = AP F(x, X, ..., Xp) 10)

EXAMPLE. F(x,y) = x* +2xy® — 5)* is homogeneous of degree 4, since
F(ux, 2y) = (00* + 200000 = 500)* = 250% + 2307 = 5% = 23 F(x, )

Euler’s theorem on homogeneous functions states that if F(xy, x,, ..., x,) is homogeneous of degree
p then (see Problem 6.25)

F
T—i-xz——i-'--—i-x,,—:pF (11)
1 >
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IMPLICIT FUNCTIONS

In general, an equation such as F(x, y, z) = 0 defines one variable, say z, as a function of the other
two variables x and y. Then z is sometimes called an implicit function of x and y, as distinguished from a
so-called explicit function f, where z = f(x, y), which is such that F[x, y, f(x, )] = 0.

Differentiation of implicit functions requires considerable discipline in interpreting the independent
and dependent character of the variables and in distinguishing the intent of one’s notation. For
example, suppose that in the implicit equation F[x, y, f(x, z)] = 0, the independent variables are x and

f

. 9 9 . . .
y and that z = f(x, y). In order to find o and %, we initially write (observe that F(x, t, z) is zero for all
domain pairs (x, y), in other words it is a constant):
0=dF =F.dx+F,dy+F.dz

and then compute the partial derivatives Fy, F,, F. as though y, y, z constituted an independent set of

variables. At this stage we invoke the dependence of z on x and y to obtain the differential form
of of o .

dz = % dx +8ly dy. Upon substitution and some algebra (see Problem 6.30) the following results are

obtained:

f K of _F

ax F ay  F.

EXAMPLE. If 0=F(x,p,z)=x"z+yz> +2x)° =2 and z=f(x,y) then F,=2xz+2y", F, =2 +4xy.
F.=x*+2yz—32>. Then

o (Qxz+2) A o o))
ax x4 2pz— 322 3y x24+2yz—3x2

Observe that /" need not be known to obtain these results. If that information is available then (at
least theoretically) the partial derivatives may be expressed through the independent variables x and y.

JACOBIANS

If F(u, v) and G(u, v) are differentiable in a region, the Jacobian determinant, or briefly the Jacobian,
of F and G with respect to u and v is the second order functional determinant defined by

or or

NF.G) _ | | _|F ”
a(u,v) |9G 9G G, G,
ou v
Similarly, the third order determinant
aF,G, H) F, F, F,
o = |G G, G,
(u, v, w) H, H, H,

is called the Jacobian of F, G, and H with respect to u, v, and w. Extensions are easily made.

PARTIAL DERIVATIVES USING JACOBIANS

Jacobians often prove useful in obtaining partial derivatives of implicit functions.  Thus, for
example, given the simultaneous equations

F(x,y,u,v) =0, G(x,y,u,v) =0
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we may, in general, consider « and v as functions of x and y. In this case, we have (see Problem 6.31)

aF, G) aF,G) aF,G) aF, G)
ou  9x,v) u Ay, v) w  (u, x) w A, y)
ax_ AF.G) gy AF.G)  ax  AF.G) dy  AF,G)
a(u, v) (u, v) a(u, v) a(u, v)

The ideas are easily extended. Thus if we consider the simultaneous equations
F(u,v,w,x,y) =0, G(u,v,w,x,y) =0, H(u,v,w,x,y)=0

we may, for example, consider u, v, and w as functions of x and y. In this case,

AF, G, H) AF, G, H)
8_u _ A, vw) % _ v,y
ox  OF,G,H)’ ay  AF,G, H)

a(u, v, w) au, v, w)

with similar results for the remaining partial derivatives (see Problem 6.33).

THEOREMS ON JACOBIANS

In the following we assume that all functions are continuously differentiable.

1. A necessary and sufficient condition that the equations F(u, v, x,y,z) =0, G(u, v, x,y,z) =0
aF, G)
a(u, v)
Similar results are valid for m equations in n variables, where m < n.

can be solved for u and v (for example) is that is not identically zero in a region %.

2. If x and y are functions of # and v while # and v are functions of r and s, then (see Problem 6.43)

Ax, y) _ 3x, p) 3u, v)

a(r,s)  O(u,v) a(r,s)

This is an example of a chain rule for Jacobians. These ideas are capable of generalization (see
Problems 6.107 and 6.109, for example).

3. Ifu=f(x,y)and v = g(x, y), then a necessary and sufficient condition that a functional relation

a(u, v)

a(x, y)

)

of the form ¢(u, v) = 0 exists between u and v is that be identically zero. Similar results

hold for n functions of n variables.

Further discussion of Jacobians appears in Chapter 7 where vector interpretations are employed.

TRANSFORMATIONS

The set of equations

x = F(u,v)
[y = G(u,v) (10)

defines, in general, a transformation or mapping which establishes a correspondence between points in the
uv and xy planes. If to each point in the uv plane there corresponds one and only one point in the xy
plane, and conversely, we speak of a one-to-one transformation or mapping. This will be so if F and G
are continuously differentiable with Jacobian not identically zero in a region. In such case (which we
shall assume unless otherwise stated) equations (/0) are said to define a continuously differentiable
transformation or mapping.
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Under the transformation (/0) a closed region £ of the xy plane is, in general, mapped into a closed
region 2’ of the uv plane. Then if AA4,, and AA4,, denote respectively the areas of these regions, we can
show that

lim

Ady ‘a(x, ») (1)

AA,, a(u, v)

where lim denotes the limit as AA4,, (or A4,,) approaches zero. The Jacobian on the right of (/1) is
often called the Jacobian of the transformation (10).

If we solve (/0) for u and v in terms of x and y, we obtain the transformation u = f(x, y), v = g(x, »)
o) L xy)
ax,y)  O(u, v)
transformations are reciprocals of each other (see Problem 6.43). Hence, if one Jacobian is different
from zero in a region, so also is the other.

The above ideas can be extended to transformations in three or higher dimensions. We shall deal
further with these topics in Chapter 7, where use is made of the simplicity of vector notation and
interpretation.

often called the inverse transformation corresponding to (/0). The Jacobians of these

CURVILINEAR COORDINATES

If (x, y) are the rectangular coordinates of a point in the xy plane, we can think of (u, v) as also
specifying coordinates of the same point, since by knowing (u, v) we can determine (x, y) from (/0). The
coordinates (u, v) are called curvilinear coordinates of the point.

EXAMPLE. The polar coordinates (p, ¢) of a point correspond to the case u=p, v=¢. In this case the
transformation equations (/0) are x = pcos¢, y = psin ¢.

For curvilinear coordinates in higher dimensional spaces, see Chapter 7.

MEAN VALUE THEOREM

If f(x, y) is continuous in a closed region and if the first partial derivatives exist in the open region
(i.e., excluding boundary points), then

f(XO + h, Yo + k) —f(Xo, yo) = hf‘((.XO + 9/1, Yo + Qk) + kf}(XO + 911, Yo + Qk) 0<f6<l1 (12)

This is sometimes written in a form in which 7= Ax=x—xpand k= Ay =y — .

Solved Problems

FUNCTIONS AND GRAPHS
6.1. If f(x,y) = x° —2xy+3y% find: (a) f(—2.3); (D) f(&,;); (¢)
k #0.
@ f(=2,3)= (=2 —2(=2)3) +33)> = -8 + 12+ 27 = 31

(12 1 L (1)/2 N 1 4 12
 1(5)= () =00 -0 5-5+F

Sy + k) —f(xp)
X )
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(@ [yl =/ /2 —/)) %{[,»9 2+ k) + 30 + 0] — [ — 2xy + 357])

1
= E(X3 —2xy = 2kx + 3% + 6ky + 3k> — X2 + 2xy — 3)7)

1
= E(—ka + 6ky + 3k%) = —2x + 6y + 3k.

6.2. Give the domain of definition for which each of the following functions are defined and real, and
indicate this domain graphically.

(@ f(x.y) =1n{(16 —x* =) +)7 — 4)
The function is defined and real for all points (x, y) such that
(16 = x* = )2 + > —4) > 0, ie,4<x*4+37 <16

which is the required domain of definition. This point set consists of all points interior to the circle of
radius 4 with center at the origin and exterior to the circle of radius 2 with center at the origin, as in the
figure. The corresponding region, shown shaded in Fig. 6-5 below, is an open region.

<

4 \
/ 9 . Q_%X@])\
\J N3

X

Fig. 6-5 Fig. 6-6

() flx,»)=y6—(2x+3y)
The function is defined and real for all points (x, y) such that 2x + 3y < 6, which is the required
domain of definition.

The corresponding (unbounded) region of the xy plane is shown shaded in Fig. 6-6 above.

6.3. Sketch and name the surface in three-dimensional space represented by each of the following.
What are the traces on the coordinate planes?
(a) 2x+4y+3z=12.

Trace on xy plane (z = 0) is the straight line x4+2y =6, z = 0.

Trace on yz plane (x = 0) is the straight line 4y + 3z = 12, x = 0.

Trace on xz plane (y = 0) is the straight line 2x + 3z = 12, y = 0.

These are represented by AB, BC, and AC in Fig. 6-7.

The surface is a plane intersecting the x-, y-, and z-axes in the
points A(6, 0, 0), B(0,3,0), C(0,0,4). The lengths 04 =6, OB = 3,
OC =4 are called the x, y, and z intercepts, respectively.

S}
LS}

2
x° Yy oz
by —=+—=——==1
®) at B 3 .,
Trace on xy plane (z =0) is theellipsex—2+z;2:1,z:0.
a
yj 2

Trace on yz plane (x = 0) is the hyperbola =1, x=0. Fig. 6-7

b 2
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2 2
Trace on xz plane (y = 0) is the hyperbola % - 2—7 =1,y=0.
at ¢t

Trace on any plane z = p parallel to the xy plane is the ellipse

2
xz »?

; _
AU+ B+ /)
As | p| increases from zero, the elliptic cross section increases in size.
The surface is a hyperboloid of one sheet (see Fig. 6-8).

LIMITS AND CONTINUITY

6.4. Prove that lim (x* +2y) = 5.
x—1 .
e Fig. 6-8
Method 1, using definition of limit.
We must show that given any € > 0, we can find § > 0 such that |x2 +2y—5] <ewhen0 < |[x — 1] <,
0<|y—2]<é.
If 0<|x—1|<d and O<|y—2| <4, then 1—-8§<x<1468 and 2—-8 <y <244, excluding
x=1,y=2.
Thus, 1 =26 +8* <x® < 14+25+6% and 4 — 25 <2y <4+25. Adding,

54548 <x*+2y<5+45+8°  or — 4548 <XP+2p—5<45+ 68

Now if 8§ < 1, it certainly follows that —58 < x> +2y — 5 < 55, ie., |x> 42y — 5| < 55 whenever
O<|x—1]<4,0<]|y—2| <48. Then choosing 5§ =€, i.e., § = ¢/5 (or § = 1, whichever is smaller), it
follows that |x> +2y—5<ewhen0<|x—1]<4,0<|y—2] <4, ie, l’inll(x2 +2y)=5.

y—=2

Method 2, using theorems on limits.

lim (¢ +2y) =lim x* +1im 2y = 1 +4 =35

y—2 y—2 y—2

6.5. Prove that f(x,y) = X+ 2y is continuous at (1, 2).
By Problem 6.4, lilr.l f(x,y)=5. Also, f(1,2) = 1> +2(2) = 5.

=2

Then l,in} f(x,y) =f(1,2) and the function is continuous at (1, 2).
y—=2

Alterﬁatively, we can show, in much the same manner as in the first method of Problem 6.4, that given
any € > 0 we can find § > 0 such that | f(x,y) —f(1,2)] < e when [x — 1| <§,|y—2| <§.

b)
6.6. Determine whether f(x, y) = g +2y, Ex’ y% 7 8 g .
s xX,y) =,

(a) has a limit as x — 1 and y — 2, (b) is continuous at (1, 2).

(a) By Problem 6.4, it follows that linll f(x,y) =5, since the /imit has nothing to do with the value at (1, 2).

y—2

(b) Since linlq f(x,y)=5 and f(1, 2) =0, it follows that linlq f(x,y) #f(1,2). Hence, the function is

=2

discontinuous at (1,2).

2 2

=Yy
6.7. Investigate the continuity of f(x,y) = { x2 + 32 () #0,0) 4 (0, 0).
0 (x,y) =(0,0)
Let x > 0 and y — 0 in such a way that y = mx (a line in the xy plane). Then along this line,
22 2 22 2 2 2
im Y g Y x(1-m) 1l-m

im im =
=0 x2 42 x50 X2 4+ mPx? T a0 X2(14+m?) 1 4+m?

y—0
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Since the limit of the function depends on the manner of approach to (0, 0) (i.e., the slope m of the line),
the function cannot be continuous at (0, 0).

Another method:

2 2 2 2 2
Since lim {llm r Y } = lim x—7 =1 and lim {hm \2 4 } = —1 are not equal, lim f(x, y)
x—0 | y—0 x —|—y x—0 x° y=0 | x—>0 X +y x>0 °

y—=0

cannot exist. Hence, f(x, y) cannot be continuous at (0, 0).

PARTIAL DERIVATIVES
6.8. Iff(x,y) = 2x% — Xy ~|—y2, find (a) 9f/0x,and (b) 9f/dy at (xy, y,) directly from the definition.

a Xo + h, X )
(a) al = £u(xo, yo)—llmf( 0 }01) —f(x0, 30
X x.00) h
lim [2(x0 + 1)* = (X0 + h)yo + 18] = [2x5 — Xo¥0 + 35
h—0 h
2
= lim dhxo + 2 = hyo = lim (4x + 2h — y¢) = 4x9 — ¥
h—0 h h—0
9 : . Xg, Yo + k) — f(xo,
b % = £,(x0 y0) = },T})f( 0, Yo ]z S (x0, y0)
(x0:50)
i 250 = %000 + K) + (0 + K] = 26 = oo + 0]
k—0 k
—lexg 4 2kyo + K
= fim —O 0T i (=g 4+ 20+ ) =~ + 200

Since the limits exist for all points (x¢, y9), we can write fi(x,y) =fy =4x—y, f,(x,)) =f, =
—Xx + 2y which are themselves functions of x and y.

Note that formally f.(xq, yy) is obtained from f(x, y) by differentiating with respect to x, keeping y
constant and then putting x = xg, y = yo.  Similarly, f,(xo, o) is obtained by differentiating /* with
respect to y, keeping x constant. This procedure, while often lucrative in practice, need not always
yield correct results (see Problem 6.9). It will work if the partial derivatives are continuous.

6.9. Letf(x,y):{‘y/(x ) 0D Z 0.0 prove that (@ £,(0.0) and £,(0.0) both exist but

that (b) f(x, ) is discontinuous at (0, 0).
i /OO0 0

(@ £0.0)= ; lim -
. f(O, 0)—f0,00 .. 0
00— OO0 _y 0,

X2 m

(b) Let (x,y) — (0,0) along the line y = mx in the xy plane. Then 11m f(x,y)=1lim m—2 P
=0 x—0 x% + m?x 14+m
so that the limit depends on m and hence on the approach and therefore does not exist. Hence, f(x, »)

is not continuous at (0, 0).
Note that unlike the situation for functions of one variable, the existence of the first partial
derivatives at a point does not imply continuity at the point.

) 2
. Y =Xy —xy
Note also that if (x, y) #(0,0), f, = R Sy = R and £,(0,0), f,(0,0) cannot be
computed from them by merely letting x =0 and y =0. See rernark at the end of Problem 4.5(b)

Chapter 4.

6.10. 1f g(x.y) =x'y + ¢ find (0) by, (b) Gy (O Gy () Py () By (f) Dy
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(a)

()

(©)

(d)

(e)

N
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a ad o 2 o
b, = £ _ &(XS/V-FG’UZ) _ 3x2y T+ ,yz _ 3X2y+y2€'\'1’2

a a 2 " ;
¢, = a—¢ = a—(x3y +e")=x+ & 2xy=x> + 2xye”2
. ay Y

P dp . .
P =50 < ) __(3)‘ 2y 52 e") = 6ay + 2 )7 = 6xp + )yt e

32_5 0x

0 2 0 2 20
by = qub — @+ 2e) =0+ 20 L@+ L)

=2xy- . 2xy + oy = 4x2y2e0 +2xe®

82 O 2 2 2
P =5y - a <aﬁ) - *(3x2y M) =3 4yt e 2y e 2y

=3x* 4+ 2x)° e"’yZ +2y &’

7 3 o o o
i g; ax (af) oo (x4 2xp ) =3 4 2y P ke 2y

=3x% 4+ 2x)% eV —%—.’Zye"y2

129

Note that ¢,, = ¢, in this case. This is because the second partial derivatives exist and are
continuous for all (x, y) in a region . When this is not true we may have ¢, # ¢, (see Problem 6.41,

for example).

6.11. Show that U(‘c y,2) =247 +22)7 2 satisfies Laplace’s partial differential equation

FU
a2

U, FU_
W o

We assume here that (x, y, z) #(0,0,0). Then

U _
g:_%(Xz_l_yz_i_zz) 32

FU

2x = —x(x? )+ )7

ax

32 2 +32 +72) B 2P

= 242+ 2)° - 2+ 2+ (24242

.. FU 297 — ¥ =22 FU 222 —xr =37
Slmllarly a2 = PN 5 = P N
Ay (x2 412+ 22) / w2 (24P 42 /
. YU YU PU
Adding, —+—+—=0

a2 92 a2

82
6.12. Ifz=xtan"' 2, find - at (1, 1).
X ax dy
G S 4 T U S N
W TN Ty x4

3
—= a[—x(xz + 77+ )P = ()3 DT 2] (P )T (=)
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=1 at (1,1)

axayzﬁ Iy :& x2+y2 (x2+}72)2 22

Pz 9 (82) 3 < ¥ ) (2B - ()2 2:3-1-2
ay N -

The result can be written z,,(1, 1) = 1.
Note: In this calculation we are using the fact that z,, is continuous at (1, 1) (see remark at the end of
Problem 6.9).

6.13. If f(x, y) is defined in a region # and if f,, and f,, exist and are continuous at a point of %, prove
that f,, = f,. at this point.

Let (xg, yo) be the point of #. Consider
G =/f(xo+h,yo+ k)= f(x0, yo + k) — f(xo + h, yo) + f (X0, y0)
Define (D ) =f(x+hy)—f(x,») @ Y, y) =1y +k) = [f(x,y)
Then (3) G =¢(x0, 30 + k) — ¢(x0, y0) @) G=Y(xo+h,yo) — ¥(x0, y0)
Applying the mean value theorem for functions of one variable (see Page 72) to (3) and (4), we have

(3) G = ke (x9, yo + 01k) = k{f,(x0 + I, yo + 0,Kk) — fr(x0, yo +01K)}  0<0); <1
6) G = hyr(xo + 620, y9) = h{ f(xo + 62, Yo + k) — f1(x0 + 6211, ¥o)} 0<6, <1

Applying the mean value theorem again to (5) and (6), we have

(7) G:hk/;x()fo-f—gzgh,yo-‘rglk) 0<91 < 1,0<93 < 1
(8) G = /’lkf:\.",(XO =+ 92]1, Yo =+ 94k) 0 < 92 < 1, 0 < 94 < 1

From (7) and (8) we have
) fix(xo +603h, yo + 01k) = £, (x0 + 624, yo + O4k)
Letting & — 0 and k — 0 in (9) we have, since f, and f,, are assumed continuous at (xy, yo),
fyx(xoa Yo) :A/:w(xo, Yo)

as required. For example where this fails to hold, see Problem 6.41.

DIFFERENTIALS

6.14. Let f(x, y) have continuous first partial derivatives in a region £ of the xy plane. Prove that

Af =f(x + Ax, y 4+ Ay) = f(x, ) = L Ax + fLAy + €, Ax + Ay

where €; and €, approach zero as Ax and Ay approach zero.

Applying the mean value theorem for functions of one variable (see Page 72), we have
() Af = {f(c+ A%,y + &) — (63 + AN} + (3 + Ar) = (5, )
= Axf(x+0,Ax,y + Ap) + Ay fi(x, y + 6,Ay) 0<6, <1,0<6, <1

Since, by hypothesis, f, and f, are continuous, it follows that

Silx+01Ax, y+Ay) =fi(x. ) +e, il y+0A)) =f(x. )+ 6

where €, - 0, ¢, - 0 as Ax — 0 and Ay — 0.
Thus, Af =fiAx+f,Ay+ e Ax+eAy as required.
Defining Ax = dx, Ay = dy, we have Af =f.dx+f,dy + € dx + e, dy.
We call  df = f, dx + f, dy the differential of f (or z) or the principal part of Af (or Az).

6.15. If z=f(x,y) = xzy —3y, find (@) Az, (b) dz. (c¢) Determine Az and dz if x =4, y =3,
Ax =—-0.01, Ay =0.02. (d) How might you determine f(5.12, 6.85) without direct computa-
tion?
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Solution:

(@ Az=f(x+Ax,y+Ay)—f(x,»)
= {(r+ A (y + Ap) =3y + Ay} — Xy = 3y)
=2xy Ax + (x2 = 3)Ay + (Ax)*y + 2x Ax Ay + (Ax)* Ay
(4) (B)

The sum (A) is the principal part of Az and is the differential of z, i.e., dz. Thus,

(b) dz=2xy Ax+ (x> —=3)Ay =2xpdx+ (x> = 3)dy
oz oz 5
Another method: dz = I dx + > dy =2xydx + (x* —3)dy

(¢) Az=f(x+Ax,y+ Ay) —f(x,y) = f(4 — 0.01,3 + 0.02) — f(4,3)
= {(3.99)%(3.02) — 3(3.02)} — {(4)*(3) — 3(3)} = 0.018702
dz = 2xy dx + (x* — 3) dy = 2(4)(3)(—0.01) + (4° — 3)(0.02) = 0.02

Note that in this case Az and dz are approximately equal, because Ax = dx and Ay = dy are
sufficiently small.

(d) We must find f(x + Ax, y + Ay) when x + Ax = 5.12 and y = Ay = 6.85. We can accomplish this by
choosing x =5, Ax =0.12, y=7, §y = —0.15. Since Ax and Ay are small, we use the fact that
f(x+ Ax,y+ Ay) =f(x,y) + Az is approximately equal to f(x, y) + dz, i.e., z + dz.

Now  z=f(x,»)=/(57) =G>T =37 =154
dz = 2xydx + (x* = 3)dy = 2(5)(7)(0.12) + (5% — 3)(=0.15) = 5.1.

Then the required value is 154 + 5.1 = 159.1 approximately. The value obtained by direct com-
putation is 159.01864.

6.16. (a) Let U =x%"/*. Find dU. (b) Show that (3x’y —2y*)dx + (x* — 4xy + 6y°) dy can be
written as an exact differential of a function ¢(x, y) and find this function.

(a) Method 1:

0x X

aU , ) , aU Al
—:xze}/’x<—%> + 2xe’’, —=xze}/x(—>
- x ay -

U U , ' e
Then dU = . dx + m dy = 2xe*™ — ye’*ydx + xe*’* dy

Method 2:
dU = X7 d(") + & d(x*) = X*e"* d(y/x) + 2xe" dx

Jefxdy — yd> , , , .
=P (%) + 2xe”™ dx = 2xe’’™ — ye? ) dx + xe¥’~ dy

(b) Method 1:
R) Rl)

Suppose that Bx*y =2 dx + (x* —dxy + 6yH) dy = dg = P dx + @ dy.
0 0

Then ) > _ 3y =27 () % _ 4xy + 6y*
ox ay

From (/), integrating with respect to x keeping y constant, we have

¢=x"y=2x"+F(y
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where F(y) is the “constant” of integration. Substituting this into (2) yields

[CHAP. 6

X —dxy+ F'(y) = x> —4xy +6)* from which F'(y)=6)?, ie., F())=2+¢

Hence, the required function is ¢ = x*y — 2x)? +2)° + ¢, where ¢ is an arbitrary constant.

Note that by Theorem 3, Page 122, the existence of such a function is guaranteed, since if
P=3x*y—2)" and Q = x> —4xy+6)°, then 0P/dy = 3x> — 4y = 00/dx identically.  If 9P/dy #
9Q/dx this function would not exist and the given expression would not be an exact differential.

Method 2:

Bx%y = 29H) dx + (x* — dxy + 6)P) dy = 32y dx + X dy) — (2% dx + 4xy dy) + 6)° dy
=d(x’y) — dQ2xy’) + d(2)") = d(x’y — 2xy" +27")

= d(x3y — ny2 + Zy3 +¢)

Then the required function is x°y — 2xy* +2)° +c.

This method, called the grouping method, is based on one’s ability to recognize exact differential
combinations and is less than Method 1. Naturally, before attempting to apply any method, one should
determine whether the given expression is an exact differential by using Theorem 3, Page 122. See

Theorem 4, Page 122.

DIFFERENTIATION OF COMPOSITE FUNCTIONS

6.17. Let z = f(x, y) and x = ¢(t), y = ¥(¢) where f, ¢, ¥ are assumed differentiable. Prove

6.18.

6.19.

dz 0z dx 0z dy
dt~ dx dt  dy dt

Using the results of Problem 6.14, we have

dz lim Az im 0z Ax+ 9z Ay n Ax+ Ay 0z dx 0z dy
— = — = _——t — — 4 —46—} = — — + — =
di a0 At a0 |ax A ay Ar VAL TEAL| T ax dr T 9y dr
. A dx A d
since as Af — 0 we have Ax - 0, Ay —» 0,¢; — 0,¢; — 0,—X—> _x’_y_) _y.
At dt’” At dt
)2 .
If z=¢", x =tcost, y=tsint, computer dz/dt at t = /2.
dz 9zdx dzdy o . o2 .
== £ Cd: 872; j; = (yze’\"z)(—tsm t+cos )+ 2xye™ )tcost + sin ).
dz ) 3
Att=mn/2,x=0,y =m/2. Then 7 = (n"/4)(—m/2) + (0)(1) = —n"/8.
t=m/2

3 gin? 1cos
Another method. Substitute x and y to obtain z = " ™™ "%/

If z = f(x, y) where x = ¢(u, v) and y = ¥(u, v), prove that
82_%%_{_828)/ 82_%% %87)/

@ Ty P ow

. ax 8v+8y v’
(a) From Problem 6.14, assuming the differentiability of 1, ¢, ¥, we have

oz i Az im 0z Ax n az Ay n Ax n Ay 0z 0x
—=lm —=1i ——t——te—+e6——t=——
ou  Au—0 Au Au—0 |0x Au  dy Au YAu" P Au ax du

(b) The result is proved as in (a) by replacing Au by Av and letting Av — 0.

and then differentiate.

ity
ay ou
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a a . .
6.20. Prove that dz = é dx +£ dy even if x and y are dependent variables.

Suppose x and y depend on three variables u, v, w, for example. Then

(1) dx=x,du+ x,dv+ x, dw 2 dy=y,du+y,dv+y,dw

Thus, zodx +z, dy = (2,X, + 2,0,) du + (2. X, + z,p,) dv + (2, X, + 2,,,) dw
=z,du+z,dv+z,dw=dz

using obvious generalizations of Problem 6.19.

621. IfT=x— xy+y3, x=pcosp,y=psing, find (a) dT/dp, (b) 9T /dp.
oT 9T ox  oT 8}
8p ax ap dy dp

OT _ 9T ox 9T dy ) . 2
%~ ax ¢+ o 96 = (3x" — y)(—psing) + 3y~ — x)(pcos ¢)

= (3x" — y)(cos ¢) + (3y” — x)(sin §)

This may also be worked by direct substitution of x and y in T.

6.22. If U =zsiny/x where x = 3/° +2s, y = 4r — 25°, z = 2> = 35, find (a) U/dr, (b) dU/ds.
U _ U ox U oy U oz

@ = Ty o oo
- {(zcos X) (_ %)}(6@4- i(zcos X)( )}(4)+ (sm )(41)
=—% y+4 cosZ+4rsz
x X X
U U ox dU dy aU oz
B T=r ot 2y E

ds  ox Bs+8y 3 Tz B

:{(zcos£)<—%)}(2)+{(zcos— ( )}( 6s)+(sm )( 65)

2yz 6%z .
= —%COSX——COSX—&'sz
X X X X X

2 2 2
1
6.23. If x = pcos¢, y = psin¢, show that (E;V> +<83}Ij) = (%) +—2 (%)

Using the subscript notation for partial derivatives, we have

Vyo=Vx,+Vyy,=V,cos¢p+ V,sing (1)

V¢ = Vxxd) + Vyyqﬁ = VY(ip sin ¢) + V\( pCcos ¢) (2)
Dividing both sides of (2) by p, we have
1

= Vy=—V,sing+V,cosd 3
0

Then from (/) and (3), we have

1
V2+ V¢_(V cosp+V, sing)® + (= V, sing + ¥, cosp)’ = Vz—i-V2

6.24. Show that z = f(x’y), where f is differentiable, satisfies x(dz/0x) = 2y(z/dy).
Let x’y =u. Then z = f(u). Thus
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dz 0z ou , 0z 0z ou . )
=T .25 =T _ ¥
ox  Ou ox S @ - 2xy, dy  du dy S -x
Then x% = f"(u) - 2x%y, Zy% =f'(u) - 2x°y and so x% =2y az.
ax ady ax ay
Another method:
We have dz = /() d(x*y) = £/ (Pp)2xy dx + X2 dy).
Also, dz = % dx + & dy.
ax ay
Then E_2ure. E=drw@y)
ax T T y '

3 P
Elimination of //(x%y) yields ~ x— =2y,
x ay

6.25. 1If for all values of the parameter A and for some constant p, F(Ax, Ay) = A’ F(x, y) identically,
where F is assumed differentiable, prove that x(3F/dx) + y(3F /dy) = pF.

Let Ax =u, Ay =v. Then
F(u,v) = MF(x,y) @)
The derivative with respect to A of the left side of (/) is

OF _OF i OF dv_OF oF
L duor  wor  wu
The derivative with respect to A of the right side of (/) is pA?"'F. Then

FOF
w L e &)
ou v

Letting A = 1 in (2), so that u = x, v = y, we have x(3F/dx) + y(dF/dy) = pF.

6.26. If F(x,y) = x*y?sin"! y/x, show that x(3F/dx) + y(3F /dy) = 6F.

Since F(Ax,Ay) = (Ax)4(ky)2 sin” ! Ay/ax = A6x4y2 sin~! y/x = A8F(x, y), the result follows from Pro-
blem 6.25 with p = 6. It can of course also be shown by direct differentiation.

6.27. Prove that Y = f(x + af) + g(x — ar) satisfies 8° Y /3r* = a*(8* Y /dx?), where f and g are assumed
to be at least twice differentiable and « is any constant.

Let u=x+at,v=x —at so that ¥ = f(u) + g(v). Then if f'(u) = df /du, g'(v) = dg/dv,
oY oY ou Y v, , 0Y 3Y du  9Y dv
W ma Twa W T T
By further differentiation, using the notation f"(u) = d* f/du?, g"(v) = d*g/dv’, we have

=f'()+¢'(v)

FY Y, aY,0u Y, w9, , ., ,
WZWZWE—F%E_E{WI (w)—ag (v)}(a)—i-%{af W) —ag' ()} (-a)

=af"w+ag"w

)

FY 9Y, dY,ou aY.ow @ 9
2 — X — X - X = o I . -/ I
@) o - man woak m 1) +g' ) + 21 +¢)(w)

=/"w)+g"(v)
Then from (/) and (2), ¥ Y /3> = d*(° Y /9x?).
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2
6.28.

U . . .
If x=2r—sand y =r+2s, find 3 in terms of derivatives with respect to r and s
X

Solving x =2r —s, y =r+2s for rand s: r = 2x+y)/5, s = 2y — x)/5
Then or/dx = 2/5, ds/dx = —1/5, or/dy = 1/5, ds/dy = 2/5. Hence we have
oU _dU or 9U ds _ 20U

War dUds_ 20U 19U

dx  or dx  ds dx S dr 5 s
U0 (UY 020U LUy 0200 LUy i
dydx  dy \ ax Sor 5 0s/)ady So 5 0s

(27U 182U 1+ga2 132U 2

A5 o 5aras)\5 Sasor 5 052 J\5
2 2 2
L(,2U 07U 02U
“25\ 7o or os ds?

assuming U has continuous second partial derivatives

IMPLICIT FUNCTIONS AND JACOBIANS

6.29. If U=x’y, find dU/drif (I) X’+y=1, Q) x>+ =7
Equations (/) and (2) define x and y as (implicit) functions of ¢
we have

Then differentiating with respect to ¢,

3) sx*dxjdiy+dy/t=1  (4) 2x(dx/di)+ 3y*(dy/dr) = 2t
Solving (3) and (4) simultaneously for dx/dt and dy/dt

11 st
dx ’2: I dy  |2x 20| 10x*r—2x
dr s 1 | 15x4y? — 2x’ dr 5t 1| 15x4y2 — 2x
2x 3P 2x 3}’2'

dU 93U dx 93U d} 5 3y° -2t 10x%r — 2x
Th XYW —F5— —_—
N U T e dr oy dy di = (x ”(15,,4 2 — () 15x4)2 — 2x
6.30.

If F(x, y, z) = 0 defines z as an implicit function of x and y in a region Z of the xy plane, prove
that (a) 0z/9x = —F,/F. and (b) 9z/dy = —Fl,/Fﬂ, where F, # 0
Since z is a function of x and y, dz = 0 dx 8_ dy

1z
ox
OF | OF L OF 0 OF oF oz
i+ S+ L d = T E) gy =o.
ax Tty VT ( oz ax) Y+<ay+a av>‘y

Then dF

Since x and y are independent, we have
JF  OF oz
n 4=
D ox = 0z Ox
from which the required results are obtained

oF OF oz
) — 4+ =
@ 3y+8z ay

If desired, equations (/) and (2) can be written directly

6.31. If F(x,y,u,v) =0 and G(x, y,u,v) =0, find (a) du/dx, (b) du/dy, (c) v/dx, (d) dv/dy.

The two equations in general define the dependent variables # and v as (implicit) functions of the
independent variables x and y. Using the subscript notation, we have
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(1) dF = Fydx+ F,dy+ F,du+ F,dv=0
2) dG =G, dx+G,dy+G,du+ G,dv=0

Also, since u and v are functions of x and y,

(3) du=u,dx+u,dy @) dv=v.dx+v,dy.
Substituting (3) and (4) in (/) and (2) yields

(5) dF = (Fy + F,u,+ F,v)dx + (F, + F,u, + F,v,)dy =0
(6) dG = (G\’ + Gu Uy + Gv v,\') dx + (G) + Gu u}‘ + G’L‘ 1}).) dy =0

Since x and y are independent, the coefficients of dx and dy in (5) and (6) are zero. Hence we obtain

(7) {Fuu.¥+Fvv,x:_Ev (8) {Fuuy'i_FUUy:_Fy

Gu Uy + GL Uy = _Gx Gu uy + Gv vy = _Gy

Solving (7) and (8) gives

‘ —F, F, a(F, G) ’ F, —F A(F,G)
_ ou _ _GX GU _ 3(3C, U) _ v _ Gu _Gx _ a(ur X)
@ ue=g0= F, F,| _ aF.G) (b) ve=7C= ‘ F, F,| _AF.G)
G, G, (u, v) G, G, a(u, v)
‘ A B Eo =Fd o, 6)

0 -G, Gv C 0 Gu -G,
© w=0 1T Tl W A y)
Y dy 'm F, a(F, G) ay ‘n F, a(F, G)
G, G, a(u, v) G, G, a(u, v)

F, F,

The functional determinant

)

IF,G F,G
, denoted by 3(( ’ )) or J( ’ ), is the Jacobian of F and G with
u,v

G, G,
respect to # and v and is supposed # 0.

Note that it is possible to devise mnemonic rules for writing at once the required partial derivatives in
terms of Jacobians (see also Problem 6.33).

If i’ —v=3x +yand u — 2 =x— 2y, find (a) ou/ox, (b) ov/dx, (c) ou/dy, (d) dv/dy.

Method 1: Differentiate the given equations with respect to x, considering u# and v as functions of x and y.
Then

ou o ou v
u———= 2) ——4dv—=1
D ”ax ax 3 @ ax ”ax
Solvin u_1-12v v _ 2u-3
& T 1-8w’ ox 1—S8uw
Differentiating with respect to y, we have

a d ad 01

@ WX T @) 0=
dy day day

Solvin u_—2—4v v _ —4u—1
. dy 1—8uw’ dy 1—8uv’

We have, of course, assumed that 1 — 8uv # 0.
Method 2: The given equations are F = 1> —v—3x —y =0, G =u — 2v> — x + 2y = 0. Then by Problem
6.31,
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aF, G) F. F, -3 -1
u A(x, v) ‘ G, G, ' ' -1 —4v| 1-12v
ox AF,.G " |F, F,| 2« —1] 1-8w
au, v) ’ G, G, ‘ 1 —4v

provided 1 — 8uv # 0. Similarly, the other partial derivatives are obtained.

6.33. If F(u,v,w,x,y) =0, Gu,v,w, x,y) =0, H(u,v,w, x,y) =0, find

@ = o

ox
OR-
y av w

X

y

From 3 equations in 5 variables, we can (theoretically at least) determine 3 variables in terms of the
remaining 2. Thus, 3 variables are dependent and 2 are independent. If we were asked to determine dv/dy,
we would know that v is a dependent variable and y is an independent variable, but would not know the

L . . . ov L
remaining independent variable. However, the particular notation p serves to indicate that we are to
YV lx
obtain dv/dy keeping x constant, i.e., x is the other independent variable.

(a) Differentiating the given equations with respect to y, keeping x constant, gives

0)) F, uy +F, Uy +F, wy + Fl =0 2 Gu uy + G'u Uy +G, Wy + Gy =0

3 Hyu,+H,v,+H,w,+H,=0

Solving simultaneously for v,, we have

=

F, F, F,
G, G, G, aF,G,H)
" _ | H, H, H,| O,y w)
YTyl |F, F, F,| 8F,G H)
G, G, G, a(u, v, w)

H,

v Hw

u

Equations (7), (2), and (3) can also be obtained by using differentials as in Problem 6.31.
The Jacobian method is very suggestive for writing results immediately, as seen in this problem and

the result is the negative of the quotient of two

. .o
Problem 6.31. Thus, observe that in calculating 7
X
Jacobians, the numerator containing the independent variable y, the denominator containing the

dependent variable v in the same relative positions. Using this scheme, we have

AF,G, H) AF,G, H)
x| _ _ dw ) Wl dux,v)
@ % w .G, H) © 5 . AF.GH
a(x, y, u) a(w, x, v)
3z 372 +x

6.34. If 2> — xz — y =0, prove that

0x dy - (322 —x)¥

Differentiating with respect to x, keeping y constant and remembering that z is the dependent variable
depending on the independent variables x and y, we find

0z 0z 0z z

2

Z— —X— —z = d 1 — =

Yox 7 an D ox 322 —x

Differentiating with respect to y, keeping x constant, we find

322 _x=—-1=0 and () —=——
y o dy y
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Differentiating (2) with respect to x and using (), we have

o’z —1 ( oz 1) 1= 6z[z/(322 —x)] 32 +x

[ Z —
xdy (322 —x) ax (322 — x)° (322 — x)°

The result can also be obtained by differentiating (/) with respect to y and using (2).

Let u = f(x, y) and v = g(x, y), where f and g are continuously differentiable in some region #%.

Prove that a necessary and sufficient condition that there exists a functional relation between u

and v of the form ¢(u, v) = 0 is the vanishing of the Jacobian, i.e., O(u, v) = 0 identically.

a(x, y)

. . . . . 0(u,
Necessity. We have to prove that if the functional relation ¢(u, v) = 0 exists, then the Jacobian a(u V) =
identically. To do this, we note that (x. )

d¢ = ¢, du+ ¢, dv = ¢,(u,dx+ uy dy) + ¢ (v dx + Uy dy)
= ((bu u, + ¢, Ux) dx + (¢u u, + ¢, vy) dy =0

Then (1) Gyt + Py v = 0 (2) (0¥ uy, + ¢, vy = 0

Now ¢, and ¢, cannot be identically zero since if they were, there would be no functional relation,
u, | ou,v)

oy | A(x,y)

contrary to hypothesis. Hence it follows from (/) and (2) that

= 0 identically.

a(u, v)
ax, y)

Sufficiency. We have to prove that if the Jacobian = 0 identically, then there exists a functional

relation between u and v, i.e., ¢(u, v) = 0.

Let us first suppose that both u, = 0 and u, = 0. In this case the Jacobian is identically zero and u is a
constant ¢;, so that the trival functional relation u = ¢; is obtained.

Let us now assume that we do not have both u, = 0 and u, = 0; for definiteness, assume u, # 0. We
may then, according to Theorem 1, Page 124, solve for x in the equation u = f(x, y) to obtain x = F(u, y),
from which it follows that

(D u=f{Fuy).y} (2 v=glF(uy).y}
From these we have respectively,

3) du=uydx+u,dy =u(F,du+ F,dy) +u,dy = u.F, du+ (u.Fy, +u,)dy

(4) dv = Uy dx + vy dy = U,\’(Fu du + F} dy) + Uy dy = 'UxFu du + (U.\'Fy + ’L}_},) dy

From (3), u.F, = 1 and u,F, +u, = 0 or (5) F,, = —u,/u,. Using this, (4) becomes

®) o = 0,y 0, ) )y = oy (2 g,
) iy
. o(u,v) Uy U, . .
But by hypothesis 3. 7) e P e 0 identically, so that (6) becomes dv = v, F, du.
X, ) X v :

This means essentially that referring to (2), dv/dy = 0 which means that v is not dependent on y but depends
only on u, i.e., v is a function of u, which is the same as saying that the functional relation ¢(u, v) = 0 exists.

0
(@) Ifu= X+ and v = tan~' x + tan”! v, find (u, U).
1 —xy a(x, y)

(b) Are u and v functionally related? If so, find the relationship.
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1-|—y2 14 x?
Ca=xp)t A =xp)|
1 1
1+ x? 1 +y?

(u, v) ey . ,
(a) ) 0 if xy#1.

Uy Uy

(b) By Problem 6.35, since the Jacobian is identically zero in a region, there must be a functional relation-
ship between u# and v. This is seen to be tanv = u, i.e., ¢p(u,v) = u —tanv =0. We can show this
directly by solving for x (say) in one of the equations and then substituting in the other. Thus, for
example, from v = tan™' x + tan~' y we find tan”! x = v — tan™' y and so

tanv — tan(tan”" y) _ tanv-—y
1 +tanwvtan(tan~'y) 1 +ytanv

x=tan(v—tan!y) =

Then substituting this in u = (x 4+ »)/(1 — xy) and simplifying, we find u = tanwv.

. dax, v,z
637. () If x=u—v+w, y=u>—v*—w? and z =1’ +v, evaluate the Jacobian a(iy) and
(b) explain the significance of the non-vanishing of this Jacobian. (u, v, w)
s X, X, X, 1 -1 1
(a) M =y, v ul=1|2u =20 —2w|=6wi’ +2u+6v+2w
a(u, v, w) )
Z, Zy, Zy 3u 1 0

(b) The given equations can be solved simultaneously for u, v, w in terms of x, y, z in a region Z if the
Jacobian is not zero in £.

TRANSFORMATIONS, CURVILINEAR COORDINATES

6.38. A region Z in the xy plane is bounded by x+y =6, x —y =2, and y = 0. (a) Determine the

region %’ in the uv plane into which % is mapped under the transformation x = u +v, y = u — v.

a(x, )

o(u, v)’

(a) The region # shown shaded in Fig. 6-9(a) below is a triangle bounded by the lines x +y =6, x — y =2,
and y = 0 which for distinguishing purposes are shown dotted, dashed, and heavy respectively.

() Compute (¢) Compare the result of (b) with the ratio of the areas of # and %’.

v
y
4
7
7
7 //\)
ks //’»// Ny
A ap.!
N /“ﬁ// &z v=1
.o s, TTTTTTTT T T TErET T T T T T
o
.. u
/(~
’ "
< R
Z e
X .
=0 I
7 Y -
L, .
/|
7
7
(a) xy plane (b) uv plane

Fig. 6-9

Under the given transformation the line x + y = 6 is transformed into (#+ v) + (u — v) = 6, i.e.,
2u = 6 or u = 3, which is a line (shown dotted) in the uv plane of Fig. 6-9(b) above.
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Similarly, x — y = 2 becomes (¢ + v) — (u — v) = 2 or v = 1, which is a line (shown dashed) in the

In like manner, y = 0 becomes u — v = 0 or u = v, which is a line shown heavy in the uv

plane. Then the required region is bounded by u = 3, v = 1 and u = v, and is shown shaded in Fig. 6-

uv plane.
9(b).
ox ox 9 ad
o M) | | _ T BTl
A, ) B_y % 3(u—v) 2(u—v) -l
ou v ou dv

(¢) The area of triangular region Z is 4, whereas the area of triangular region 2’ is 2. Hence, the ratio is

4/2 =2, agreeing with the value of the Jacobian in (b).

Since the Jacobian is constant in this case, the

areas of any regions Z in the xy plane are twice the areas of corresponding mapped regions 2 in the uv

plane.

A region Z in the xy plane is bounded by x? +y2 =d, x° +y2 =5’ x=0 and y =0, where

0<a<b.

X =pcos¢, y=psing, where p>0, 0 < ¢ < 27.
a(x, ») ap, P)

¢) Compute . (d) Compute ———.

() Compute 50 gy (D ComPute 5y

(@)

Fig. 6-10

(a) Determine the region 2’ into which # is mapped under the transformation
(b) Discuss what happens when a = 0.

(a) The region # [shaded in Fig. 6-10(a) above] is bounded by x = 0 (dotted), y = 0 (dotted and dashed),

X2 +3% =& (dashed), x> + 17 = b (heavy).

Under the given transformation, x° + y*> = &> and x° + »*> = b* become p*> = & and p* = b* or
p =aand p = b respectively. Also,x =0,a <y < bbecomesp=7n/2,a < p<b;y=0,a <x=bh

becomes p =0,a < p < b.

The required region %’ is shown shaded in Fig. 6-10(b) above.

Another method: Using the fact that p is the distance from the origin O of the xy plane and ¢ is the
angle measured from the positive x-axis, it is clear that the required region is given by a < p < b,

0 < ¢ < /2 as indicated in Fig. 6-10(b).

(b) If a =0, the region # becomes one-fourth of a circular region of radius b (bounded by 3 sides) while 2’

remains a rectangle.

The reason for this is that the point x = 0, y = 0 is mapped into p =0, ¢ = an

indeterminate and the transformation is not one to one at this point which is sometimes called a singular

point.
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a a
o) a—p(ﬁcow) a—¢(pCOS¢) B

o, ¢) -

cos¢p —psing

(©

l

sing  pcos¢

Tosing) S (psing)
= /o(cos2 ¢+ sin? P)=p
(d) From Problem 6.43(b) we have, letting u = p, v = ¢,

x,y) dp. ¢ _ |
ap, ¢) (x, )
This can also be obtained by direct differentiation.
Note that from the Jacobians of these transformations it is clear why p =0 (i.e., x =0,y =0)is a
singular point.

Wp.d) 1

ax.y)

so that, using (¢),

MEAN VALUE THEOREMS

6.40. Prove the mean value theorem for functions of two variables.
Let f(t) = f(xo + ht, yo + kt). By the mean value theorem for functions of one variable,
F()=FO0)=F'(® 0<6<l1 )
If x = xg + ht, y = yoy + kt, then F(1) = f(x, y), so that by Problem 6.17,
F'(t) = fi(dx/dr) + f,(dy/dt) = hf + kf, and  F'(6) = hfi(x + 6h, yo + 6k) + k f,(x + 6h, y + 6k)
where 0 < 6 < 1. Thus, (/) becomes

SO0+ 1, yo + k) = f (X0, o) = hfe(xg + Ol yo + 0k) + ki fy(x0 + 6, yo + 0k) ®)

where 0 < 6 < 1 as required.
Note that (2), which is analogous to (/) of Problem 6.14 where 47 = Ax, has the advantage of being

more symmetric (and also more useful), since only a single number 6 is involved.

MISCELLANEOUS PROBLEMS

2 2

X -y
6.41. Letf(x,y) = Xy(M (x,) #(0,0).
0 (x,») = (0,0)

Compute (a) f:(0,0), (D) /,(0,0), (¢) /:+(0,0),  (d) £,,(0,0), () f£1,(0,0), (f) f4(0,0).

. f(h,0)—f(0,0) . 0
(Ll) f.‘t(ov 0) = 1111_1;% 7 = ,,1_1,% E =0
w 0.0 -f0.0) 0
B £0.0) = fim =2 = fim =0

If (x, y) # (0, 0),

3 2P 4xy? 2 oy?
S =50 {x} <x2 ) [ TN e ) T e

a X —y? —4xy? X% —y?
fr()@})—a—y{)@(xz g =Xy 2+ 2 +x 2
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Then
f(hO) /0,0 _ . 0

f(O k) —=£0,00 . 0
(d) f,,(0,0)= % =lim =0

k —k
© £,0.0)= me lim

L0 =£,0.0) _h_
- m-=1
h h—0 h

() £x(0,0)= /17i

Note that fy, # f,x at (0, 0).

See Problem 6.13.

2

vV
6.42. Show that under the transformation x = pcos ¢, y = psin ¢ the equation —- Py +—

32V+lg+131/_
W pdp oA
We have
Vv oV o aV o
a WV, Vo

0x 8,0 ax @5

W _aVop AV ap

2
@ 3y Bp 8y qu 8}

[CHAP. 6

= 0 becomes

Differentiate x = pcos¢, y = psin¢ with respect to x, remembering that p and ¢ are functions of x

and y

., O 0
1= —psing a—i—i—cosq: a—i,

Solving simultaneously,
ap

— =cos ¢,
ax ¢

Similarly, differentiate with respect to y. Then
.0 9
0= —psm(pi)—i-comp—p,
day ay

Solving simultaneously,

g—i =sin¢,

Then from (7) and (2),
ar sing aV
®) Feie ¢* T,

Hence

a .0
0= pcosd)a—f—l—smng’i

W __sing

ax P

1= pcosd) +sm¢—

ay
%_cosq&
ay P
ar cos¢>8V
6 - v
(©6) o ¢ P

Py _o 0y o (@rym o oy
axz  ox\ax/) 9p\ax Rl ax

ap p 039

:%<COS¢%_m_W> L (cong s 81

3 >+ 2 9 o p 8¢)(COS¢)

_cosg ¥ sing ¥V <__¢)
o 0  p 3 0

dap ap p 0p) ox

)

4
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which simplifies to

Fv , @V 2singcosp dV 2singcosp °V  sin’¢p V. sin’¢ ¥V
Sa = C0s g+ 3 Py -t 3 ?)
dx dp P ¢ P ddp o I  p° P
Similarly,
EP—V—sinngaz—V 25in¢cos¢ﬂ 2sin ¢ cos ¢ Vv cosz(pg_i_coszd)azl ®
o 30’ ) p pdp p dp 3
. . , Fv o orv PV 1av 18tV
Adding (7) and (8) we find, as required, P + W = 87)2 + o + ; T& =0.
_ _ _ _ ax,y)
6.43. (a) If x=f(u,v) and y = g(u,v), where u=¢(r,s) and v = y(r,s), prove that m =
r,S

a(x, y) o(u, v)
u, v) o(r,s)

ax,y) A, v) ax, y)
Au, v) x,y) a(u, v)
XUy + XU, Xyl + XU
yllur + .yUUI‘ yMuS + ylle
X, Xy ||u ug| A(x,y) 8w, v)
Yu Vo T 3w, v) Ar, 5)

(b) Prove that 1 provided # 0, and interpret geometrically.

ax, ) _
ar,s)

Xp Xy

Ve Vs

(a)

Uy Vs

using a theorem on multiplication of determinants (see Problem 6.108). We have assumed here, of
course, the existence of the partial derivatives involved.

. ) O ) _ ox.y)
o 0) A7) v, )

(b) Place r = x, s = y in the result of (a). Then

The equations x = f(u, v), y = g(u, v) defines a transformation between points (x, y) in the xy plane
and points (u, v) in the uv plane. The inverse transformation is given by u = ¢(x, y), v = ¥(x, y). The
result obtained states that the Jacobians of these transformations are reciprocals of each other.

6.44. Show that F(xy,z—2x)=0 satisfies under suitable conditions the equation
x(9z/0x) — y(3z/dy) = 2x. What are these conditions?

Let u =xy, v=z—2x. Then F(u,v) =0 and
@) dF = F,du+ F,dv=F,(xdy+ ydx)+ F,(dz—2dx)=0

Taking z as dependent variable and x and y as independent variables, we have dz = z, dx + z, dy. Then
substituting in (), we find

(.yEt + E:Zx - 2) dx + (XFLI + E;Zy) dy =0
Hence, we have, since x and y are independent,
2) yF,+F;z,—2=0 (3) xF,+F,z,=0

Solve for F,, in (3) and substitute in (2). Then we obtain the required result xz, — yz, = 2x upon dividing by
F, (supposed not equal to zero).
The result will certainly be valid if we assume that F(u, v) is continuously differentiable and that F, # 0.
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Supplementary Problems

FUNCTIONS AND GRAPHS

6.45.

6.46.

6.47.

6.48.

6.49.

6.50.

6.51.

52.

‘ dx 4+ p i Q2+hn3)-12,3

ifee) =72 nd @ -3 @) TEEEREICD @ ik o),
L 11 L 2X+2y+xy

Ans. (a) 4 (b) 5(3h+5)’ ((,) 1_x2y—xy2

If g(x,p,2) = x* — yz+ 3xp, find (@) g(1,-2.2), (b) gx+1.y—1,2), () glxy,xz,x+).
Ans. (@) =1, (b)) ¥ —x—=2—y22+2243xp+3y, (0) x* —xz—xyz+3x°yz

Give the domain of definition for which each of the following functional rules are defined and real, and
indicate this domain graphically.

L) S =l ). (© f(x,y)=sin-‘(ﬂ).

1
a X)) =——>—
@ S = o

1

2x —y
x+y

Ans. (@) X*+y1#1, (b)) x+y>0, (¢

-

. . . . X X4y —1
(a) What is the domain of definition for which f(x, y, z) = %
cate this domain graphically. Xyt -
Ans. (@) x+y+z < 1,2 +y"+22 <1 and x+y+z2 1L, +)y2+22 > 1

is defined and real? (b) Indi-

Sketch and name the surface in three-dimensional space represented by each of the following.

(@) 3x+2z=12, (d *+2= yf, (&) X*+y*=2,
(b) 4z=x"+)% () X*+y +22 =16, () z=x+y,
(¢) z=x"—47, (f) X =4y — 4z =36, (i) V' =4z

() P+y 4+ —dx+6y+22—-2=0.
Ans. (a) plane, (b) paraboloid of revolution, (c¢) hyperbolic paraboloid, (d) right circular cone,
(e) sphere, (f) hyperboloid of two sheets, (g) right circular cylinder, (4) plane, (i) parabolic cylinder,
(j) sphere, center at (2, —3, —1) and radius 4.

Construct a graph of the region bounded by x* + y* = ¢* and x*> 4+ z* = *, where a is a constant.

Describe graphically the set of points (x, y, z) such that:
(@ X+ +2=1,>41=2 () ¥+ <z<x+y.

The level curves for a function z = f(x, y) are curves in the xy plane defined by f(x, y) = ¢, where c¢ is any
constant. They provide a way of representing the function graphically. Similarly, the level surfaces of
w = f(x, y, z) are the surfaces in a rectangular (xyz) coordinate system defined by f(x, y, z) = ¢, where ¢ is
any constant.  Describe and graph the level curves and surfaces for each of the following functions:
@ ()= +)" =1, (B) fey)=dxy. (O Sy =tan" y/(x+ D). (@) f(xy)=x"+

VP (@) fny,2) =X+ 47+ 162, (f) sin(x+2)/(1 - ).

LIMITS AND CONTINUITY

6.53.

6.54.

6.55.

Prove that (a) lin} (Bx—2y)=14and (b) (

y—>—1

l)in}2 l)(xy — 3x +4) =0 by using the definition.
»=2,

If lim f(x, y) = A and lim g(x, y) = B, where lim denotes limit as (x, y) — (xy, Vo), prove that:
(@) im{f(x, ) +g(x, N} =A+ B, (b) lim{f(x,»)g(x,y)} =AB.

Under what conditions is the limit of the quotient of two functions equal to the quotient of their limits?
Prove your answer.
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6.56.

6.57.

6.58.

6.59.

6.60.

6.61.

Evaluate each of the following limits where they exist.

. 3—X+y . 2 ..y . —1/x% (1) ‘C+y_1
lim —— "= 1 Z 1 li
@ lim (€) tim *sin (e) g?le ® Ty
3x -2 xsin(x* + %) sin” (xy —2)
(®) lim 3 3y (@ fim T () lim e () lim Y =2
b 2x =3y I e o x4y 121 tan™ (Gxy — 6)

Ans. (a) 4, (b) does not exist, (c) 8/2, (d) 0, (e) 0, (f) does not exist, (g) 0, (h) 1/3
Formulate a definition of limit for functions of («) 3, (b) n variables.

dx+y—3z

Does lim ————
oes lim 5— Sy T2z

as (x, y,z) = (0,0, 0) exist? Justify your answer.

Investigate the continuity of each of the following functions at the indicated points:

@ x*+3% (x0,30).  (b)
(0,0).
Ans. (a) continuous, (b) discontinuous, (¢) continuous

x I
r5 00 O (o +y)sm e i (2) #0.0). 0 (x.9) = (0.0)

Using the definition, prove that f(x, y) = xy + 6x is continuous at (a) (1,2), (b) (xg, yo)-

Prove that the function of Problem 6.60 is uniformly continuous in the square region defined by 0 < x < 1,
0sy=s1L

PARTIAL DERIVATIVES

6.62.

6.63.

6.64.

6.65.

6.66.

6.67.

6.68.

6.69.

6.70.

If f(x,y) = +} find (a) 9f/dx and (b) 9f/dy at (2, —1) from the definition and verify your answer by
y
differentiation rules. Ans. (a) =2, (b) —4

—/(x+3) for (v.0) £ (0.0)
i e = {0 Prien 2000 fnd @ £0.0. ®) £0.0)

Ans. (a) 1, (b) 0

Investigate ( l)irr}0 0 f(x, y) for the function in the preceding problem and explain why this limit (if it exists)
x,3)—>(0,

is or is not equal to £,(0, 0).

If f(x,») = (x — p)sin(x + 2p), compute (@) fr, () fr, (©) fee (D Sy () frx at (0,7/3).
Ans. (@) Y +V3), () t@r-3V3). (0 3(aV/3-2), (@ 2(vV3+3). (o) 1Q2nV/3+1),
() $@a/3+1)

(a) Prove by direct differentiation that z = xytan(y/x) satisfies the equation x(9z/dx) + y(dz/dy) = 2z if
(x,») #(0,0). (b) Discuss part (@) for all other points (x, y) assuming z = 0 at (0, 0).

Verify that f, = f,, for the functions (¢) (2x — y)/(x +), (b) xtanxy, and (¢) cosh(y + cos x), indicating
possible exceptional points and investigate these points.

Show that z = In{(x — a)2 + (- b)z} satisfies Bzz/ax2 + 322/8)/2 = 0 except at (a, b).

Show that z = xcos(y/x) + tan(y/x) satisfies x>z + 2xyzy, + yzzyy = 0 except at points for which x = 0.

Show that if w = (M> , then:
X+y—z
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ow ow ow 5 Fw > Fw 5 Fw Fw *w Fw
X—+y—+z—=0, (b — — — +2xy 23 2y =0
@ TVt e N N T e vy

Indicate possible exceptional points.

DIFFERENTIALS

6.71. 1Ifz=x’— xy+3y% compute (a) Azand (b) dzwherex =5,y =4, Ax=—0.2, Ay =0.1. Explain why
Az and dz are approximately equal. (¢) Find Azand dzif x=35,y=4, Ax=-2, Ay=1.
Ans. (a) —11.658, (b) —12.3, (¢) Az= —66,dz=—123

6.72. Computer ,/(3.8)* + 2(2.1)* approximately, using differentials.

Ans. 2.01

6.73. Find dF and dG if (a) F(x,y) =Xy —4x3> +8)y°, () G(x,y,2) = 8xp°2° —3x%yz, (¢) F(x,y) = x)*
In(y/x).
Ans. (@) (B3x°y —4yY) dx + (x* — 8xy + 24y%) dy
(®) (8Y°2° — 6xyz)dx + (16xyz° — 3x22) dy + (24xy°2* — 3x%p) dz
© (7’ In(y/x) =y} dx + (2xy In(y/x) + xy} dy
6.74. Prove that (@) dUVY=UdV +VdU, () dU/V)=VdU—-UdV)/V?, (c¢) d(InU)=(dU)/U,
(d) d(tan™' V) = (dV)/(1 + v*) where U and V are differentiable functions of two or more variables.

6.75. Determine whether each of the following are exact differentials of a function and if so, find the function.
(@) (2xy* 4 3ycos3x)dx + (2x*y + sin 3x) dy
(b)  (6xy — yH) dx + 2xe’ — x*) dy
(©) (2 =3y)dx+ (12)* = 3x)dy + 3xz° dz
Ans. (a) x}* +ysin3x+c¢, (b) not exact, (¢) xz>+4)° —3xy+c

DIFFERENTIATION OF COMPOSITE FUNCTIONS
6.76. (a) If U(x,y,2)=2x>—yz+xz>, x=2sint, y=rF —1t+1, z=3¢"!, find dU/dt at t=0. (b) if
H(x,y) =sin(3x — y), x> + 2y =27, x — y* = > + 31, find dH /d1.

3607y 4 121+ 9x% — 612 + 6x°1 + 18
6x%y +2

Ans. (a) 24, (b) < )cos(?:x—y)

6.77. If F(x,y»)=Q2x+y)/(y—2x), x=2u—3v, y=u+2v, find  (a) 3F/ou, (b) dF/dv, (c) 8°F/u’,
(d) *F/3, (e) #F/oudv, where u=2, v =1.
Ans. (@) 7, (b)) =14, (o) 21, (d) 112, (e) —49

6.78. If U = x*F(y/x), show that under suitable restrictions on F, x(3U/ax) + y(dU/dy) = 2U.

6.79. If x =ucosa —wvsinw and y = usin« + vcos«a, where « is a constant, show that

@V /3x)* + 3V /ay)* = (3V /ou)* + (3 /v)?

6.80. Show that if x = pcos ¢, y = psin ¢, the equations
ou v u v becomes ou 13 v 103u
ax  dy dy ox p pdpdp pdp
6.81. Use Problem 6.80 to show that under the transformation x = pcos¢, y = psin ¢, the equation

Pu  Fu Pu 1o 1 du
=0 becomes —+ =

ey eI
8x2+3y2 32 0op " 7 0

IMPLICIT FUNCTIONS AND JACOBIANS
6.82. If F(x,y) =0, prove that dy/dx = —F\/F),.
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6.83.

6.84.

6.85.

6.86.

6.87.

6.88.

6.89.

6.90.

6.91.

6.92.

6.93.

6.94.

6.95.

Find (a) dy/dx and (b) dzy/dx2 if x° er3 —3xy=0.
Ans. (@) (v =D/ =), () —2x0/(7 = x)°

ou v v = 3xit’ + 4 2l + 3y3
If xi’ =, 2yu — xv® = 4x, find —, (b)) —. Ans. ——, () 55—
B L %, find (a) ox ®) dy ns. (a) 6x%uv® + 2y ®) 3x%uv? +y
ou dx  Jv ox . . .
If u = f(x, ), v = g(x, y) are differentiable, prove that o 9 + Pt 1. Explain clearly which variables
- Ox v

are considered independent in each partial derivative.

a ay 05 .. . . .
Iff(x,py,r,5)=0,g(x,y,r,s) =0, prove that 8—} a—r —+ B_y a—g = 0, explaining which variables are independent.
s Ox

What notation could you use to indicate the independent variables considered?

d*y F.F>—2F F.F,+F,F
If F(x,y) =0, show that d_} =X ’*;3“ » Enty
)

AF,G)

0 if F(u, v) = 3u* —uv, G(u, v) = 2u® + 0. Ans. 24uPv+ 16w — 30°
u,v

Evaluate

AF, G, H)

If F=x+43)" —2°, G =2x%yz, and H = 22* — xy, evaluate —— =
ax, y,z)

at (1,-1,0). Ans. 10

If u=sin"'x+sin”! y and v = xy/1 — )2 + yv/1 — x%, determine whether there is a functional relationship
between u and v, and if so find it.

If F=xy+yz+zx,G=x"+)" + 2%, and H = x + y + z, determine whether there is a functional relation-
ship connecting F, G, and H, and if so find it. Ans. H>—G—2F =0.

a(x, y, z) u,v,w)
a(u, v, w) Ax,y, w)
#0. (b) Give an interpretation of the result of (a) in terms of transformations.

(a) If x=f(u,v,w), y=gu,v,w), and z=h(u,v,w), prove that
ax,y,2)
8(u v, W)

=1 provided

If f(x,y,z) =0 and g(x, y, z) = 0, show that

dx  dy  dz
afg) af.g) Af.9)
a(y,z) Az, x) Ax,y)

giving conditions under which the result is valid.

& ¥x ¥x
fx+)y=u y+22=v z+x>=w, find (a) a—x, (b) PR (c) E assuming that the equations
u

define x, y, and z as twice differentiable functions of u, v, and w.

1 16x%y — 8yz — 32x%7° 16y%z — 8xz — 32x%)°
Ans. (@) ————, (b) L TEETIINE ) DYEZOET O
1+ 8xyz (1 + 8xyz)’ (1 + 8xyz)

State and prove a theorem similar to that in Problem 6.35, for the case where u = f(x, y, z), v = g(x, y, 2),
w=h(x,y,z).

TRANSFORMATIONS, CURVILINEAR COORDINATES

6.96.

Given the transformation x =2u+wv, y = u — 3v. (a) Sketch the region 2’ of the uv plane into which the
region # of the xy plane bounded by x =0, x=1, y=0, y=1 is mapped under the transformation.
a(x, »)
u, v)

() Compute
Ans. (b)) =7

(¢) Compare the result of (b) with the ratios of the areas of # and %#’.
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6.97. (a) Prove that under a linear transformation x = ayu + a,v, y = byu + byv (ayby — ayby # 0) lines and circles
in the xy plane are mapped respectively into lines and circles in the uv plane. (b) Compute the Jacobian J of
the transformation and discuss the significance of J = 0.

6.98. Given x = cosucoshv, y =sinusinhv. (a) Show that in general the coordinate curves u = @ and v = b in

the uv plane are mapped into hyperbolas and ellipses, respectively, in the xy plane. (b) Compute BEX y; .
(¢) Compute Au, ) o
A, |

Ans. (b) sin®ucosh® v+ cos®usinh®v, (¢) (sin®ucosh? v + cos® usinh? v)~!

6.99. Given the transformation x =2u+3v—w, y =2v+w, z=2u—2v+w. (a) Sketch the region 2’ of the
uvw space into which the region £ of the xyz space bounded by x =0,x=8,y=0,y=4,z=0,z=0is
Ax, y,2)

ﬁ' (c) Compare the result of (b) with the ratios of the volumes of % and #'.
u, v, W

mapped. (b) Compute
Ans. (b) 1

6.100. Given the spherical coordinate transformation x = rsinfcos¢, y = rsinfsin¢, z = rcos6, where r = 0,
0<6=m 0=¢<2m. Describe the coordinate surfaces (a) r=a, (b) 6=b, and (¢) p=c,
where a, b, ¢ are any constants. Ans. (a) spheres, (b) cones, (c) planes

Ux.y,2) =sind

6.101. (a) Verify that for the spherical coordinate transformation of Problem 6.100, J = 2r.6.9)
ro,

(b) Discuss the case where J = 0.

MISCELLANEOUS PROBLEMS

P

opP| T
aT

LoV

apP

oT
®) o=

LoV

av
» 0P

9P

= =1
1%

6.102. If F(P,V,T) =0, prove that (a) =
T

.
These results are useful in thermodynamics, where P, V, T correspond to pressure, volume, and temperature
of a physical system.

6.103. Show that F(x/y, z/y) = 0 satisfies x(9z/0x) + y(3z/dy) = z.

6.104. Show that F(x + y — z, x* + %) = 0 satisfies x(dz/dy) — y(dz/dx) = x — y.

1 i B y
6.105. If x = f(u, v) and y = g(u, v), prove that & =—- ) where J = 6(v,y).
ax J ou a(u, v)

6.106. If x = f(u,v), y = g(u, v), z = h(u, v) and F(x,y, z) =0, prove that

0,2 dx) o dny)
(u, v) dx + a(u, v) @+ a(u, v) d==0

6.107. If x = ¢(u, v, w), y = Y(u, v, w) and u = f(r, s), v = g(r, s), w = h(r, s), prove that

a(x,y) _alx,y) du,v)  Ax,») (v, w)  d(x,y) d(w,u)
ar,s)  Au,v) ar,s) v, w) ar,s)  A(w,u) r,s)

a bl |le f ae+bg af + bh
d| |g h ce+dg cf +dh|
second order determinants referred to in Problem 6.43. (b) Generalize the result of (a) to determinants

of 3,4....

6.108. (a) Prove that thus establishing the rule for the product of two

6.109. If x, y, and z are functions of u, v, and w, while u, v, and w are functions of r, s, and ¢, prove that
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6.110.

6.111.

6.112.

6.113.

ax,y,2)  Ax,y,2) &u,v,w)
ar, s, ) - au, v, w) A(r, s, 1)

Given the equations Fy(xy, ..., Xy, Vi, ...,V,) = 0 where j=1,2,...,n. Prove that under suitable condi-
tions on Fj,
%:_a(FlsF2s"'7E‘s"'an) a(F],Fz,...,E,)
a-xx a(yl’yb-“’xw“"yn) a(ylay27“"yn)
. PF *F PF
(a) If F(x,y) is homogeneous of degree 2, prove that xz—z + 2xy +y2—2 =2F.
ox ox dy ay

(b) Tllustrate by using the special case F(x, y) = x* In(y/x).
Note that the result can be written in operator form, using D,=d/dx and D, =3/dy, as
(xD,+y D),)ZF = 2F. [Hint: Differentiate both sides of equation (7), Problem 6.25, twice with respect
to A.]

Generalize the result of Problem 6.11 as follows. If F(xy, x5, ..., x,) is homogeneous of degree p, then for
any positive integer r, if D,; = 9/dx;,

1Dy, + 2Dy, + -+ x,D, YF=pp—1)...(p —r+ DF

(a) Let x and y be determined from u and v according to x+ iy = (u+ iv)>. Prove that under this
transformation the equation

Po P . . o
—+—==0 s transformed into —
ax2 + ay? ' o’ *

32

n? =0

(b) Is the result in (a) true if x + iy = F(u + iv)? Prove your statements.



VECTORS

The foundational ideas for vector analysis were formed indepen-
dently in the nineteenth century by William Rowen Hamilton and
Herman Grassmann. We are indebted to the physicist John Willard
Gibbs, who formulated the classical presentation of the Hamilton
viewpoint in his Yale lectures, and his student E. B. Wilson, who
considered the mathematical material presented in class worthy of
organizing as a book (published in 1901). Hamilton was searching for
a mathematical language appropriate to a comprehensive exposition
of the physical knowledge of the day. His geometric presentation Fig. 7-1
emphasizing magnitude and direction, and compact notation for the
entities of the calculus, was refined in the following years to the benefit of expressing Newtonian
mechanics, electromagnetic theory, and so on. Grassmann developed an algebraic and more philo-
sophic mathematical structure which was not appreciated until it was needed for Riemanian (non-
Euclidean) geometry and the special and general theories of relativity. N

Our introduction to vectors is geometric. We conceive of a vector as a directed line segment PQ
from one point P called the initial point to another point Q callewe terminal point. We denote vectors
by boldfaced letters or letters with an arrow over them. Thus P is denoted by A or 4 as in Fig. 7-1.
The magnitude or length of the vector is then denoted by | PQ|, PO, |A| or |A|.

Vectors are defined to satisfy the following geometric properties.

GEOMETRIC PROPERTIES

1. Two vectors A and B are equal if they have the same magnitude and direction regardless of their
initial points. Thus A = B in Fig. 7-1 above.

In other words, a vector is geometrically represented by any one of a class of commonly
directed line segments of equal magnitude. Since any one of the class of line segments may be
chosen to represent it, the vector is said to be fiee. In certain circumstances (tangent vectors,
forces bound to a point), the initial point is fixed, then the vector is bound. Unless specifically
stated, the vectors in this discussion are free vectors.

2. A vector having direction opposite to that of vector A but with the same magnitude is denoted
by —A [see Fig. 7-2].

150
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3. The sum or resultant of vectors A and B of Fig. 7-3(a) below is
a vector C formed by placing the initial point of B on the
terminal point of A and joining the initial point of A to the
terminal point of B [see Fig. 7-3(b) below]. The sum C is >
written C = A + B. The definition here is equivalent to the
parallelogram law for vector addition as indicated in Fig.7-3(c)

below.
Extensions to sums of more than two vectors are .
immediate. For example, Fig. 7-4 below shows how to obtain Fig. 7-2

the sum or resultant E of the vectors A, B, C, and D.

B
N B S T~
C=A+B ™~ _
P
(a)

C-A+B \ prd
-
B -~

(b) (c)
Fig. 7-3

Fig. 7-4

4. The difference of vectors A and B, represented by A — B, is that vector C which added to B gives
A. Equivalently, A — B may be defined as A + (—B). If A = B, then A — B is defined as the nu//
or zero vector and is represented by the symbol 0. This has a magnitude of zero but its direction
is not defined.

The expression of vector equations and related concepts is facilitated by the use of real
numbers and functions. In this context, these are called scalars. This special designation arises
from application where the scalars represent object that do not have direction, such as mass,
length, and temperature.

5. Multiplication of a vector A by a scalar m produces a vector mA with magnitude |m| times the
magnitude of A and direction the same as or opposite to that of A according as m is positive or
negative. If m =0, mA = 0, the null vector.

ALGEBRAIC PROPERTIES OF VECTORS

The following algebraic properties are consequences of the geometric definition of a vector. (See
Problems 7.1 and 7.2.)
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If A, B and C are vectors, and m and n are scalars, then

. A+B=B+A Commutative Law for Addition

2. A+ B+C)=A+B)+C Associative Law for Addition

3. m(nA) = (mn)A = n(mA) Associative Law for Multiplication
4., (m+n)A =mA+nA Distributive Law

5. m(A+ B) =mA + mB Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is defined. On Pages
153 and 154 we define products of vectors.

LINEAR INDEPENDENCE AND LINEAR DEPENDENCE OF A SET OF VECTORS

A set of vectors, Aj, A,, ..., A, is linearly independent means that a;A| + a,Ay + - +a,A, + - +
a,A, =0 if and only if ¢y =a, =---=a, =0 (i.e., the algebraic sum is zero if and only if all the
coefficients are zero). The set of vectors is linearly dependent when it is not linearly independent.

UNIT VECTORS

Unit vectors are vectors having unit length. If A is any vector with length 4 > 0, then A/A4 is a unit
vector, denoted by a, having the same direction as A. Then A = Aa.

RECTANGULAR (ORTHOGONAL) UNIT VECTORS

The rectangular unit vectors i, j, and k are unit vectors having the direction of the positive x, y, and z
axes of a rectangular coordinate system [see Fig. 7-5]. We use right-handed rectangular coordinate
systems unless otherwise specified. Such systems derive their name from the fact that a right-threaded
screw rotated through 90° from Ox to Oy will advance in the positive z direction. In general, three
vectors A, B, and C which have coincident initial points and are not coplanar are said to form a right-
handed system or dextral system if a right-threaded screw rotated through an angle less than 180° from A
to B will advance in the direction C [see Fig. 7-6 below].

Fig. 7-6
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COMPONENTS OF A VECTOR z

Any vector A in 3 dimensions can be represented with
initial point at the origin O of a rectangular coordinate
system [see Fig. 7-7]. Let (A4, A5, A5) be the rectangular
coordinates of the terminal point of vector A with initial

point at O. The vectors A4,i, 4,j, and As;k are called the (1, 4. 49
rectangular component vectors, or simply component vec- A Ak

tors, of A in the x, y, and z directions respectively. A4;, 45, 0} > y
and A; are called the rectangular components, or simply Aji \\\

components, of A in the x, y, and z directions respectively. L

The vectors of the set {i, j, k} are perpendicular to one A
another, and they are unit vectors. The words orthogonal
and normal, respectively, are used to describe these charac- *
teristics; hence, the set is what is called an orthonormal basis. Fig. 7-7
It is easily shown to be linearly independent. In an n-dimensional space, any set of » linearly indepen-
dent vectors is a basis. The further characteristic of a basis is that any vector of the space can be
expressed through it. It is the basis representation that provides the link between the geometric and
algebraic expressions of vectors and vector concepts.

The sum or resultant of 4,i, 4,j, and A4zk is the vector A, so that we can write

A = Aji+ A5+ Ask )

The magnitude of A is

A=|A] = A7+ 43+ 43 )

In particular, the position vector or radius vector r from O to the point (x, y, z) is written
r=xi+yj+zk 3)

and has magnitude r = |r| = /x? + )? + 22

DOT OR SCALAR PRODUCT

The dot or scalar product of two vectors A and B, denoted by A - B (read A dot B) is defined as the
product of the magnitudes of A and B and the cosine of the angle between them. In symbols,

A -B = ABcos0, 06=m 4

Assuming that neither A nor B is the zero vector, an immediate consequence of the definition is that
A -B =0 if and only if A and B are perpendicular. Note that A - B is a scalar and not a vector.
The following laws are valid:

A-B=B-A Commutative Law for Dot Products
A-B+C)=A-B+A-C Distributive Law
m(A - B) = (mA)-B = A - (mB) = (A - B)m, where m is a scalar.
i-i=j-j=k-k=1, i-j=j-k=k-i=0
If A = A,i+ A>j+ A:k and B = B,i + Byj + B;k, then

A-B=A4,B, + A,B, + A3B;

A e

The equivalence of this component form the dot product with the geometric definition 4 follows
from the law of cosines. (See Fig. 7-8.)
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In particular,
|CI* = |AI* + [B|* — 2|A||B| cos 6

Since C = B — A its components are B; — A, B, — A,, B; — A; and
the square of its magnitude is

(B? + B3 + B3) + (A7 + A3 + A2) — 2(A,B)) + A,B, + A;B;)

A
or

IBI* + |A]* — 2(A;B; + A3B, + A;Bs) Fig. 7-8

When this representation for |C?| is placed in the original equation and cancellations are made, we
obtain

AlBl —+ A2B2 —+ A3B3 = |A| |B| cos 6.

CROSS OR VECTOR PRODUCT

The cross or vector product of A and B is a vector C = A x B (read A cross B). The magnitude of
A x B is defined as the product of the magnitudes of A and B and the sine of the angle between them.
The direction of the vector C = A x B is perpendicular to the plane of A and B and such that A, B, and C
form a right-handed system. In symbols,

A x B = ABsin6u, 06=nm )

where u is a unit vector indicating the direction of A x B. If A = B or if A is parallel to B, then sinf = 0
and A x B=0.
The following laws are valid:

I. AxB=-BxA (Commutative Law for Cross Products Fails)
2. AxB+C=AxB+AxC Distributive Law
3. m(A x B) = (mA) x B=A x (mB) = (A x B)m, where m is a scalar.

Also the following consequences of the definition are important:

4. ixi=jxj=kxk=0ixj=k jxk=ikxi=j
5. IfA:A1i+A2j+A3k andB:Bli~|—B2j+B3k, then
i j k
AxB= Al A2 A3
Bl BZ B3 z
The equivalence of this component representation
(5) and the geometric definition may be seen as follows.
Choose a coodinate system such that the direction of the
x-axis is that of A and the xy plane is the plane of the
vectors A and B. (See Fig. 7-9.)
i j k
Then AxB=|4, 0 O0|=A4,Bk=]A|B|sinedK Ly, J
B, B, 0

N
X
o)

=4

)

Since this choice of coordinate system places no .
restrictions on the vectors A and B, the result is general
and thus establishes the equivalence. Fig. 7-9
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6. |A x B| = the area of a parallelogram with sides A and B.
7. If A x B=0 and neither A nor B is a null vector, then A and B are parallel.

TRIPLE PRODUCTS

Dot and cross multiplication of three vectors, A, B, and C may produce meaningful products of the
form (A-B)C,A - (B x C), and A x (B x C). The following laws are valid:

. (A-B)C # A(B-C) in general
2. A-BxC)=B-(CxA)=C-(A x B)=volume of a parallelepiped having A, B, and C as

edges, or the negative of this volume according as A, B, and C do or do not form a right-
handed system. If A = A;i+ 4,j+ A3k, B = Bji+ B,j+ Bsk and C = Cyi + C,j + Csk, then

Ay Ay A,
A(BXC): Bl 32 B3 (6)
G G G
3. AxBxCO)#(AxB)xC (Associative Law for Cross Products Fails)

AxBxC)=(A-CB—-(A-B)C
AxB)xC=(A-OB—(B-0)A

The product A - (B x C) is called the scalar triple product or box product and may be denoted by
[ABC]. The product A x (B x C) is called the vector triple product.

In A - (B x C) parentheses are sometimes omitted and we write A - B x C. However, parentheses
must be used in A x (B x C) (see Problem 7.29). Note that A- (B x C) = (A x B)- C. This is often
expressed by stating that in a scalar triple product the dot and the cross can be interchanged without
affecting the result (see Problem 7.26).

AXIOMATIC APPROACH TO VECTOR ANALYSIS

From the above remarks it is seen that a vector r = xi + yj + zk is determined when its 3 components
(x, y, z) relative to some coordinate system are known. In adopting an axiomatic approach, it is thus
quite natural for us to make the following

Definition. A three-dimensional vector is an ordered triplet of real numbers with the following
properties. If A = (A4, 45, A;) and B = (B, B,, B;) then

A=Bifand only if 41 =B, 4, =B,,4; = B;

A+B=(4,+ By, Ay + By, A3 + B3)

A—B=(4,— By, 4y — By, A; — B3)

0=(0,0,0)

mA = m(A,, Ay, A3) = (mA,, mA,, mAs)
In addition, two forms of multiplication are established.

6. A'B:A1B1+A232+A3B3
7. Length or magnitude of A = |A| = VA A = /4% + A3 + A2
8. A xB=(4,B; — A3B,, A3B, — A B3, A B, — A,By)

A e

Unit vectors are defined to be (1,0, 0), (0, 1, 0), (0,0, 1) and then designated by i, j, k, respectively,
thereby identifying the components axiomatically introduced with the geometric orthonormal basis
elements.

If one wishes, this axiomatic formulation (which provides a component representation for vectors)
can be used to reestablish the fundamental laws previously introduced geometrically; however, the
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primary reason for introducing this approach was to formalize a component representation of the
vectors. It is that concept that will be used in the remainder of this chapter.

Note 1: One of the advantages of component representation of vectors is the easy extension of the
ideas to all dimensions. In an n-dimensional space, the component representation is

A(Ay, Ay, ..., A,)

An exception is the cross-product which is specifi-
cally restricted to three-dimensional space. There are
generalizations of the cross-product to higher dimen-
sional spaces, but there is no direct extension.)

Note 2: The geometric interpretation of a vector
endows it with an absolute meaning at any point of
space. The component representation (as an ordered ---—-————————————_ y
triple of numbers) in Euclidean three space is not unique,
rather, it is attached to the coordinate system employed.

This follows because the components are geometrically ¢
interpreted as the projections of the arrow representation

on the coordinate directions. Therefore, the projections ¥
on the axes of a second coordinate system rotated (for v
example) from the first one will be different. (See Fig. - A
7-10.) Therefore, for theories where groups of coordinate Ay
systems play a role, a more adequate component defini- P :
tion of a vector is as a collection of ordered triples of 7 sl
numbers, each one identified with a coordinate system : x
of the group, and any two related by a coordinate
transformation. This viewpoint is indispensable in New-
tonian mechanics, electromagnetic theory, special relativ-
ity, and so on.

Fig. 7-10

VECTOR FUNCTIONS

If corresponding to each value of a scalar u we associate a vector A, then A is called a function of u
denoted by A(u). In three dimensions we can write A(u) = A;(w)i + A,(u)j + A3(w)k.

The function concept is easily extended. Thus, if to each point (x, y, z) there corresponds a vector
A, then A is a function of (x, y, z), indicated by A(x, y, z) = A;(x, y, 2)i + 4,(x, y, 2)j + A3(x, y, 2)k.

We sometimes say that a vector function A defines a vector field since it associates a vector with each
point of a region. Similarly, ¢(x, y, z) defines a scalar field since it associates a scalar with each point of a
region.

LIMITS, CONTINUITY, AND DERIVATIVES OF VECTOR FUNCTIONS

Limits, continuity, and derivatives of vector functions follow rules similar to those for scalar func-
tions already considered. The following statements show the analogy which exists.

1. The vector function represented by A(u) is said to be continuous at ug if given any positive
number €, we can find some positive number § such that |A(u) — A(up)| < € whenever
|lu —ug| < 8. This is equivalent to the statement lim A(u) = A(uy).

U—>uy

2. The derivative of A(u) is defined as
d_A ~ fim A(u+ Au) — A(u)
du Au—0 Au

provided this limit exists. In case A(u) = A;(w)i + A>(u)j + A3(w)k; then
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dA dA,, dA,, dA;
T El + EJ + Ek
Higher derivatives such as d°A/du’, etc., can be similarly defined.
3. If A(x, py,2) = A1(x, p, 2)i + As(x, y, 2)j + A3(x, , 2)K, then
A
ox

0A 0A
dA = —dx+—dy+—dz
ay 0z

is the differential of A.

4. Derivatives of products obey rules similar to those for scalar functions. However, when cross
products are involved the order may be important. Some examples are

d dA d¢
@ @A) ="+ A,
0 B 0A
b —(A-B)=A-—+_—-B,
ay dy -y
(o) 3(A x B) = A x B + A x B (Maintain the order of A and B)
0z 0z 0z

GEOMETRIC INTERPRETATION OF A VECTOR DERIVATIVE

If r is the vector joining the origin O of a coordinate system and the point (x, y, z), then specification
of the vector function r(u) defines x, y, and z as functions of u (r is called a position vector). As u changes,
the terminal point of r describes a space curve (see Fig. 7-11) having parametric equations
x = x(u),y = y(u), z = z(u). If the parameter u is the arc length s measured from some fixed point
on the curve, then recall from the discussion of arc length that ds* = dr - dr. Thus

dr_

=T %

Ar = r(u + Au) — r(u)

41{)

I'(l{ "

r(u)

Fig. 7-11

is a unit vector in the direction of the tangent to the curve and is called the unit tangent vector. 1f u is the
time ¢, then
dr
— =YV 8
7 ¥

is the velocity with which the terminal point of r describes the curve. We have

_dr drds_ds
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from which we see that the magnitude of v is v = ds/dr. Similarly,
d*r
dr
is the acceleration with which the terminal point of r describes the curve. These concepts have important
applications in mechanics and differential geometry.

A primary objective of vector calculus is to express concepts in an intuitive and compact form.
Success is nowhere more apparent than in applications involving the partial differentiation of scalar and
vector fields. [Illustrations of such fields include implicit surface representation, ®{x, y, z(x, y) = 0, the
electromagnetic potential function ®(x, y, z), and the electromagnetic vector field F(x, y,z).] To give
mathematics the capability of addressing theories involving such functions, William Rowen Hamilton
and others of the nineteenth century introduced derivative concepts called gradient, divergence, and curl,
and then developed an analytic structure around them.

An intuitive understanding of these entities begins with examination of the differential of a scalar
field, i.e.,

=a (10)

dd = g—idx—l—%—fdy—l-%i;dz
Now suppose the function @ is constant on a surface S and that C; x = f1(#),y = f,(1), z = f3(t) is a
curve on S. At any point of this curve % = %i + % j+ %k lies in the tangent plane to the surface.
Since this statement is true for every surface curve through a given point, the differential dr spans the
tangent plane. Thus, the triple %, {;i), % represents a vector perpendicualr to S. With this special
geometric characteristic in mind v&;e de)f}‘lne
foLex foLex foLe>
Vo =it > it

to be the gradient of the scalar field ®.
Furthermore, we give the symbol V a special significance by naming it del.

EXAMPLE 1. If ®(x, y, z) = 0 is an implicity defined surface, then, because the function always has the value zero
for points on it, the condition of constancy is satisfied and V¢ is normal to the surface at any of its points. This
allows us to form an equation for the tangent plane to the surface at any one of its points. See Problem 7.36.

EXAMPLE 2. For certain purposes, surfaces on which & is constant are called level surfaces. In meteorology,
surfaces of equal temperature or of equal atmospheric pressure fall into this category. From the previous devel-
opment, we see that V& is perpendicular to the level surface at any one of its points and hence has the direction of
maximum change at that point.

The introduction of the vector operator V and the interaction of it with the multiplicative properties
of dot and cross come to mind. Indeed, this line of thought does lead to new concepts called divergence
and curl. A summary follows.

GRADIENT, DIVERGENCE, AND CURL
Consider the vector operator V (del) defined by

d a d
V=i—+j—+k

— 11
ox T ady 0z (1)

Then if ¢(x, y, z) and A(x, y, z) have continuous first partial derivatives in a region (a condition which is
in many cases stronger than necessary), we can define the following.
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1. Gradient. The gradient of ¢ is defined by

.0 .0 a L0 .0 ¢
grad¢ =ve ('ax+’ay+ az)¢ x5 TR (2
op. 0. 3¢
=i+ T+ Tk
o Tt
2. Divergence. The divergence of A is defined by
. a )
leA:V-A:(]a—-‘r_]a +k ) (A1 + Ayj + A5k) 3
94, | 94, | 9d;
= T Ay o
3. Curl. The curl of A is defined by
d d d
curlA:VxA:(la——l—J8 +ka)x(A]i+A2j+A3k) (14)
i j k
_|2 2 3
ox dy 0z
A Ay As
G| s 9| |00
=i|ldy dz|—jlox 9z |+k|ox ady
Az A3 Al AZ A, A2

045 045\, 04, 043\, 94, 04
= (= -2)i+ (L -2+ (=2 -k
ay 0z 0z ax 0x ay
Note that in the expansion of the determinant, the operators 9/dx, d/dy, 3/dz must precede
Ay, Ay, A;.  In other words, V is a vector operator, not a vector. When employing it the laws of
vector algebra either do not apply or at the very least must be validated. In particular, V x A is a new

vector obtained by the specified partial differentiation on A, while A x V is an operator waiting to act
upon a vector or a scalar.

FORMULAS INVOLVING V

If the partial derivatives of A, B, U, and V" are assumed to exist, then

V(U+V)=VU+ VV or grad(U+ V) =gradu + grad V
V-(A+B)=V-A+V-Bordiv(A+B)+divA +divB
Vx(A+B)=VxA+VxBor curl(A + B) =curl A 4 curl B
V- (UA)=(VU)-A+U(V-A)

V x (UA)=(VU) x A+ U(V x A)

V.- (AxB)=B-(VxA)—A-(VxB)
Vx(AxB)=B-V)A—-B(V-A)—(A-V)B+A(V-B)
VA-B)=B-VVA+(A-V)B+B x(VxA)+ A x(VxB)

® N kW =

YU PU PU
9. V. (VU)=VU=— 5+~ +— is called the Laplacian of U
xr 9 92
¥ or &
and V2 = F +— P 5+ 52 is called the Laplacian operator.

10. V x(VU)=0. The curl of the gradient of U is zero.
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11. V-(VxA)=0. The divergence of the curl of A is zero.
12. Vx(VxA)=V(V-A) - VA

VECTOR INTERPRETATION OF JACOBIANS,
ORTHOGONAL CURVILINEAR COORDINATES

The transformation equations
x = fuy, uy, u3), V= g(uy, uy, u3), z = h(uy, uy, u3) (15)

[where we assume that f', g, h are continuous, have continuous partial derivatives, and have a single-
valued inverse] establish a one-to-one correspondence between points in an xyz and u u,u3 rectangular
coordinate system. In vector notation the transformation (/7) can be written

r = xi+ yj + 2k = f(uy, up, u3)i + g(uy, un, u3)j + h(uy, up, uz)k (16)

A point P in Fig. 7-12 can then be defined not only by rectangular coordinates (x, y, z) but by coordinates
(uy, uy, u3) as well.  We call (uy, up, u3) the curvilinear coordinates of the point.

4
€3

U3

&) P )
uj 2

Fig. 7-12

If u, and u; are constant, then as u; varies, r describes a curve which we call the u; coordinate curve.
Similarly, we define the u, and u; coordinate curves through P.
From (16), we have

ar ar oar
dr = —duy + —duy + —dus (17)
81/!1 8u2 81/{3
. ar Or Or . . . . .-
The collection of vectors P 5 . is a basis for the vector structure associated with the curvilinear
Iz

system. If the curvilinear system is orthogonal, then so is this set; however, in general, the vectors are
not unit vectors. he differential form for arc length may be written

ds* = g1(du))’ + gxn(diy)’ + gs3(du, )’
where
__or or _or or _dr or
81 = X’ gzz—ay a’ g33—3Z 9z

The vector dr/du; is tangent to the u; coordinate curve at P. If e; is a unit vector at P in this
direction, we can write dr/du; = he; where h; = |or/du;|. Similarly we can write or/du, = hye, and
or/du; = hse;, where hy = |dr/du,| and h; = |dr/dus| respectively. Then (/7) can be written
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dr = /11 du1e1 + hz dLl2€2 + 113 du3e3 (18)

The quantities hy, hy, h; are sometimes caleld scale factors.

If e;,e,, e; are mutually perpendicular at any point P, the curvilinear coordinates are called
orthogonal.  Since the basis elements are unit vectors as well as orthogonal this is an orthonormal
basis. In such case the element of arc length ds is given by

ds* = dr - dr = b} du? + h3 du3 + I3 dui3 (19)

and corresponds to the square of the length of the diagonal in the above parallelepiped.
Also, in the case of othogonal coordinates, referred to the orthonormal basis ey, e,, €3, the volume of
the parallelepiped is given by

V = Igfkldulduzdu3 = |(hl dulel) . (h2 du2e2) X (/’l3 du3e3)| = /11]12]13 dulduzdm (20)
which can be written as
av = |20 dulduzdu3 XXV D) | s 1)
aul 8u2 Ay, Uy, u3)

where A(x, y, z)/d(uy, u,, u3) is the Jacobian of the transformation.

It is clear that when the Jacobian vanishes there is no parallelepiped and explains geometrically the
significance of the vanishing of a Jacobian as treated in Chapter 6.

Note: The further significance of the Jacobian vanishing is that the transformation degenerates at the
point.

GRADIENT DIVERGENCE, CURL, AND LAPLACIAN IN ORTHOGONAL
CURVILINEAR COORDINATES

If @ is a scalar function and A = A4,e; + A,e, + Aze; a vector function of orthogonal curvilinear
coordinates u, 5, u3, we have the following results.

1 09 1 99 1 0
1. Vb= do=—— - _ =
gra l 8u1 1 h2 8112 €2 + ]13 81/[3 &

1

2. V.A=divA =
VA= ks |8

[ (ha, h34,) + (hzh A2)+ (hlh2A3)}

hlel h2€2 h3e3

1 a9 ol ol
hyhyhs a_Ul a_uz 8_u3
A, hAy A,

. 1 d /’lz/’l3 Bl d 1’[3]11 Bl d hll’lz P
4. V'@ = Lapl fd=—"" (B o) 9 (TR OF
aplacian o h /12/13 |:3u1 ( hl Bul) + 3u2 ( /12 3u2 + 8143 h3 3u3

3. VxA=curlA=

These reduce to the usual expressions in rectangular coordinates if we replace (u;, uy, u3) by (x, y, z),
in which case e, e,, and e; are replaced by i, j, and k and iy =hy, = h; = 1.

SPECIAL CURVILINEAR COORDINATES

1. Cylindrical Coordinates (p, ¢, z). See Fig. 7-13.
Transformation equations:

X =pcos¢,y=psing,z=z
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P(x, y,2)
(p,9,2)

P(x,y,2)
(r,0,9)

[CHAP. 7

Fig. 7-13 Fig. 7-14

where p = 0,0 < ¢ <27, —00 < z < 0.
Scale factors: hy =1,h, = p,h; =1
Element of arc length: ds* = dp* + p*d¢” + dz*

. a(x, y, 2)
Jacobian: —————=p
Ap, ¢, 2)
Element of volume: dV = pdpd¢dz
Laplacian:
AN A i = T R PR VO

Note that corresponding results can be obtained for polar coordinates in the plane by omit-
ting z dependence. In such case for example, ds* = dp2 + p2d¢2, while the element of volume is

replaced by the element of area, d4A = pdpde.

2. Spherical Coordinates (r, 0, ¢). See Fig. 7-14.
Transformation equations:

X =rsinfcos¢, y =rsinfsing, z = rcosf

where r 2 0,0 £ 60 < 7,0 £ ¢ <27,
Scale factors: hy =1,hy =r,h3 =rsin6
Element of arc length: ds* = dr* + > d6” + r* sin” 6 d¢*

B(x,y,z)_ 2 o
8(1‘,9,(1))_’ sin 6

Element of volume: dV = r*sin6dr df d¢

Laplacian:
19 (,0U 19 U 1 U
VU = 2 (222 2 sing2Z i
2 or (r 8}‘) t 2 sing (Sm ae) T snte

Jacobian :

Other types of coordinate systems are possible.
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Solved Problems

VECTOR ALGEBRA
7.1. Show that addition of vectors is commutative, i.e., A+ B =B+ A. See Fig. 7-15 below.

OP + PQ = 0Q or A+B=C,
and OR +RQ =0Q or B+A=C.

Then A+B =B+ A.

Fig. 7-15 Fig. 7-16

7.2. Show that the addition of vectors is associative, i.e., A+ (B+C) = (A +B)+ C. See Fig. 7-16
above.

OP+PQ=0Q=(A+B) and PQ+QR=PR=(B+C)

Since OP+PR=OR=D, ie, A+B+C) =D
OQ+QR=OR=D, ie, (A+B)+C=D

we have A+ (B+C) = (A +B)+C.
Extensions of the results of Problems 7.1 and 7.2 show that the order of addition of any number of
vectors is immaterial.

7.3. An automobile travels 3 miles due north, then 5 miles 0
northeast as shown in Fig. 7-17. Represent these displace-
ments graphically and determine the resultant displacement
(a) graphically, (b) analytically.

4
8

Vector OP or A represents displacement of 3 mi due north.

Vector PQ or B represents displacement of 5 mi northeast. P

Vector OQ or C represents the resultant displacement or sum
of vectors A and B, i.e., C=A + B. This is the triangle law of
vector addition.

The resultant vector OQ can also be obtained by constructing
the diagonal of the parallelogram OPQR having vectors OP =A W 0 E
and OR (equal to vector PQ or B) as sides. This is the parallelo- e —
gram law of vector addition. Unit = 1 mile

45°
135°

(4N

(a) Graphical Determination of Resultant. Lay off the 1 mile unit
on vector OQ to find the magnitude 7.4 mi (approximately). Fig. 7-17
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Angle EOQ = 61.5°, using a protractor. Then vector OQ has magnitude 7.4 mi and direction 61.5°
north of east.

(b) Analytical Determination of Resultant. From triangle OPQ, denoting the magnitudes of A, B, C by
A, B, C, we have by the law of cosines

C* = A + B> —2A4Bcos LOPQ = 3* + 5% — 2(3)(5) cos 135° = 34 + 154/2 = 55.21
and C = 7.43 (approximately).

A C

= . Th
sin/OQP sin/OPQ en

By the law of sines,

Asin/OPQ _ 3(0.707)
c 743

Thus vector OQ has magnitude 7.43 mi and direction (45° 4+ 16°35") = 61°35' north of east.

sin/OQP = =0.2855 and /OQP = 1635’

7.4. Prove that if a and b are non-collinear, then xa+ yb = 0 implies x = y = 0. Is the set {a, b}
linearly independent or linearly dependent?

Suppose x # 0. Then xa + yb = 0 implies xa = —yb or a = —(y/x)b, i.e., a and b must be parallel to the
same line (collinear), contrary to hypothesis. Thus, x = 0; then yb =0, from which y =0. The set is
linearly independent.

7.5. 1If x;ja+ y;b = x,a + y,b, where a and b are non-collinear, then x; = x, and y; = y,.
x1a+ y;b = x,a+ y,b can be written
xja+yb—(xa+y;b)=0 or  (x—x)a+( —y)b=0

Hence, by Problem 7.4, x; —x, =0,y —y, =0, or x| = x5, | = J».
Extensions are possible (see Problem 7.49).

7.6. Prove that the diagonals of a parallelogram bisect each B b c
other.

Let ABCD be the given parallelogram with diagonals intersect-
ing at P as shown in Fig. 7-18. 2
Since BD+a=b,BD=b—a. Then BP = x(b — a).
Since AC =a+b, AP = y(a+b).
But AB=AP+PB=AP—-BP, iec, a=ya+b)—x(b—a)

=(x+ya+(y—xb. A b D
Since a and b are non-collinear, we have by Problem 7.5,
x+y=land y—x=0,1ie,x=y :% and P is the midpoint of Fig. 7-18

both diagonals.

7.7. Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and
has half its length.

From Fig. 7-19, AC+ CB=ABorb+a=c.
Let DE = d be the line joining the midpoints of sides AC and CB. Then

d=DC+CE=1b+la=1®b+a)=1lc

Thus, d is parallel to ¢ and has half its length.

7.8. Prove that the magnitude A of the vector A = Ai+ A,j+ A3k is A = /42 + A3 + A%, See Fig.
7-20.
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P(dy, 4, 43)

Fig. 7-19

By the Pythagorean theorem,
(OP)* = (00)" + (QP)’
where OP denotes the magnitude of vector OP, etc. Similarly, (00)* = (OR)* + (RO).
Then (OP)* = (OR)* + (RO)* + (OP)* or A> = A} + A3 + 43, i.e., A= JA? + A} + A3

7.9. Determine the vector having initial point P(xy, ¥, z1) H
and terminal point Q(x,, y,, z») and find its magnitude. P(x1,31,21)
See Fig. 7-21.

The position vector of P is ry = xji+ yij+ z1k. I
The position vector of Q is 1, = x5i + y,j + 2ok. 0(xa, 2, 23)

rn=PQ=r,or
r;

PQ =r; —r; = (i + 3aj + 22K) — (x1i + y1j + 21k) ¥
= —x)i+ O —y)i+ (2 — 2k

Magnitude of PQ = PQ
= \/(xz —x) 02— )+ @)

Note that this is the distance between points P and Q. A

THE DOT OR SCALAR PRODUCT

QfF~-——-—

7.10. Prove that the projection of A on Bis equal to A - b, where b is a
unit vector in the direction of B. Fig. 7-22

Through the initial and terminal points of A pass planes perpen-
dicular to B at G and H respectively, as in the adjacent Fig. 7-22: then

Projection of A on B=GH =EF = Acosf#=A-b B

7.11. Prove A-(B+C)=A-B+A-C. Sece Fig. 7-23.
Let a be a unit vector in the direction of A; then

Projection of (B + C) on A = projection of B on A + projection
of Con A
B+C)-a=B-a+C-a

A\

np-——————
Hpl————
QFk—————

>
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7.12.

7.13.

7.14.

7.15.
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Multiplying by 4,

B+C)-4a=B-A4a+C- Aa
and B+C)-A=B-A+C-A

Then by the commutative law for dot products,
A-B+C)=A-B+A-C

and the distributive law is valid.

Prove that (A+B)- (C+D)=A-C+A-D+B-C+B-D.

By Problem 7.11, (A+B)- (C+D)=A-(C+D)+B-(C+D)=A-C+A-D+B-C+B-D.
The ordinary laws of algebra are valid for dot products where the operations are defined.

Evaluate each of the following.

(a) i-i=ililcos0° = (1)(1)(1)=1

(b) i-k=Ii|lk|cos90° = (1)(1)(0) =0

(¢) k-j=Ik[]jlcos90° = (1)(1)(0) =0

d j-QRi-3j+k)=2j-i—-3j-j+j-k=0-34+0=-3

(&) Qi—j-Ci+k)=2i-GCi+k) —j-Gi+k)=6i-i+2i-k—-3j-i—j - k=64+0-0-0=6

If A= A1i+A2] +A3k and B= Bll+ sz+ B3k, prove that A-B= AlBl +AZBZ +A3B3.

A B = (4)i+ A, + A3Kk) - (Byi + B,j + Bs3k)
= Aji- (Bii+ Byj+ B3k) + Ayj - (Bji + Byj+ B3k) + Azk - (Bi+ B,j + B3k)
=ABji-i+ A Boi-j+ A1Bsi-k+ A)Bij-i+ A,Byj-j+ A,Bsj-k
+ A3Bik-i+ A3B)k - j+ A3 B3k - k
=A1B| + Ay,B, + A3B;

since i-j=k-k =1 and all other dot products are zero.

If A = Ayi + Ayj+ A3k, show that 4 = VA-A = /43 + 43 + 43.
A-A=(A4)(A)cos0° = A>. Then A =+/A-A.
Also, A - A = (Ai + Asj + A5K) - ()i + Ayj + A3k)
= (AD)(A) + ()(A) + (A3)(As) = AT + 43 + 43
By Problem 7.14, taking B = A.
Then 4 = A-A = /42 4+ A3 4 A3 is the magnitude of A. Sometimes A - A is written A”.

THE CROSS OR VECTOR PRODUCT

7.16.

7.117.

Prove A x B=—-B x A.

A x B = C has magnitude 4 Bsin 6 and direction such that A, B, and C form a right-handed system [Fig.
7-24(a)].

B x A = D has magnitude BA sinf and direction such that B, A, and D form a right-handed system
[Fig. 7-24(b)].

Then D has the same magnitude as C but is opposite in direction, i.e., C=—D or A x B=—B x A.

The commutative law for cross products is not valid.

Prove that A x (B4 C) = A x B+ A x C for the case where A is perpendicular to B and also
to C.
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(%)
Fig. 7-24

Since A is perpendicular to B, A x B is a vector perpendicular to the plane of A and B and having magnitude
ABsin90° = AB or magnitude of AB. This is equivalent to multiplying vector B by 4 and rotating the
resultant vector through 90° to the position shown in Fig. 7-25.

AXxC

Fig. 7-25 Fig. 7-26

Similarly, A x C is the vector obtained by multiplying C by 4 and rotating the resultant vector through
90° to the position shown.

In like manner, A x (B + C) is the vector obtained by multiplying B + C by 4 and rotating the resultant
vector through 90° to the position shown.

Since A x (B+ C) is the diagonal of the parallelogram with A x B and A x C as sides, we have
AxB+C)=AxB+AxC.

7.18. Prove that Ax (B+C)=A xB+ A x C in the general case where A, B, and C are non-
coplanar. See Fig. 7-26.

Resolve B into two component vectors, one perpendicular to A and the other parallel to A, and denote
them by B, and By respectively. Then B =B, + B.

If 0 is the angle between A and B, then B, = Bsin6. Thus the magnitude of A x B is ABsin#, the
same as the magnitude of A x B. Also, the direction of A x B, is the same as the direction of A x B.
Hence A x B| = A x B.

Similarly, if C is resolved into two component vectors C; and C,, parallel and perpendicular respec-
tively to A, then A x C; = A x C.

Also, since B+C=B, +B;,+C, + C; =B, +C,) + (B; + C)) it follows that

AxB, +C))=Ax(B+C)
Now B, and C, are vectors perpendicular to A and so by Problem 7.17,

AxB, +C))=AxB, +AxC,
Then AxB+C)=AxB+AxC
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and the distributive law holds.  Multiplying by —1, using Problem 7.16, this becomes (B+ C) x A =
B x A+ C x A. Note that the order of factors in cross products is important. The usual laws of algebra
apply only if proper order is maintained.

i j kK
7.19. (LZ) IfA:A1i+A2j+A3k andB:B1i+sz+B3k, prove thatAXB: Al A2 A3 .
B, B, B

A x B=(A4,i+ A,j+ A3k) x (Bji + B,j + B3k)
= Aji x (Bji + Byj + B3k) + A5j x (Bi + Byj + B3k) + 43k x (Bji+ B,j+ B3k)
=A\Biixi+ A|Byi xj+ A B3i xk+ A>Bjj xi+ A>Byj x j+ A>B3j x k
+ A3B ik x i+ A3Bk x j+ A3B3k x k

i j Kk
= (4283 — A3By)i + (A3B) — A1 By)j + (4B, — AyB)k = | A, Ay A3
B, B, B;

(b) Use the determinant representation to prove the result of Problem 7.18.

7.20. If A=3i—j+2k and B=2i+3j—k, find A x B.

i j Kk
AxB=|3 —1 2 |=i"" 2| +k -l
*BE T B RS L P 2 3

2 3 -1

= —5i+ 7+ 11k

7.21. Prove that the area of a parallelogram with sides A and B is |A x B|. See Fig. 7-27.

Area of parallelogram = /|B|

=|A|sin6|B| :
= |A x B| |
Note that the area of the triangle with sides A and :
B=1|A xB| &
= >
Fig. 7-27

7.22. Find the area of the triangle with vertices at
P(2,3,5),0(4,2,—1), R(3,6,4).

PQ=(4—2)i+(2—3)j+ (=1 —5k=2i—j— 6k
PR=(3-2i+(6-3)j+@—5k=i+3j—k

Area of triangle = %|PQ x PR| = % [(2i — jok) x (i + 3j — k)|
i k
2 -1 -6 :%|19i—4j+7k|

3 -1

=1,/(19 + (—4)° + (7)* = 1 V426

=1
-2



CHAP. 7] VECTORS 169

TRIPLE PRODUCTS

7.23. Show that A - (B x C) is in absolute value equal to the volume
of a parallelepiped with sides A, B, and C. See Fig. 7-28. A

Let n be a unit normal to parallelogram 7, having the direction of
B x C, and let /& be the height of the terminal point of A above the
parallelogram 1.

Fig. 7-28

Volume of a parallelepiped = (height /)(area of parallelogram 7)
=(A-n)(B xC])
=A-{BxCn}=A-(BxC)

If A, B and C do not form a right-handed system, A - n < 0 and the volume =|A - (B x C)|.

7.24. IfA = Ali +A2j +A3k, B = B]i +sz =+ B3k, C= C]i + Czj =+ Cgk ShOW that

Ay Ay A3
A(BXC): B] Bz B3
¢ G G
ik
A-BxC)=A-|B, B, B
G G
= (4ji+ Asj + A3K) - [(ByC3 — B3 Cy)i + (B3C) — B G3)j + (B Cy — B,C K]
Ay A A4;
= A1(B,C3 — B3Cy) + Ax(B3;Cy — B C3) + A3(B,C, — B,Cy) = | By B, B3|
G G G

7.25. Find the volume of a parallelepiped with sides A = 3i — j, B =j+ 2k, C =i+ 5j + 4k.

3 -1 0
By Problems 7.23 and 7.24, volume of parallelepiped = [A-(Bx C)|=||0 1 2]|
1 5 4

=] —20] = 20.

7.26. Prove that A- (B x C) = (A x B)- C, i.e., the dot and cross can be interchanged.

A Ay A G G G
By Problem 7.24: A-(BxC)=|B, B, B;|, (AxB).-C=C-(AxB)=|4, A, A
G G G B B, B

Since the two determinants are equal, the required result follows.

7.27. Let ry = xji+ )1j + 21k, r, = x50 + yyj + 2,k and r; = x3i + y3j + z3k be the position vectors of
points Pi(xy, y1,z1), Pa(x2, Vs, z) and P3(x3, y3,2z3). Find an equation for the plane passing
through P;, P,, and P;. See Fig. 7-29.

We assume that P, P,, and P; do not lie in the same straight line; hence, they determine a plane.
Let r = xi + yj + zk denote the position vectors of any point P(x, y, z) in the plane. Consider vectors
P,P, =r, —r;, P{P; =r; —r; and P;P =r —r; which all lie in the plane. Then

PIP' PIPZ X P1P3 =0
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Fig. 7-29

or r=r)-(r—r)x@—r)=0
In terms of rectangular coordinates this becomes
[(x =xDi+ = y)i+(E—zDK] - [(x2 = xDi+ (2 = y)i+ (22 — 21K]

X [(x3 = xi+ (3 = yi+(z3 —z)k] = 0

X—=Xxp Yy=»n -4
or, using Problem 7.24, |x, —x; y,—y; z—2z1|=0

X3 —X1 V3—)1 Z3—Z1

[CHAP. 7

7.28. Find an equation for the plane passing through the points P(3, 1, —2), P»(—1, 2,4), P3(2, —1, 1).

The positions vectors of Py, P,, P; and any point P(x, y, z) on the plane are respectively

r=3i+j-2kr,=—i+2j+4k r; =2 —j+kr=xi+jj+k

Then PP, =r—r,, P,P, =r, — 1, P3P, =r; —r, all lie in the required plane and so the required

equation is (r —ry) - (r, —r;) x (r3 —r;) =0, i.e.,

((x =i+ — Dj+ (z+ 2K} - {—4i +j+ 6k} x {—i—2j+ 3k} =0
{(x =i+ — Dj+ (+2)k} - {15 + 6+ 9k} = 0

15x=3)+6(r—1)+9:z+2)=0 or Syx—2y+3z=11

Another method: By Problem 7.27, the required equation is

x—3 y—1 z42
-1-3 2—-1 442|=0 or Sx+2y+3z=11
2-3 —-1—-1 1+2
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729. IfA=i+j,B=2i—3j+k C=4j—3k find () (AxB)xC, (b) A x (Bx C).

i j ok i j Kk
(@) AxB=|1 1 O0|=i—j—5k. Then (AxB)xC=|1 —1 -=5|=23i+3j+4k.
2 =3 1 0 4 -3
i j ok i j ok
() BxC=|2 -3 1 |=5i+6j+8k Then AxBxC)=|1 1 0|=8i—8j+k.
0 4 =3 5 6 8
It can be proved that, in general, (A x B) x C # A x (B x C).
DERIVATIVES
3 {32 dr d’r
7.30. Ifr=(r+20)i— j+ 2sin 5zk, find (a) —, B |7, (© ==, (@) |5z|att=0and
dt dt dt
give a possible physmal significance.
dr d 5 oood, L d
(a) i dt(l +20i+ dt( 3e )j+ 7 (2sin5H)k = (3" + 2)i + 6~ “'j + 10 cos Stk

At ¢ =0, dr/dt = 2i + 6j + 10k

(b) From (a), |dr/di]l =+/(2)* + (6)* + (10)* = v/140 = 2+/35 at r=0.

dr _d <dr

1
© =y E):i{(312+2)i+6e’2/]+IOCOSSZk}_6t1 12¢7j — 50 sin 5¢k

At 1 =0, d*r/di* = —12j.
(d) From (¢), |d*v/d|=12 at 1=0.
If ¢ represents time, these represent respectively the velocity, magnitude of the velocity, acceleration,

and magnitude of the acceleration at =0 of a particle moving along the space curve x = > + 21,
y=—3¢"%, z=2sin5.

dB dA
7-31. Prove that _(A B)=A- T + I B, where A and B are differentiable functions of u.
Method 1: i(A.B) _ fip ATAA)-B+AB)—
du Au—0 Au
. A-AB+AA-B+AA-AB
= lim
Au—0 Au
AB  AA AA dB  dA
(A A0 AR am) -

Method 2: Let A = A,i+ Ao+ Ak, B+ Bji+ Byj+ B;k. Then

d d
—(A-B) =—(4,B, + A, B, + A3B;)
du du
dB, B, dB; a4, dd, d4;
(Ald +A2d A3d + dBl de-i-de
dB dA

=A-—+—'B
du+du
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3
7.32. If ¢(x, y,z) = x*yz and A = 3x%yi + yz%j — xzk, find 55, (#A) at the point (1, =2, —1).
)y 0z

= (Py2)Bxyi + y2ij — x2k) = 3xMz + X372 — Xy2k

d ad
§(¢A) = &(3,‘( i+ x32 20 — Fy2k) = 3xH %+ 33022 — 2%k

e
dy 0z

3
(PA) = a—(3x4y2i +3x%2 2% — 2x°yzk) = 6x*yi + 6x7y2j — 2x° 2k
y

If x=1, y= -2, z= —1, this becomes —12i — 12j + 2k.

7.33. If A = x*sinyi + 2 cos yj — x)°k, find dA.

Method 1:
A . 0A . 0A
— = 2xsinyi — yzk, — = X2 cosyi — 2 sin yj — 2xyk, — = 2zcosyj
ax ay 0z
BA dA 8A

= (2x sin yi — fzk) dx + (x% cos yi — 2% sin yj — 2xyk) dy + (22 cos yj) dz
= (2xsinydx + x> cos ydy)i + (2z cos y dz — 2 sin y dy)j — (v* dx + 2xy dy)k
Method 2:
dA = d(x*sin y)i + d(z* cos y)j — d(xyHk
= (2xsinydx + x> cos ydy)i + (2z cos y dz — 2 sin y dy)j — (v* dx + 2xy dy)k

GRADIENT, DIVERGENCE, AND CURL

734, If ¢ = x’yz° and A = xzi — yj+ 2x7k, find () Vo, (b)) V-A, (¢) VXA, (d)
(e) curl(¢A).
B ) a¢ 0,
(@) Vo= (-—ﬂg )¢>— ol Tk
= 2xp2li 4+ ¥* 2% + 3x7yk

0
(x y2 )i+ (xzy;),- +o(Fy)k

(b)) V-A= 1£-|—]i—i-k3 < (xzi — 17 4 2x29K)
x ay dz

2 d 2
=—(x2)+— (=) +—(2 =z—-2
ax(\) By( ) 3Z( X°y) y

(c) VxA= <1di+]£}

i i k
d3/ox 0/dy d/oz

xz =) 2%y

B] 2._3_2. 3 _i 2\ i_?_i,
<3—y(2x D y)>'+(82(xz) x> }))H(ax( ¥) ay(x“)>k

= 2% + (x — 4xp)j

a
+ ka ) x (xzi — 1j + 2x%pK)

div (pA),
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(d) div (pA) = V- (pA) = V- (X yzhi — X272 + 2347 2k)

_ 0 3 4 0 233 d 423

—ax(xy2)+ay( Xy o @y

= 3x2yz4 - 3x2yzz3 + 6x4yzz2
(e) curl (pA) = V x (pA) = V x (*yzti — x3* 2 + 2447 2k)

i i k
=|a/0x  0/dy 3/0z
3 yz4 _2 y3z3 25 yz 2

= (4x*y2 = 3 )i+ (4xy2 — 8x3)2 ) — 20’2 + XMk

7.35. Prove V- (¢A) = (Vo) - A + ¢(V - A).
V. (¢A) = V- (¢4,i+ ¢A,j + ¢pA3k)
ad d d
= g(‘iml) + 8_y(¢A2) t3; (¢43)

P op op 04, 04, 043
=—A+—A4A,+—4 — =+
ax l+8y 2+Bz 3té 8x+8y+8z

_ (a¢. o

i+ —j+ k) - (4i+ A,j + 43Kk)
ox  ay 0z

+ 8'+8'+8
"5(&‘ e
=(Vp)- A+ ¢(V-A)

k) - (Ayi+ Ayj + A3k)

7.36. Express a formula for the tangent plane to the surface ®(x,y,z) =0 at one of its points
Py(x0, Yo, Z0)-
Ans. (Vg)y - (r—rp) =0

7.37. Find a unit normal to the surface 2x> + 4yz — 52> = —10 at the point P(3, —1,2).
By Problem 7.36, a vector normal to the surface is

VQx?4+4yz — 522) = 4xi+4zj+ 4y — 102)k = 12i + 8j — 24k at (3,—1,2)

12i + 8j — 24k 3i+ 2j — 6k
Then a unit normal to the surface at P is 15 _Ata .

JU2P 4+ (8) + (247 7
Another unit normal to the surface at Pis — w
7.38. If ¢ =2x°y —xz°, find (a) V¢ and (b) V’¢.
(@) V¢ = %H% L9 (4xy — )i+ 2x% — 3x2°k
ox oy 0z

(b) V2¢ = Laplacian of ¢ = V- V¢ = ai(4xy — 23) +ai(2x2) + 83(_3“2) =4y — 6xz
X )y Z
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Another method:

VECTORS

Fo o 0o &
Vz(]):%—i—a}—(p—ka—f 2(2xy—‘cz3)—|— (2xy—‘cz3)+ (2‘cy—‘cz)
=4y — 6xz

7.39. Prove div curl A =0.

i j k
diveurl A=V-(VxA)=V.|d/dx 9/dy 09/0z
4, Ay A3

045 04, 04, 043\, (04, 04,
=V-||-—=-—F e ———k
[( ay oz >l+ ( oz ox I+ ox  dy

_ 945 04, +8 94, 043 + 94, 04,
_Bx ay 0z ay \ oz ox 0z \ ox ay

_PAy A, | FA T4y T4, T4
T oxdy dxdz dydz Aydx dzdx Az dy
=0

[CHAP. 7

assuming that A has continuous second partial derivatives so that the order of differentiation is immaterial.

JACOBIANS AND CURVLINEAR COORDINATES

7.40. Find ds’ in (a) cylindrical and (b) spherical coordinates and determine the scale factors.

(a) Method 1:

y=psing, =z
dy = pcos¢de+singdp,

X = pcos g,

dx = —psingdp + cospdp, dz =dz

ds® = dx* + dy* + dz* = (—psin ¢ de + cos ¢ dp)>
+ (pcosdde + sin dp)* + (dz)?
=(dp)’ + p'(d¢)* + (dz)" = hi(dp) + h3(d$)’ + di(dz)’

Then

and hy =h, =1, hy = hy, = p, h3 = h. =1 are the scale factors.

Method 2: The position vector is r = pcos ¢i + psin¢j + zk. Then

dr :—d +a¢d¢+ dz

= (cos¢1 + singj) dp + (—psin ¢i + pcos ¢j)dp + kdz
= (cospdp — psingpde)i+ (singpdp + pcospdp)j+ kdz
Thus ds*> = dr - dr = (cospdp — psinpdg)’ + (sinpdp + pcos ¢ de)* + (dz)*

= (dp)* + p*(de)’ + (d=)?

b) x =rsinfcos¢p, y=rsinfsing, z=rcos6d

Then dx = —rsin@sin¢ dp + rcos 0 cos ¢ db + sin 6 cos ¢ dr
dy = rsinfcos ¢ d¢ + rcos 0 sin ¢ dd + sin 6sin ¢ dr
dz = —rsinfd6 + cos O dr
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and (ds)> = (dx)* + (dy)* + (dz)* = (dr)* + rA(dB)* + r* sin® 0 (dp)*

The scale factors are hy = h, =1,hy = hy =r, hy = hy, = rsiné.

7.41. Find the volume element dV in (a) cylindrical and (b) spherical coordinates and sketch.
The volume element in orthogonal curvilinear coordinates uy, u,, u3 is

a(x, y, z)

duy, duyd
auy, uy, u3) s

dV = hlh2h3 dulduzdu3 = ‘

(a) In cylindrical coordinates, u; = p, u, = ¢, u3 = z,hy = 1, hy = p, h; = 1 [see Problem 7.40(a)]. Then
dV = )(p)(D)dpdpdz = pdpde dz

This can also be observed directly from Fig. 7-30(a) below.

V4 z
dV=(p do) (dp) (dz) dV = (rsin 6 do) (r d6) (dr)
=pdp de dz =r2sin 6 dr dO dg
d rsin 0 d
(] St ;zp ¢
dp A dr
dz 7 sin 6
— T 7 rdo
BEE d6
|
P y
| |
i |
3/ } I 1 I v
| | } J
dp
X X
(a) Volume element in cylindrical coordinates. (b) Volume element in spherical coordinates.
Fig. 7-30

(b) In spherical coordinates, u; = r,u, =60, u3 = ¢, hy = 1, hy, =r, h; = rsin6 [see Problem 7.40(b)]. Then
dV = ()(r)(rsin 6) dr d6 dp = r* sin 0 dr d6 d¢

This can also be observed directly from Fig. 7-30(b) above.

7.42. Express in cylindrical coordinates: (a) grad ®, (b) divA, (¢) V’®

Letu; = p,uy = ¢p,u3 =z, hy = 1, hy = p, h; = 1 [see Problem 7.40(a)] in the results 1, 2, and 4 on Pages
174 and 175. Then

1 0d ldCD 1
—e +— +T

tID dCD 1 0® 8<I>
ad®=Vd =— -
(a) grad I 9p s %

=t e T

where e[, e,, e; are the unit vectors in the directions of increasing p, ¢, z, respectively.

() divA=V-A= (n(M4y) + *((1)(1)/12) + *((1)(/))14@)]

(1)(0)(1) [30
A, 3A3

1
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where A = A e; + A,e, + Ase;.
) I (1) 90 (1)(1) 30 <<1><p> a<1>)]
© V=DM [ap< o) ap) i < %) a¢> Tl e

19 eip +ic)2 +a2
T op ap P 922

MISCELLANEOUS PROBLEMS

7.43. Prove that grad f(r) = AU )r where r = /x*> + 1? + 2% and f'(r) = df /dr is assumed to exist.

grad f(1) = V() = a—if(r)i S0+ 10K
/OGO i O k
10

VAG) (;)

=T+ O+ 07 k=2 4 i+ 2 =

Another method: In orthogonal curvilinear coordinates u, u,, u3, we have

1 00 1 0o 1 90

Vd=— e +— ey +— o
hl 8u1el +hz 8u2e2+h3 8143 ©

()
If, in particular, we use spherical coordinates, we have u; = r,u, = 0, u3 = ¢p. Then letting ® = f(r), a
function of r alone, the last two terms on the right of (/) are zero. Hence, we have, on observing that
e; =r/r and h; = 1, the result
1 3/‘ (r) LA
Vi) = —r @

r r

7.44. (a) Find the Laplacian of ¢ = f(r). (b) Prove that ¢ = 1/r is a solution of Laplace’s equation
V¢ = 0.
(a) By Problem 7.43,

vo=vsn =L+

By Problem 7.35, assuming that f(r) has continuous second partial derivatives, we have
Laplacian of ¢ = V’¢ = V. (V¢) = V- {m r}

{f (r)} L0,

_tf (r)r;f ", 3,/r<r) e

Another method: In spherical coordinates, we have

19 /(,0U 1 9 U 1 °U
VU= —(r— O ) +t5—m 5
2 ar<' 8r>+rzsin080<m a@>+r2sin2e a¢?

If U = f(r), the last two terms on the right are zero and we find

V0 = S = 10+ 10
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(b) From the result in part (a), we have

(N, 242 2
)=\ tra\G) T e e

showing that 1/r is a solution of Laplace’s equation.

7.45. A particle moves along a space curve r = r(¢), where ¢ is the time measured from some initial time.
If v = |dr/dt| = ds/dt is the magnitude of the velocity of the particle (s is the arc length along the
space curve measured from the initial position), prove that the acceleration a of the particle is
given by

2
a:@T+iN
dt P

where T and N are unit tangent and normal vectors to the space curve and

_ 2 2 2
I NN AW
a ds? ds? ds?

The velocity of the particle is given by v =+T. Then the acceleration is given by

ny)
d*r

P= g

_dv dv dT_dUT dTé_dvT ,dT

d

Since T has a unit magnitude, we have T-T = 1. Then differentiating with respect to s,

T,g+d_T.T:0, 2T~E:0 or T dT_

ds ds ds ds 0

from which it follows that dT/ds is perpendicular to T. Denoting by N the unit vector in the direction of
dT/ds, and called the principal normal to the space curve, we have

dr _

where « is the magnitude of dT/ds. Now since T = dr/ds [see equation (7), Page 157], we have

dT/ds = d*r/ds*. Hence
B P 2+ Py 2+ 2 2y 172
N ds? ds? ds?

Defining p = 1/«, (2) becomes dT/ds = N/p. Thus from (/) we have, as required,

d*r
ds?

2
a=Pr "N
dt 0

The components dv/dt and v*/p in the direction of T and N are called the rangential and normal
components of the acceleration, the latter being sometimes called the centripetal acceleration. The quantities
p and « are respectively the radius of curvature and curvature of the space curve.
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Supplementary Problems

VECTOR ALGEBRA

7.46.

7.47.

7.48.

7.49.

7.50.

7.51.

7.52.

Given any two vectors A and B, illustrate geometrically the equality 4A + 3(B — A) = A + 3B.

A man travels 25 miles northeast, 15 miles due east, and 10 miles due south. By using an appropriate scale,
determine graphically () how far and (b) in what direction he is from his starting position. Is it possible
to determine the answer analytically? Ans. 33.6 miles, 13.2° north of east.

If A and B are any two non-zero vectors which do not have the same direction, prove that mA + nB is a
vector lying in the plane determined by A and B.

If A, B, and C are non-coplanar vectors (vectors which do not all lie in the same plane) and
x1A + yB+z,C =xA + y,B+ z,C, prove that necessarily x; = x5, ¥, = ¥,z = 2,.

Let ABCD be any quadrilateral and points P, Q, R, and S the midpoints of successive sides. Prove (a) that
PQRS is a parallelogram and (b) that the perimeter of PQRS is equal to the sum of the lengths of the
diagonals of ABCD.

Prove that the medians of a triangle intersect at a point which is a trisection point of each median.

Find a unit vector in the direction of the resultant of vectors A = 2i — j+ k, B =i+ j + 2k, C = 3i — 2j + 4k.
Ans. (61 — 2j+ 7k)/+/89

THE DOT OR SCALAR PRODUCT

7.53.

7.54.

7.55.

7.56.

7.57.

7.58.

7.59.

Evaluate |(A+B)- (A—B)| if A=2i—3j+ 5k and B=3i+j—2k. Ans. 24

Verify the consistency of the law of cosines for a triangle. [Hint: Take the sides of A, B, C where C = A — B.
Then use C-C = (A —-B)-(A—B).]

Find « so that 2i — 3j+ Sk and 3i + aj — 2k are perpendicular. Ans. a = —4/3

If A=2i+j+k,B=1i-2j+ 2k and C = 3i — 4j + 2k, find the projection of A + C in the direction of B.
Ans. 17/3

A triangle has vertices at 4(2, 3, 1), B(—1, 1, 2), C(1, =2,3). Find (a) the length of the median drawn from
B to side AC and (b) the acute angle which this median makes with side BC.
Ans. (a) $+/26, (b) cos ' 4/91/14

Prove that the diagonals of a rhombus are perpendicular to each other.

Prove that the vector (4B + BA)/(A + B) represents the bisector of the angle between A and B.

THE CROSS OR VECTOR PRODUCT

7.60.

7.61.

7.62.

7.63.

IfA=2i—j+kand B=i+2j— 3Kk find [2A +B) x (A —2B)|. Ans. 53

Find a unit vector perpendicular to the plane of the vectors A = 3i — 2j+ 4k and B =i+ j — 2k.
Ans. £(Q2j+Kk)/v/5

If A x B=A xC, does B = C necessarily?

Find the area of the triangle with vertices (2, —3, 1), (1, —1, 2), (-1, 2, 3). Ans. %\/5
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7.64. Find the shortest distance from the point (3, 2, 1) to the plane determine by (1, 1, 0), (3, —1, 1), (—1, 0, 2).
Ans. 2

TRIPLE PRODUCTS
7.65. IfA=2i+j—-3k,B=i—-2j+k,C=—i+j—4,find (0) A-BxC), (b)) C-(AxB), (¢) Ax(BxC),
(d) (A xB)xC. Ans. (a) 20, (b) 20, (c) 8i—19j—k, (d) 25i— 15j— 10k
7.66. Prove that (¢) A-BxC)=B-(CxA)=C-(A xB)
() AxBxC)=BA-C)—C(A-B).
7.67. Find an equation for the plane passing through (2, —1, =2), (-1, 2, —=3), (4, 1, 0).
Ans. 2x+y—3z=9
7.68. Find the volume of the tetrahedron with vertices at (2, 1, 1), (1, —1, 2), (0, 1, —1), (1, =2, 1).

4
Ans. 3

7.69. Prove that AxB)- (CxD)+BxC)-(AxD)+(CxA)-(BxD)=0.
DERIVATIVES

7.70. A particle moves along the space curve r=e¢ ‘costi+e ‘sintj+e'k. Find the magnitude of the
(a) velocity and (b) acceleration at any time ¢. Ans. (a) V3e', (b)) V5S¢

B dA
7.71.  Prove that di(A x B) = A x j— —+ CZ— x B where A and B are differentiable functions of u.
u u u

7.72.  Find a unit vector tangent to the space curve x = ¢,y = 1%,z = £ at the point where 7 = 1.
Ans. (i+2j+3k)/+/14

7.73. If r = acoswt + bsinwt, where a and b are any constant non-collinear vectors and w is a constant scalar,

dr d*r 5
prove that (a) r = e w(a xb), (b); W—F oT=0.
2
774, If A=x%i—yj+xzk, B=yi+xj—xyzk and C=i—yj+x’zk, find (@) 55 (AxB) and
(b) d[A - (B x C)] at the point (1, —1,2).  Ans. (a) —4i+8j, (b) 8dx oy
82 2
7.75.  If R = x%yi — 2%zj + xp* 2%k, find o X e at the point (2, 1, —2). Ans. 16/5
Xy

GRADIENT, DIVERGENCE, AND CURL

7.76. 1f U, V, A, B have continuous partial derivatives prove that:
(@ VU +V)=VU+VV, (b) V-(A+B)=V-A+V-B, (¢) Vx(A+B)=VxA+VxB.

7.77. If ¢ =xy+yz+zx and A = x%yi+ y*zj+ 2°xk, find  (a) A- Ve, (b) ¢V-A, and (¢) (V) x A at the
point 3, —1,2).  Ans. (a) 25, (b) 2, (c) 56i — 30j+ 47k

7.78.  Show that V x (+’r) = 0 where r = xi + yj + zk and r = [r|.
7.79. Prove: (a) Vx(UA)=(VU)x A+ UV xA), (b) V-(AxB)=B-(VxA)—A - (VxB).
7.80. Prove that curl grad u = 0, stating appropriate conditions on U.

7.81.  Find a unit normal to the surface x°y — 2xz + 2y%z* = 10 at the point (2, 1, —1).
Ans. £ (3i+4j— 6k)//61

7.82.  If A = 3xz% — yzj + (x + 22)k, find curl curl A. Ans.  —6xi+ (6z — Dk

7.83. (a) Prove that V x (V x A) = —V?A + V(V-A). (b) Verify the result in (a) if A is given as in Problem 7.82.
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JACOBIANS AND CURVINLINEAR COORDINATES

7.84.

7.85.

7.86.

7.87.

7.88.

7.89.

ax, v, z)

ar or or
—_— X
Auy, uy, u3)|

Prove that —.
Bul 8142 3u3

Express (a) grad ®, (b) divA, (¢) V?® in spherical coordinates.

s, (@) ad +1 o 1 e
ns. (a) — -— _—
ar ! % ° rsmG ap >
1 1 94,
() . * A1)+ 4,) + ——  where A = Ae, + Are, + Ase;

P
ar né 90 rsin® d¢
© 19 /(,00 N L0 (0% N 1 &
C - l - — — 7
2 or or r2sin® 90 90 2 sin® 6 0>

The transformation from rectangular to parabolic cylindrical coordinates is defined by the equations
X :%(u2 —»), y=uv, z=z. (a) Prove that the system is orthogonal.  (b) Find ds* and the scale
factors. (c) Find the Jacobian of the transformation and the volume element.
Ans. (b) ds’ =@ +v)did + P+ ) A +d, h=h =Vid+0*, hy=1

(© W +v*, @ +v)dudvdz

Write (a) V’® and (b) div A in parabolic cylindrical coordinates.

1 [(&Po o\ &
2
Ans. (a) V(b:—uz—‘rvz(W—i_W)—’—?
. d0A
b) divA= 2+v { (\/u‘-i-v-Al)-i-f(\/u +v Az)} 04s

Prove that for orthogonal curvilinear coordinates,
€ 0P € P e3 0P
Vo="1_— 42
hl ()Ll] hz 8u2 h] 3u3

[Hint: Let V& = a;e; + aye, + aze; and use the fact that d® = V& - dr must be the same in both rectangular
and the curvilinear coordinates.]

Give a vector interpretation to the theorem in Problem 6.35 of Chapter 6.

MISCELLANEOUS PROBLEMS

7.90.

7.91.

7.92.

7.93.

7.94.

7.95.

If A is a differentiable function of u and |A(u)| = 1, prove that dA/du is perpendicular to A.
Prove formulas 6, 7, and 8 on Page 159.

If p and ¢ are polar coordinates and 4, B, n are any constants, prove that U = p"(A4 cosng + Bsin ng)
satisfies Laplace’s equation.

6sinfcosp(4 — 5 sin’ 0)
4

2cos€+3sin39cos¢

If v = ;

, find V2. Ans.

r 7
Find the most general function of (@) the cylindrical coordinate p, (b) the spherical coordinate r, (c¢) the
spherical coordinate # which satisfies Laplace’s equation.

Ans. (a) A+ Blnp, (b) A+ B/r, (¢) A+ Bln(csc6d — cot6) where A and B are any constants.

Let T and N denote respectively the unit tangent vector and unit principal normal vector to a space curve
r = r(u), where r(u) is assumed differentiable. Define a vector B =T x N called the unit binormal vector to
the space curve. Prove that
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7.96.

7.97.

7.98.

7.99.

7.100.

7.101.

dT dB dN
— = —=—1tN, — =1B—«T

ds ds ds «
These are called the Frenet-Serret formulas and are of fundamental importance in differential geometry. In
these formulas « is called the curvature, t is called the torsion; and the reciprocals of these, p = 1/k and
o = 1/7, are called the radius of curvature and radius of torsion, respectively.

KIN,

(a) Prove that the radius of curvature at any point of the plane curve y = f(x), z = 0 where f(x) is differ-
entiable, is given by

(1457

(b) Find the radius of curvature at the point (r/2, 1, 0) of the curve y =sinx, z = 0.

Ans. (b) 232

Prove that the acceleration of a particle along a space curve is given respectively in  (a) cylindrical,
(b) spherical coordinates by

(5 — pd*)e, + (0§ + 2pP)e, + Ze.
(i — 6% — 1" sin® O)e, + (16 + 2i6 — r¢” sin f cos O)e, + (27 sin @ + 216 cos O + r¢psin He,,
where dots denote time derivatives and e, ey, €., e,, €, €, are unit vectors in the directions of increasing

P, &, z,1,0, ¢, respectively.

Let E and H be two vectors assumed to have continuous partial derivatives (of second order at least) with
respect to position and time. Suppose further that E and H satisfy the equations

1 0H 1 0E
V-E=0, V-H=0, VXE:—faf, VXH:*B— (1)
c ot c ot
prove that E and H satisfy the equation
1 Py
2
Y "’I?W 2

where ¥ is a generic meaning, and in particular can represent any component of E or H.

[The vectors E and H are called electric and magnetic field vectors in electromagnetic theory. Equations (1)
are a special case of Maxwell’s equations. The result (2) led Maxwell to the conclusion that light was an
electromagnetic phenomena. The constant ¢ is the velocity of light.]

Use the relations in Problem 7.98 to show that

a—i{%(Ez-i-Hz)}-i-cV-(ExH):O

Let A4, A>, A; be the components of vector A in an xyz rectangular coordinate system with unit vectors
ij, i, i3 (the usual i, j, k vectors), and 4], A3, A5 the components of A in an x'y’z’ rectangular coordinate
system which has the same origin as the xyz system but is rotated with respect to it and has the unit vectors
if,i3,ij. Prove that the following relations (often called invariance relations) must hold:

A, = 1, A1 + by A5 + 15,45 n=12,73
where i,, - i, = /,,,.
If A is the vector of Problem 7.100, prove that the divergence of A, i.e., V- A, is an invariant (often called a
scalar invariant), 1.e., prove that

oA o4} oAl _ady oy oy
ax’ 9y’ 8z ax ay oz
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7.102.

7.103.

7.104.

7.105.

7.106.

VECTORS [CHAP. 7

The results of this and the preceding problem express an obvious requirement that physical quantities must
not depend on coordinate systems in which they are observed. Such ideas when generalized lead to an
important subject called tensor analysis, which is basic to the theory of relativity.

Prove that (¢) A-B, (b)) Ax B, (¢) V x A are invariant under the transformation of Problem 7.100.

If uy, up, uy are orthogonal curvilinear coordinates, prove that

ar or

Auy, uy, u3) or or
Bul auz

(x, y, 2)

and give the significance of these in terms of Jacobians.

(a) = Vu; - Vup x Vuy (b) ( X aa—r)(Vul -V, x Vi) =1
u3

Use the axiomatic approach to vectors to prove relation (8) on Page 155.

A set of n vectors Ay, A,, - -+, A, is called linearly dependent if there exists a set of scalars ¢y, ¢y, ..., ¢, not all
zero such that ¢;A; + c;Ay +-- -+ ¢,A, = 0 identically; otherwise, the set is called /linearly independent.
(a) Prove that the vectors A; =2i—3j+ 5k, A, =i+ j— 2k, A; = 3i — 7j+ 12k are linearly dependent.
(b) Prove that any four three-dimensional vectors are linearly dependent. (¢) Prove that a necessary
and sufficient condition that the vectors A; = aji + b1j+ 1k, Ay = ari + brj + ¢k, Ay = a3i + b3j + 3k be
linearly independent is that A; - A, x A; #0. Give a geometrical interpretation of this.

A complex number can be defined as an ordered pair (a, b) of real numbers « and b subject to certain rules of
operation for addition and multiplication. (a) What are these rules? () How can the rules in (a) be used
to define subtraction and division? (¢) Explain why complex numbers can be considered as two-dimen-
sional vectors. (d) Describe similarities and differences between various operations involving complex
numbers and the vectors considered in this chapter.



CHAPTER 8

Applications of Partial
Derivatives

APPLICATIONS TO GEOMETRY

The theoretical study of curves and surfaces began
more than two thousand years ago when Greek phi-
losopher-mathematicians explored the properties of
conic sections, helixes, spirals, and surfaces of revolu-

tion generated from them. While applications were N, = VF|p
not on their minds, many practical consequences o/
evolved. These included representation of the ellipti- ) L(xg, Yo, Z0)

cal paths of planets about the sun, employment of the ! R0, 2)
focal properties of paraboloids, and use of the special i
properties of helixes to construct the double helical fo A/
model of DNA. i
The analytic tool for studying functions of more i
than one variable is the partial derivative. Surfaces are o !
a geometric starting point, since they are represented @
by functions of two independent variables. Vector
forms of many of these these concepts were introduced
in the previous chapter. In this one, corresponding
coordinate equations are exhibited.

4
[
1
1
1
r 1
1
1
1
|
T
1
U

Fig. 8-1

1. Tangent Plane to a Surface. Let F(x, y,z) = 0 be the equation of a surface S such as shown in
Fig. 8-1. We shall assume that F, and all other functions in this chapter, is continuously differentiable
unless otherwise indicated. Suppose we wish to find the equation of a tangent plane to S at the point
P(xg, Vg, Zg)- A vector normal to S at this point is Ny = VF|p, the subscript P indicating that the
gradient is to be evaluated at the point P(xg, vy, zo)-

If ry and r are the vectors drawn respectively from O to P(xy, yg, zg) and Q(x, y, z) on the plane, the
equation of the plane is

(r—rg) -No=(r—rg) VF|p=0 0))
since r — r is perpendicular to Nj.
183
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In rectangular form this is
oF oF oF
X — N - —_ — = 0 2
o ’P(’C xo) + 8y‘p0} Yo) + e ‘P(Z Z9) ()

In case the equation of the surface is given in orthogonal curvilinear coordinates in the form
F(uy, ur, u3) = 0, the equation of the tangent plane can be obtained using the result on Page 162 for
the gradient in these coordinates. See Problem 8.4.

2. Normal Line to a Surface. Suppose we require equations for the normal line to the surface S at
P(xy, »9, 29) 1.¢., the line perpendicular to the tangent plane of the surface at P. If we now let r be the
vector drawn from O in Fig. 8-1 to any point (x, y, z) on the normal Ny, we see that r — r; is collinear
with Ny and so the required condition is

(r—rg) x Ng=(r—rg) x VF|, =0 (€))
By expressing the cross product in the determinant form
i j k
X=X Y—=JVo Z—20
Fip  Flp  Flp

we find that
X=X _V=Jo_Z—%20
oF |~ dF| — oF @
ox |p W |p az |p

Setting each of these ratios equal to a parameter (such as ¢ or u) and solving for x, y, and z yields the
parametric equations of the normal line.

The equations for the normal line can also be written when the equation of the surface is expressed
in orthogonal curvilinear coordinates. (See Problem 8.1(5).)

3. Tangent Line to a Curve. Let the parametric equations of curve C of Fig. 8-2 be
x = f(u),y = g(u), z = h(u), where we shall suppose, unless otherwise indicated, that f, g, and & are
continuously differentiable. We wish to find equations for the tangent line to C at the point P(xy, ¥y, o)
where u = u.

O(x, y,2)

P(x05 Yo» 20)

Fig. 8-2
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e . . . dR
If R = f(w)i+ g(w)j + h(u)k, a vector tangent to C at the point P is given by Ty = R Ifryand r
P
denote the vectors drawn respectively from O to P(xy, vy, z9) and Q(x, y, z) on the tangent line, then since
r —rg is collinear with T, we have
dR

r—ry)xToy=C—ry) x—| =0 ®)
du |p

In rectangular form this becomes

X—=Xp V=)o Z—2

[lug) — g'(ug) — h'(ug)

The parametric form is obtained by setting each ratio equal to u.

If the curve C is given as the intersection of two surfaces with equations F(x,y,z) =0 and
G(x, y,z) = 0 observe that VF x VG has the direction of the line of intersection of the tangent planes;
therefore, the corresponding equations of the tangent line are

(©)

X=X V=)o _  Z—2
‘ F} FZ FZ E‘C EY E\,v
G, G. G. G, G, G,

)

P ‘ P ‘ P
Note that the determinants in (7) are Jacobians. A similar result can be found when the surfaces are

given in terms of orthogonal curvilinear coordinates.

4. Normal Plane to a Curve. Suppose we wish to find an equation for the normal plane to curve C
at P(xg, yo, zo) of Fig. 8-2 (i.e., the plane perpendicular to the tangent line to C at this point). Letting r be
the vector from O to any point (x, y, z) on this plane, it follows that r — ry is perpendicular to T,. Then
the required equation is

dR
(F=r)-To=(r—r0)- | =0 ®)
P

When the curve has parametric equations x = f(u), y = g(u), z = h(u) this becomes
S (o) (x = x0) + g (o) (y — o) + h'(up)(z — z0) = 0 ©)
Furthermore, when the curve is the intersection of the implicitly defined surfaces

F(x,y,z2)=0 and G(x,y,2)=0

then
F, F, F. F F, F,
A K R P KOS ERA P NCEENE: (10
‘G}, G.|, Y6 Gy, YTGee G|,
5. Envelopes. Solutions of differential equations in two variables are geometrically represented by

one-parameter families of curves. Sometimes such a family characterizes a curve called an envelope.
For example, the family of all lines (see Problem 8.9) one unit from the origin may be represented by
xsina — ycosa — 1 = 0, where « is a parameter. The envelope of this family is the circle x* + y* = 1.
If ¢(x, y, z) = 0 is a one-parameter family of curves in the xy plane, there may be a curve £ which is
tangent at each point to some member of the family and such that each member of the family is tangent
to E. If E exists, its equation can be found by solving simultaneously the equations

p(x,y, ) =0,  ¢(x,y,0) =0 (1)

and E is called the envelope of the family.
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The result can be extended to determine the envelope of a one-parameter family of surfaces
¢(x, y,z, ). This envelope can be found from

o(x,y,2,0) =0, ¢o(x,p,2,0) =0 (12)

Extensions to two- (or more) parameter families can be made.

DIRECTIONAL DERIVATIVES

Suppose F(x,y,z) is defined at a point (x,y,z) on a given space curve C. Let
F(x+ Ax,y 4+ Ay, z+ Az) be the value of the function at a neighboring point on C and let As denote
the length of arc of the curve between those points. Then

AF F A A Az)—F
AP PGt Aviyd ApztAD) - F(x.p.0)
As—0 AS  As—0 As

(I3)

if it exists, is called the directional derivative of F at the point (x, y, z) along the curve C and is given by
dF dF dx oF dy OF dz

- = 14
ds Ox ds 0dyds 0z ds (4)
In vector form this can be written
dF oF ., O0F, OF dx, dy. dz dr
C (S5 j+ 5 k) (Si+ D j+oKk)=VF-—=VF.T 15
ds <8xl+8yj+82 ) (dsl+dsj+ds ) ds (13)

from which it follows that the directional derivative is given by the component of VF in the direction of
the tangent to C.

In the previous chapter we observed the following fact:

The maximum value of the directional derivative is given by |VF|.

These maxima occur in directions normal to the surfaces F(x, y, z) = ¢ (where ¢ is any constant)
which are sometimes called equipotential surfaces or level surfaces.

DIFFERENTIATION UNDER THE INTEGRAL SIGN

Let P(er) = J fx,a)dx  a<a<b (16)
where u; and u, may depend on the parameter «. Then
d¢ . 2 Bf N dllz N dl/l]
%_j Lt a0 G2~ @ G (17

u

fora £ o £ b, if f(x,a) and df/da are continuous in both x and « in some region of the xa plane
including #; < x £ up, a £ o < b and if 4, and u, are continuous and have continuous derivatives for
a<a b

In case u; and u, are constants, the last two terms of (/7) are zero.

The result (17), called Leibnitz’s rule, is often useful in evaluating definite integrals (see Problems
8.15, 8.29).

INTEGRATION UNDER THE INTEGRAL SIGN

If ¢(«) is defined by (16) and f(x,«) is continuous in x and o« in a region including
u £ x £ uy,a £ x £ b, then if u; and u, are constants,
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J: () da = Jb[ Ju2 f(x,0) dx] da = Juz [ J:f(x, o) da] dx (18)

a u u

The result is known as interchange of the order of integration or integration under the integral sign. (See
Problem 8.18.)

MAXIMA AND MINIMA

In Chapter 4 we briefly examined relative extrema for functions of one variable. The general idea
was that for points of the graph of y = g(x) that were locally highest or lowest, the condition g’(x) =0
was necessary. Such points Py(x,) were called critical points. (See Fig. 8-3a,b.) The condition g'(x) =0
was useful in searching for relative maxima and minima but it was not decisive. (See Fig. 8-3(c).)

o

(@ (b) (© x
Fig. 8-3 Fig. 8-4

z

To determine the exact nature of the function at a critical point Py, g”(x,) had to be examined.

>0 counterclockwise rotation (rel. min.)
g"(xp) <0 implied a clockwise rotation (rel. max)
=0 need for further investigation.

This section describes the necessary and sufficient conditions for relative extrema of functions of two
variables. Geometrically we think of surfaces, S, represented by z = f(x, y). If at a point Py(xg, yo)
then f,(x, yo) = 0, means that the curve of intersection of S and the plane y = y, has a tangent parallel to
the x-axis. Similarly f,(xy, yo) = 0 indicates that the curve of intersection of S and the cross section
X = X has a tangent parallel the y-axis. (See Problem 8.20.)

Thus

f.;((x5 yO) = 07];1'(-)(0’ y) =0

are necessary conditions for a relative extrema of z = f(x, y) at Py; however, they are not sufficient
because there are directions associated with a rotation through 360° that have not been examined. Of
course, no differentiation between relative maxima and relative minima has been made. (See Fig. 8-4.)

A very special form, f, — ff, 1nvar1ant under plane rotation, and capable of characterizing the
roots of a quadratic equation, Ax*4+2Bx+ C =0, allows us to form sufficient conditions for
relative extrema. (See Problem 8.21.)
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A point (xg, yo) is called a relative maximum point or relative minimum point of f(x, y) respectively
according as f(xg+ h, yo + k) < f(xg,y9) or f(xo+h,yo+k) > f(xy,yy) for all h and k such that
0 < |h] <6,0 < |k| < 8 where § is a sufficiently small positive number.

A necessary condition that a differentiable function f(x, y) have a relative maximum or minimum is

I _oy Uy

, 19
0x ay (19)
If (xg, yo) is a point (called a critical point) satisfying equations (/9) and if A is defined by
2\ /a2 20\ 2
A ié ﬂ% _ (87 (20)
ax ay ax dy
(x0,¥0)

then

. . . o &
1. (xg, ) is a relative maximum point if A > 0 and ¥

pe
> <0 <0r —]; < O)
x (x0,50) dy (x0,50)
*f ’f

5 >0 (or =5 > 0)
dx (x0,70) dy (x0,¥0)

3. (xg, o) is neither a relative maximum or minimum point if A < 0. If A <0, (xq, yy) is some-
times called a saddle point.

2. (xg, o) 1s a relative minimum point if A > 0 and

4. No information is obtained if A =0 (in such case further investigation is necessary).

METHOD OF LAGRANGE MULTIPLIERS FOR MAXIMA AND MINIMA

A method for obtaining the relative maximum or minimum values of a function F(x, y, z) subject to
a constraint condition ¢(x, y, z) = 0, consists of the formation of the auxiliary function

G(x,y,z)=F(x,p,2) + Ap(x, y, 2) 21)

subject to the conditions

G_, G _, G _,

—0, =0, == 22
ox ay 0z 22

which are necessary conditions for a relative maximum or minimum. The parameter A, which is
independent of Xx, y, z, is called a Lagrange multiplier.

The conditions (22) are equivalent to VG = 0, and hence, 0 = VF + AV¢

Geometrically, this means that VF and V¢ are parallel. This fact gives rise to the method of
Lagrange multipliers in the following way.

Let the maximum value of F on ¢(x,y,z) =0 be 4 and suppose it occurs at Py(xg, Vo, Zp). (A
similar argument can be made for a minimum value of F.) Now consider a family of surfaces
F(x,y,z)=C.

The member F(x,y,z) = A passes through P,, while those surfaces F(x, y,z) = B with B < 4 do
not. (This choice of a surface, i.e., f(x, y, z) = 4, geometrically imposes the condition ¢(x, y,z) = 0 on
F.) Since at P, the condition 0 = VF + A V¢ tells us that the gradients of F(x, y, z) = A and ¢(x, y, z) are
parallel, we know that the surfaces have a common tangent plane at a point that is maximum for F.
Thus, VG = 0 is a necessary condition for a relative maximum of F at P,. Of course, the condition is
not sufficient. The critical point so determined may not be unique and it may not produce a relative
extremum.

The method can be generalized. If we wish to find the relative maximum or minimum values of a
function F(xq, x5, X3,...,X,) subject to the constraint conditions ¢(xi,...,x,)=0,P(x1,...,x,) =
0,...,¢r(x1,...,x, =0, we form the auxiliary function
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G(xy, xa, .y X)) = F+ A1 + Aoy + -+ + Ay (23)
subject to the (necessary) conditions
G G G
—=0,—=0,..., =0 24
ax; 09X, ax,, 24)
where Ay, Ay, ..., A, which are independent of x;, x, ..., x,,, are the Lagrange multipliers.

APPLICATIONS TO ERRORS

The theory of differentials can be applied to obtain errors in a function of x, y, z, etc., when the
errors in Xx, y, z, etc., are known. See Problem 8.28.

Solved Problems

TANGENT PLANE AND NORMAL LINE TO A SURFACE

8.1. Find equations for the (a) tangent plane and (b) normal line to the surface x2yz+3y2 =
2xz? — 8z at the point (1,2, —1).

(a) The equation of the surface is F = x°yz + 3)° — 2xz° + 8z = 0. A normal to the surface at (1,2, —1) is

No = VFlq2-1) = 2xyz — 229)i+ (X2 4+ 6p)j + (¥'y — dxz + 8K|(12.-1)
— —6i+ 11j+ 14K

Referring to Fig. 8-1, Page 183:

The vector from O to any point (x, y, z) on the tangent plane is r = xi + yj + zk.

The vector from O to the point (1,2, —1) on the tangent plane is ry =i+ 2j — k.

The vector r —rg = (x — 1)i+ (¥ — 2)j + (z + Dk lies in the tangent plane and is thus perpen-
dicular to N.

Then the required equation is
(r—rp)-Nyg=0 ie, {(x=Di+(y—2)j+ =+ Dk} - {—6i+11j+ 14k} =0
—6(x—D+11(y—=2)+14z+1)=0 or 6x—1ly—14z4+2=0
(b) Letr = xi+ yj+ zk be the vector from O to any point (x, y, z) of the normal Ny. The vector from O to

the point (1,2, —1) on the normal isry =i+ 2j— k. The vectorr—ry=(x—1)i+(y—2)j+ (z+ Dk
is collinear with Ny. Then

i j k
r—rg) xNy=0 ie., x—1 py—=2 z+1]=0
—6 11 14

which is equivalent to the equations
1(x—=1)=-6(y—2), 14(y —2)=11(z+ 1), 14(x—1)=—6(z+1)
These can be written as

x=1 _y-2 z+1

-6~ 11~ 14

often called the standard form for the equations of a line. By setting each of these ratios equal to the
parameter ¢, we have

x=1-6t, y=2+11t, z=14r—1

called the parametric equations for the line.
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8.2.

8.3.

84.
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In what point does the normal line of Problem 8.1(b) meet the plane x 4+ 3y — 2z = 10?
Substituting the parametric equations of Problem 8.1(), we have
1—6:+32+110)—2(14t—-1)=10 or t=-—1
Then x=1—-6t=7,y=2+ 11t = -9,z =14t — 1 = —15 and the required point is (7, =9, —15).

Show that the surface x* — 2yz + »° = 4 is perpendicular to any member of the family of surfaces
X 41l= 2- 4a)y2 + az* at the point of intersection (1, —1, 2).
Let the equations of the two surfaces be written in the form
F=x"—2yz+4y°—4=0 and G=x>+1-Q—4a)y*—a*=0
Then
VF = 2xi + (3% — 22)j — 2k, VG = 2xi — 2(2 — 4a)yj — 2azk
Thus, the normals to the two surfaces at (1, —1, 2) are given by
N, =2i—j+2k, N, =2i+2Q2 - 4a)j — 4ak

Since N; - N, = (2)(2) — 2(2 — 4a) — (2)(4a) = 0, it follows that N; and N, are perpendicular for all a,
and so the required result follows.

The equation of a surface is given in spherical coordinates by F(r, 6, ¢) = 0, where we suppose
that F is continuously differentiable. (a) Find an equation for the tangent plane to the surface at
the point (ry, 6y, ¢o). (b) Find an equation for the tangent plane to the surface r = 4 cos 6 at the
point (2v/2, /4, 37/4). (¢) Find a set of equations for the normal line to the surface in (b) at the
indicated point.

(a) The gradient of ® in orthogonal curvilinear coordinates is

1 9P 1 09 1 99

Vo = — — —_ —_ =
hl Bul é +/’l2 8u2 € h3 8143 ©s
where el L
l_hl 8u1’ 2_1’!28”2’ 3_1138113
(see Pages 161, 175).
In spherical coordinates wu; =r,uy =0,u3 =¢,hy =1,hy =r,h3 =rsinf and r=xi+ yj+
zk = rsin 6 cos ¢i + rsin fsin ¢j + r cos k.
Then
e; = sin 6 cos ¢i + sin O sin ¢j + cos 6k
e, = cosfcos ¢i + cos O sin ¢j — sin Ok (1)
e; = — sin ¢i + cos @j
and
oF 1 oF 1 oF
VF =— - - 2
o & T 0% T rsing g @

As on Page 183 the required equation is (r — ry) - VF|p = 0.
Now substituting (/) and (2), we have

oF | . 1 oF sing, oF .
VF|p={— 0 —— [ —— —
|p {8r Psm Ocos¢0+r0 % Pcos ) COS ¢y PR P}l
oF | . . 1 . cos¢y OF .
— 6 — 0 -
+=3r Psm 051n¢0+r0 % Pcos Osm¢0+rosm00 s P}j
oF 1 oF
+{— cos@o——a— sinf ¢ k
o |p ro 90 |p
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Denoting the expressions in braces by A, B, C respectively so that VF|p = Ai + Bj+ Ck, we see
that the required equation is A(x — x) + B(y — yg) + C(z — zy) = 0. This can be written in spherical
coordinates by using the transformation equations for x, y, and z in these coordinates.

(b)) We have F =r—4cos6 =0. Then 0F/dr =1, 0F/30 = 4sin6, 9F /d¢ = 0.

Since ry = 2+/2, 6, = /4, ¢y = 37/4, we have from part (a), VF|p = Ai+ Bj+ Ck = —i +j.

From the transformation equations the given point has rectangular coordinates (—v/2, +/2, 2), and
sor—ryg=(x+2i+(y—2)j+(z -2k

The required equation of the plane is thus —(x ++/2) + (¥ —+2) =0 or y — x = 24/2. In sphe-
rical coordinates this becomes rsin #sin ¢ — rsin 6 cos ¢ = 2+/2.

In rectangular coordinates the equation r = 4 cos 6 becomes x* + 3 + (z — 2)* = 4 and the tangent
plane can be determined from this as in Problem 8.1. In other cases, however, it may not be so easy to
obtain the equation in rectangular form, and in such cases the method of part () is simpler to use.

(¢) The equations of the normal line can be represented by

x+v2 y-vV2 z-2

-1 1 0

the significance of the right-hand member being that the line lies in the plane z = 2. Thus, the required
line is given by

x+«/§_y—\/§

— T z=0 or x+y=0,z=0

TANGENT LINE AND NORMAL PLANE TO A CURVE

8.5. Find equations for the (a) tangent line and (b) normal plane to the curve x =7 — cosf,
y=3+sin2t, z =14 cos 3¢ at the point where ¢ = %71.

(a) The vector from origin O (see Fig. 8-2, Page 183) to any point of curve C is R = (¢ — cos?)i+
(3 +sin26)j+ (1 +cos37)k. Then a vector tangent to C at the point where ¢ = %rr is

_dR

0= = (1 +sin )i+ 2cos2¢j— 3sin3tk|,_/p, = 2i — 2j + 3k
=1/2n

The vector from O to the point where 1 = { is rg = {7i + 3j + k.
The vector from O to any point (x, y, z) on the tangent line is r = xi + yj + zk.
Thenr —ry = (x — %n)i + y —3)j+ (z — Dk is collinear with T, so that the required equation is

i j k
(r—ry) xTy=0, ie., x—%n y—=3 z—1|=0
2 -2 3
. . X — %n y=3 z-1 . . 1
and the required equations are = T 3 or in parametric form x =2t +5m, y =3 - 2¢,

z=3¢t+1.

(b) Letr = xi+ yj+ zk be the vector from O to any point (x, y, z) of the normal plane. The vector from O
to the point where 1 =17 isry = 17+ 3j+ k. The vector r —ry = (x — im)i+ (y — 3)j + (z — DKk lies
in the normal plane and hence is perpendicular to Ty. Then the required equation is (r —ry) - To =0 or
2(x—%n)—2(y—3)+3(z— 1)=0.

8.6. Find equations for the (¢) tangent line and (b) normal plane to the curve 3x°y + )’z = —2,
2xz — x*y = 3 at the point (1, —1, 1).

(a) The equations of the surfaces intersecting in the curve are

F=3x"y+12242=0, G=2xz—xy-3=0
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The normals to each surface at the point P(1, —1, 1) are, respectively,
N, = VF|p = 6xyi + (3x> + 2y2)j+ 'k = =6 +j+ k
N, = VG|p = (22 = 2xp)i — x%j+ 2xk = 4i — j + 2k
Then a tangent vector to the curve at P is
Ty =N; x Ny = (=6i+j+Kk) x (4 —j+2k) = 3i+ 16j+ 2k
Thus, as in Problem 8.5(«), the tangent line is given by
r—ry) xTy=0 or {(x—Di+(y+Dj+(— Dk} x 3i+16j+2k} =0

. x—1 y+1 z-1
ie., AT or x=1+43t, y=161—1, z=2t+1
(b) As in Problem 8.5(h) the normal plane is given by

(r—r9)-Te=0 or {(x—Di+(y+Dj+(— Dk} {3i+16j+2k} =0

ie., 3x—-D+16(y+1)+2(z—-1)=0 or 3x+ 16y +2z=—11
The results in (a) and (b) can also be obtained by using equations (7) and (10), respectively, on Page
185.
8.7. Establish equation (/0), Page 185.

Suppose the curve is defined by the intersection of two surfaces whose equations are F(x, y,z) =0,
G(x,y,z) =0, where we assume F and G continuously differentiable.

The normals to each surface at point P are given respectively by N; = VF|p and N, = VG|p. Then a
tangent vector to the curve at Pis To = N; x N, = VF|p x VG|p. Thus, the equation of the normal plane is
(r—ry)-Tp=0. Now

T0 = VF‘P X VG'P = {(F\’l + F\j + sz) X (G‘ci + Gy.i + G:k)}|P
i j k
F, F|. |F F|. |F F
=B B B g G. G G, G| ¥
Gx Gy G; , y z X xIp X Vlp
and so the required equation is
F, F. F. F,
(r—rg)-VF|p=0 or ‘d G x0)+‘G-Z ) 0)+’G G, ’(z—zo)_O
ENVELOPES
8.8. Prove that the envelope of the family ¢(x,y, o) =0, if it exists, can be obtained by solving

simultaneously the equations ¢ = 0 and ¢, = 0.

Assume parametric equations of the envelope to be x = f(«), y = g(@). Then ¢(f (@), g(a),®) =0
identically, and so upon differentiating with respect to « [assuming that ¢, f and g have continuous deriva-
tives], we have

oS (@) +¢,8' (@) + ¢, =0 )

The slope of any member of the family ¢(x, y, ) = 0 at (x, y) is given by ¢, dx + ¢, dy =0 or & =

dx
. dy dy/d
- ﬁ The slope of the envelope at (x, y) is D _ y/de g @ Then at any point where the envelope and
N dx~ dx/da ] ()

a member of the family are tangent, we must have

¢ g'(@)

¢y f(@)

Comparing (2) with (I) we see that ¢, = 0 and the required result follows.

oS (@) + ¢,8'(@) =0 ®)
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8.9. (a) Find the envelope of the family xsinae 4+ ycosae = 1. (b) Illus-
trate the results geometrically.

(a) By Problem 8 the envelope, if it exists, is obtained by solving simulta-
neously the equations ¢(x,y, o) =xsine+ ycosa—1=0 and
DX, y,0) = xcosa —ycosa =0. From these equations we find x
x=sina, y=cosa or x> +° = 1.

(b) The given family is a family of straight lines, some members of which
are indicated in Fig. 8-5. The envelope is the circle x* + ) = 1. Fig. 8-5

8.10. Find the envelope of the family of surfaces z = 2ax — a’y.

By a generalization of Problem 8.8 the required envelope, if it exists, is obtained by solving simulta-
neously the equations

() ¢=2ax—a’y—z=0 and (2) ¢,=2x—2ay=0

From (2) « = x/y. Then substitution in () yields x* = yz, the required envelope.

8.11. Find the envelope of the two-parameter family of surfaces z = ax + Sy — af.

The envelope of the family F(x, y, z, a, B) = 0, if it exists, is obtained by eliminating & and § between the
equations F =0, F, =0, Fy = 0 (see Problem, 8.43). Now

F=z—ax—By+af=0, Fo=—x+p=0, Fg=-y+a=0

Then B8 = x, « = y, and we have z = xy.

DIRECTIONAL DERIVATIVES

u

8.12. Find the directional derivative of F = x> yz3 along the curve x = ¢~
at the point P where u = 0.

,y=2sinu+1,z=u—cosu

The point P corresponding to u =01is (1,1, —1). Then
VF = 2xp2i+ X2+ 3x% 2’k = —2i—j+ 3k at P
A tangent vector to the curve is
dr _
du
=—¢ "i+2cosuj+ (1 +sinu)k =—i+2j+katP

d .
T {e™" i+ (2sinu + 1)j + (u — cos u)k}
u

—i+2j+k
—=

and the unit tangent vector in this direction is Ty =
Then
o o —i+2j+k 3001
Directional derivative = VF - Ty = (—2i — j+ 3k) - (%) =—=_.6

Since this is positive, F is increasing in this direction.

8.13. Prove that the greatest rate of change of F, i.e., the maximum directional derivative, takes place in
the direction of, and has the magnitude of, the vector VF.
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dF dr . .. . .d . S .
i VF - d_r is the projection of VF in the direction Tr This projection is a maximum when VF and
s s ds

dr/ds have the same direction. Then the maximum value of dF/ds takes place in the direction of VF, and
the magnitude is |VF|.

8.14. (a) Find the directional derivative of U = 2x’y —3y’z at P(1,2,—1) in a direction toward
0@3,-1,5). (b) In what direction from P is the directional derivative a maximum?
(¢) What is the magnitude of the maximum directional derivative?

(@) VU = 6x%yi+ (2x* — 6y2)j — 3y°k = 12i + 14j — 12k at P.
The vector from P to Q =B =i+ (=1 =2)j+[5— (=D]k = 2i — 3j + 6k.
2i-3j+6k  2i—3j+6k

JO + (=37 +(6) !

The unit vector from Pto Q =T =

Then

2i — 3j+ 6k 90

Directional derivative at P = (12i + 14j — 12k) - (%) ===
i.e., U is decreasing in this direction.

(b) From Problem 8.13, the directional derivative is a maximum in the direction 12i + 14j — 12k.

(¢) From Problem 8.13, the value of the maximum directional derivative is |12i+ 14j— 12k| =

VT44F196 + 144 = 22.

DIFFERENTIATION UNDER THE INTEGRAL SIGN

8.15. Prove Leibnitz’s rule for differentiating under the integral sign.

103 (ct)
Let ¢(a) = J f(x,a)dx. Then
uy (@)
s (a+Acr) 1 (o)
f(x, 0+ Aa)dx — J f(x, @) dx
u ()
rx;(oH»Aa)

80 = o+ Ba) - 90 = |

uy (a+Aa)

1) (o) )
= J f(x, a0+ Aa)dx + J f(x, 0+ Aa)dx +
u (a+Aw) uy ()

Uy (o
f(x, a0+ Aa)dx

(@)

1 ()
- [ Jx.a)d
Juy(@)

1 (a+Aa) uy (a+Aa)

f(x, 0+ Aa)dx — [ f(x, 0+ Aa)dx

Juy (@)

1 ()
= [ [f(x, 0+ Aa) — f(x, )] dx + [

uy(e) Jus(ar)
By the mean value theorems for integrals, we have
(o)

1 ()
J L/ Cr. o+ Act) — f(x, )] dx = AaJ fux ) dx ()

uy () ()

ey (@+Aa)
J S a4 Ae)dx = f(§1, 0 + Ad)uy (@ + Aa) — uy ()] @

uy(a)

i (a+Aa)
J S(x a4 Ae)dx = (5, 0 + Ad)uy (@ + Aa) — up(a)] G)

()

where & is between « and o + Aq, & is between u;(«) and u; (e + Awa) and &, is between u, () and u, (o + Ac).
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Then

15 ()
A0 _ J Sule D+ oo+ A D2 — (61, o+ A) 31

Aa

uy (o

Taking the limit as Ao — 0, making use of the fact that the functions are assumed to have continuous
derivatives, we obtain

de Juzw)

da= )y Ol)d’f+/[u2(0l)a f[ul(a)ad—‘

2,
“ sinax

8.16. If ¢(cr) = J

By Leibnitz’s rule,

dx, find ¢'(a) where a # 0.

o 3 [sinax . sin(a - o?) d sin(e - ) d
#e = [ o () e+ D T - @
o s 3 s 2
2sin@”  sina
= J cosaxdx + -
o a o
sinax|* 2sine®  sina? _ 3sin o — 2sind?
T ooa |, a a a
T odx i dx
8.17. IfJ = ,a > 1 find J ————. (See Problem 5.58, Chapter 5.)
0 & —COSX 2 — 1 0 (2 —cosx)
By Leibnitz’s rule, if ¢(a) = J _dx =n(* - 1)""2, then
@ — COoS X
, (7 dx 1, _3p —na
- —= - )y =
) Jo (a — cos x)? 271(0: ) * (o = 1)*?
Thus J dx 5 = e 35 {rom which J % = 2—”
o0 (@—cosx)’ (a2 — 1) 0(2—cosx)* 33

INTEGRATION UNDER THE INTEGRAL SIGN

8.18. Prove the result (/8), Page 187, for integration under the integral sign.

Uy

Consider (1) w(@:J'Haf(x, a)da}dx

)

By Leibnitz’s rule,

ve=[ o { [ 1o da} dr= [ fonardx = o

1

Then by integration, (2) y(a)= J (o) da + ¢

Since ¥(a) = 0 from (/), we have ¢ =0 in (2). Thus from (/) and (2) with ¢ = 0, we find

[{[srafr= [ [ s

Putting « = b, the required result follows.
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T _ /h2
8.19. Prove that J ln<m> dx=mln (M> ifa,b>1.
0 a— CoSXx a+vVa? -1

dx b4

From Problem 5.58, Chapter 5, J o> 1.

0@ —CoSX o _1

Integrating the left side with respect to « from a to b yields

(P da 4 b T (b—cosx
J {J 7} dx:J In(a — cos x) dx:J ln<7)dx
0 a @ —COSX 0 a 0 a — COSX

Integrating the right side with respect to « from « to b yields

™ nda b b+ Vb2 =1
——— — =aln(@+vVa? - 1)| =xln|———n—
.[0 (12—1 a a+va271

and the required result follows.

MAXIMA AND MINIMA

8.20. Prove that a necessary condition for f(x, y) to have a relative extremum (maximum or minimum)
at (X9, yo) is that fi(xg, yo) = 0, f,(xo, y9) = 0.

If f(xg, yo) is to be an extreme value for f(x, y), then it must be an extreme value for both f(x, y,) and
f(x9,y). But a necessary condition that these have extreme values at x, = 0 and y = y,, respectively, is
J<(x0,¥0) = 0, f,,(x0, y9) = 0 (using results for functions of one variable).

8.21. Let f be continuous and have continuous partial derivatives of order two, at least, in a region R
with the critical point Py(x, o) an interior point. Determine the sufficient conditions for relative
extrema at Py.

In the case of one variable, sufficient conditions for a relative extrema were formulated through the
second derivative [if positive then a relative minimum, if negative then a relative maximum, if zero a possible
point of inflection but more investigation is necessary]. In the case of z = f(x, y) that is before us we can
expect the second partial derivatives to supply information. (See Fig. 8-6.)

P

- 2

Fig. 8-6

First observe that solutions of the quadratic equation

—2B++4B* —44C

AP +2Bi+C=0are 1=
+ + are 24

Further observe that the nature of these solutions is determined by B> — AC. If the quantity is positive
the solutions are real and distinct; if negative, they are complex conjugate; and if zero, the two solutions are
coincident.
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8.22.

8.23.

The expression B> — AC also has the property of invariance with respect to plane rotations
X =Xxcosf — ysinfh
y=Xxsinf+ ycoso
It has been discovered that with the identifications 4 = f., B = fy,, C = f,,, we have the partial deri-
vative form ffy — fuufyy that characterizes relative extrema.

The demonstration of invariance of this form can be found in analytic geometric books. However, if
you would like to put the problem in the context of the second partial derivative, observe that

ax a .
f)? :.f:‘c = +f\ )—} :f\ cos 6 +f; sin 0
ax 7 ox

ox .y .
5 :fXa—)7 +‘f-"'87)7 = —f,sinf + f, coso

Then using the chain rule to compute the second partial derivatives and proceeding by straightforward
but tedious calculation one shows that

13 = fod =135 — fedls

The following equivalences are a consequence of this invariant form (independently of direction in the
tangent plane at Py):

f\zy _fxxfyy <0 and fxxfyy >0 (] )
fYZ) _./I,‘xxf:vy >0 and / Y‘fU <0 (2)

The key relation is (/) because in order that this equivalence hold, both f, f, must have the same sign.
We can look to the one variable case (make the same argument for each coordinate direction) and conclude
that there is a relative minimum at P if both partial derivatives are positive and a relative maximum if both
are negative. We can make this argument for any pair of coordinate directions because of the invariance
under rotation that was established.

If (2) holds, then the point is called a saddle point. 1f the quadratic form is zero, no information results.

Observe that this situation is analogous to the one variable extreme value theory in which the nature of

f at x, and with f’(x) = 0, is undecided if /" (x) = 0.

Find the relative maxima and minima of f(x, y) = x* + »* — 3x — 12y + 20.

fe=3x>=3=0 when x= +1,f, = 32 =12 =0 when y =+2.  Then critical points are P(1,2),
0(—1,2), R(1, =2), S(—1, =2). '

S = 65,1, = 69, fr, =0. Then A =f,f,, — fo, = 36xp.

At P(1,2), A > 0 and f,, (or f,,) > 0; hence P is a relative minimum point.

At Q(—1,2),A <0 and Q is neither a relative maximum or minimum point.

At R(1,-2), A <0 and R is neither a relative maximum or minimum point.

At S(=1,-2), A > 0 and f,, (or f;,) < 0 so S is a relative maximum point.

Thus, the relative minimum value of f(x, y) occurring at P is 2, while the relative maximum value
occurring at S is 38. Points Q and R are saddle points.

A rectangular box, open at the top, is to have a volume of 32 cubic feet. What must be the
dimensions so that the total surface is a minimum?

If x, y and z are the edges (see Fig. 8-7), then

(1) Volume of box = V = xyz = 32
(2) Surface area of box = S = xy + 2yz + 2xz z

or, since z = 32/xy from (/), %" ¥
64 64 -

S=xy+—+—

X oy Fig. 8-7
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4 4
g—S:y—6—2:0 when (3) x%y =64, ?—S:x—6—2:0 when (4) x)° =64
X X ay y

Dividing equations (3) and (4), we find y = x so that x> =64 or x = y =4 and z = 2.

12 12 12

Forx=y=4, A =SS, — Siy = (—38) <—38> —1>0and s, = —38 > 0. Hence, it follows that
X y X

the dimensions 4 ft x 4 ft x 2 ft give the minimum surface.

LAGRANGE MULTIPLIERS FOR MAXIMA AND MINIMA

8.24. Consider F(x, y, z) subject to the constraint condition G(x,y,z) =0. Prove that a necessary
condition that F(x, y, z) have an extreme value is that F,G, — F,G, = 0.

Since G(x, y, z) = 0, we can consider z as a function of x and y, say z = f(x, y). A necessary condition

that F[x, y, f(x, y)] have an extreme value is that the partial derivatives with respect to x and y be zero. This
gives

() Fi\+F.z,=0 2 F,+FZ,=0
Since G(x, y, z) = 0, we also have
3 G+Gz=0 () G +G.z,=0
From (/) and (3) we have (5) F,G, — F\G, = 0, and from (2) and (4) we have (6) F,G. — F.G, = 0. Then

from (5) and (6) we find G, — F,G, = 0.
The above results hold only if F, # 0, G. # 0.

8.25. Referring to the preceding problem, show that the stated condition is equivalent to the conditions
¢y =0,¢, =0 where ¢ = F + 1G and A is a constant.

If ¢, =0,F, +1G,=0. If ¢,=0,F,+1G, =0. Elimination of A between these equations yields
F.G,— F,G,=0.

The multiplier A is the Lagrange multiplier. 1f desired we can consider equivalently ¢ = AF + G where
O = 0, ¢y =0.

8.26. Find the shortest distance from the origin to the hyperbola X+ 8xy + 7y2 =225,z=0.

We must find the minimum value of x* + y* (the square of the distance from the origin to any point in
the xy plane) subject to the constraint x* + 8xy + 7y% = 225.

According to the method of Lagrange multipliers, we consider ¢ = x> + 8xy + 73> — 225 + A(x% + 7).
Then

¢, =2x+8y+2ax =0 or () O+Dx+4y=0
¢, =8x+ 14y 421y =0 or 2 4x+AX+7y =0
From (/) and (2), since (x, y) # (0, 0), we must have

‘A+1 4

_ H 2 _ 09— 1 _
4 k+7’_0' ie., A4+8—-9=0 or A=1,-9

Case 1: A =1. From (I) or (2), x = —2y and substitution in x> + 8xy + 77 = 225 yields —5)* = 225, for
which no real solution exists.

Case 2: 1 =—9. From (I) or (2), y = 2x and substitution in x> + 8xy + 7)> = 225 yields 45x* = 225.
Then x> = 5, y* = 4x? = 20 and so x* + y*> =25. Thus the required shortest distance is v/25 = 5.

8.27 () Find the maximum and minimum values of x* + y* 4 z* subject to the constraint conditions
X*/4+1°/5+22/25=1and z=x+y. (b) Give a geometric interpretation of the result in ().
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22
\’\2/e must find the extrema of F = x> + »* 4+ z* subject to the constraint conditions ¢ = Z+yg+
% —1=0and ¢ =x+y—2z=0. In this case we use two Lagrange multipliers A, A, and consider
the function
222
G=F—4Md+ M=+ > +22+ 1 Tt thbty-2)

Taking the partial derivatives of G with respect to x, y, z and setting them equal to zero, we find

Aqd 22X 2
Gx=2x+%¥+)\.2=0, Gy:2y+?1y+)»2=0, GX:ZZ—‘,-T;Z—)Q:O (1)
Solving these equations for x, y, z, we find
—2X, —5x, 25X, )
X = s )= =
w4 T 0 2k + 50

From the second constraint condition, x + y — z = 0, we obtain on division by A,, assumed dif-
ferent from zero (this is justified since otherwise we would have x =0, y = 0, z = 0, which would not
satisfy the first constraint condition), the result

2 N 5 N 5 _,
AM4+4 20 +10 24, +50

Multiplying both sides by 2(A; + 4)(A; + 5)(A; + 25) and simplifying yields
1722 42450, +750 =0  or (A +10)(17x; +75) =0
from which A = —10 or —75/17.

Case 1: » = —10.
From (2), x = 14,y =1%,, 2 =1,. Substituting in the first constraint condition, x*/4 + »*/5+
/25 =1, yields A3 = 180/19 or A, = +6,/5/19. This gives the two critical points

(24/5/19, 3y/5/19,5,/5/19), (-2/5/19, =3,/5/19, —=5,/5/19)
The value of x> + y? + 2> corresponding to these critical points is (20 + 45 + 125)/19 = 10.

Case 2: Ay = =T75/17.
From (2), x =%, y=—-%,z=1. Substituting in the first constraint condition,
x4+ 1?54 22/25 = 1, yields A, = £140/(17+/646) which gives the critical points

(40/+/646, —35/646, 5//646),  (—40//646, 35//646, —5//646)

The value of x> 4+ y? + 2> corresponding to these is (1600 + 1225 + 25)/646 = 75/17.
Thus, the required maximum value is 10 and the minimum value is 75/17.

Since x° + y* + 2? represents the square of the distance of (x, y, z) from the origin (0, 0, 0), the problem
is equivalent to determining the largest and smallest distances from the origin to the curve of intersec-
tion of the ellipsoid x?/4 + y*/5 +z°/25 = 1 and the plane z = x + y. Since this curve is an ellipse, we
have the interpretation that /10 and /75/17 are the lengths of the semi-major and semi-minor axes of
this ellipse.

The fact that the maximum and minimum values happen to be given by —A; in both Case 1 and
Case 2 is more than a coincidence. It follows, in fact, on multiplying equations (/) by x, y, and z in
succession and adding, for we then obtain

Ax? 2407 2%, 2%
2x2+ITY+)L2x+2y2+ Yy 4224 2'52 — 9z =0
2 2 2 X yz g
X Ml—+=+=—= A0 ) —2z) =
ie, Xy 4z + .(4+5+25)+ 2ix+y—2)=0
Then using the constraint conditions, we find x> + y* 4+ 2> = —A,.

For a generalization of this problem, see Problem 8.76.
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APPLICATIONS TO ERRORS

8.28. The period T of a simple pendulum of length / is given by T' = 27/l/g. Find the (@) error and
(b) percent error made in computing 7 by using / =2m and g =9.75 m/secz, if the true values
are / = 19.5m and g = 9.81 m/sec’.

(@) T =2n"g""*. Then
T !
dT = Qg PEIV2dl) + el )= Lg™dg) = = dl — 7 |~ dg (I
2 2 «/E g3

Error in g = Ag = dg = 4+0.06; errorin /= Al=dl =-0.5

The error in 7T is actually AT, which is in this case approximately equal to d7. Thus, we have
from (1),

2
————(4+0.06) = —0.0444 sec (approx.)

. T
Error in T =dT = m(—0.0S) -7 ©75)

2
The value of T for /I =2,g=9.75is T =2x 975 = 2.846 sec (approx.)
dr  —0.0444
T =~ 2846
Another method: Since In 7 = In 27 + %lnl - %ln g,
dT_1dl ldg 1 (—0.05) 1 (+0.06
2

Y A
5 9.75> 1.56% )

(b) Percent error (or relative error) in 7' = —1.56%.

T 21 2g 2
as before. Note that (2) can be written

Percent error in T :% Percent error in 1—% Percent error in g

MISCELLANEOUS PROBLEMS

l J—
8.29. EvaluateJ x—1
0 nx

dx.

In order to evaluate this integral, we resort to the following device. Define

1 @

¢(a):J0X dx a>0

Inx

Then by Leibnitz’s rule

Ly /x*—1 'x*Inx (1 1
4 = e Era—— = = - =
(’b(“)_Laa( Inx )dx L Inx dx JO)L dx a+1

Integrating with respect to «, ¢(«) = In(e + 1) + ¢.  But since ¢(0) = 0, ¢ = 0, and so ¢(«) = In(« + 1).

Then the value of the required integral is ¢(1) = In 2.

The applicability of Leibnitz’s rule can be justified here, since if we define F(x,a) = (x* — 1)/Inx,
0<x<l, F(0,a) =0, F(1, @) = «, then F(x, ) is continuous in both x and « for 0 < x < 1 and all finite
o> 0.

8.30. Find constants a and b for which

T

F(a,b) = J {sin x — (ax® + bx)}> dx
0

1S a minimum.
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The necessary conditions for a minimum are dF/da = 0, 9F /0b = 0. Performing these differentiations,
we obtain

% = [ %{sin X — (ax? + bx)} dx = —2J Xsinx — (ax? + bx)}dx =0
Jo 0

F [T . ) ) T )

—=| = {sinx—(ax"+bx)}"dx=-2| x{sinx —(ax"+bx)}dx =0

From these we find
aJ x4dx+bJ X dx = J X% sin x dx
0 0 0

T T T
aJ x3dx+bJ xzdx:J xsin x dx
0 0 0

or
5 4
ma wb )
Sl G ]
s TR
wa wh_
4 3

Solving for a and b, we find

20 320 240 12
a:;—?w —0.40065, b—?—;% 1.24798

We can show that for these values, F(a, b) is indeed a minimum using the sufficiency conditions on Page
188.

The polynomial ax? + bx is said to be a least square approximation of sin x over the interval (0, 7). The
ideas involved here are of importance in many branches of mathematics and their applications.

Supplementary Problems

TANGENT PLANE AND NORMAL LINE TO A SURFACE

8.31.

8.32.

8.33.

8.34.

Find the equations of the (¢) tangent plane and (b) normal line to the surface x* + y* = 4z at (2, —4, 5).

-2 y+4 -5
Ans. (@) x—=2y—z=5, (b) xl :}+2 - T

If z = f(x, y), prove that the equations for the tangent plane and normal line at point P(xg, yg, zo) are given
respectively by

b) X=X _ YV—Yo_Z—Z20

(@) z—2zo=filp(x —x0) +/,1p(y —y9)  and e A

Prove that the acute angle y between the z axis and the normal to the surface F(x, y, z) = 0 at any point is
given by secy = /F? + F2 + F2/|F,|.

The equation of a surface is given in cylindrical coordinates by F(p, ¢, z) = 0, where F is continuously
differentiable.  Prove that the equations of («) the tangent plane and (b) the normal line at the point
P(pg, dg, z9) are given respectively by

X=X _V—=Vo_Z—20

A(x —x0) + B(y —y0) + C(z—2) =0  and 1 3 C
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where xy = py cos ¢y, yo = pg sin ¢y and

1 . . 1
A=Fp|PCOS¢0—;F¢|PSIH¢o, B =F,|psing, +;F¢|PCOS¢07 C=Flp

8.35. Use Problem 8.34 to find the equation of the tangent plane to the surface 7z = p¢ at the point where p = 2,
¢ =m/2, z=1. To check your answer work the problem using rectangular coordinates.
Ans. 2x —nmy+2nz=0

TANGENT LINE AND NORMAL PLANE TO A CURVE

8.36. Find the equations of the (a) tangent line and (b) normal plane to the space curve x = 6sin ¢, y = 4 cos 3¢,
z = 2sin 5¢ at the point where ¢ = /4.

X=3vV2 _y+2V2_z4V2
- T s

3 ‘ (b) 3x—6y—5z=26v2

Ans. (a)

8.37. The surfaces x+y +z =3 and x> — y* 4+ 22> = 2 intersect in a space curve. Find the equations of the
(a) tangent line (b) normal plane to this space curve at the point (1, 1, 1).

x—1 -1 z-1
Ans. (a) x_3 :yl = () 3x—y—-2z=0
ENVELOPES
8.38.  Find the envelope of eachzof thezfollowing families of curves in the xy plane. In each case construct a graph.
@ y=ax—o, (b) T+ lo=1.
a |-«

Ans. (a) x> =4y; (b)) x+y==%l,x—y =+l

8.39. Find the envelope of a family of lines having the property that the length intercepted between the x and y
axes is a constant a. Ans. P4y =

8.40. Find the envelope of the family of circles having centers on the parabola y = x* and passing through its
vertex. [Hint: Let («, o®) be any point on the parabola.] Ans. X =—y /2y +1)

8.41. Find the envelope of the normals (called an evolute) to the parabola y = %xz and construct a graph.
Ans. 8(y — 1) =277

8.42. Find the envelope of the following families of surfaces:
(@) alx—y)—cd’z=1, ®) (x—a)+1* =20z
Ans. (a) 4z=(x—1)?% (b) 1> =2 +2xz

8.43.  Prove that the envelope of the two parameter family of surfaces F(x, y, z, &, ) = 0, if it exists, is obtained by
eliminating o and B in the equations F =0, F, =0, Fg = 0.

8.44. Find the envelope of the two parameter families (a) z = ax+ By —a® — g* and (b) xcosa + ycos f+
zcosy = a where cos? o + cos® B+ cos’y = | and « is a constant.
Ans. (a) 4z=x*+)*, ) X +y +2 =4

DIRECTIONAL DERIVATIVES

8.45. (a) Find the directional derivative of U = 2xy — 2> at (2, —1, 1) in a direction toward (3, 1, —1). (b) In what
direction is the directional derivative a maximum? (¢) What is the value of this maximum?
Ans. (a) 10/3, (b)) —2i+4j—2k, (c) 26
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8.46.

8.47.

The temperature at any point (x, y) in the xy plane is given by T = 100xy/(x* +?). (a) Find the direc-
tional derivative at the point (2, 1) in a direction making an angle of 60° with the positive x-axis. (b) In
what direction from (2, 1) would the derivative be a maximum? (¢) What is the value of this maximum?
Ans. (a) 124/3 —6; (b) in a direction making an angle of 7 — tan~! 2 with the positive x-axis, or in the
direction —i + 2j; (¢) 124/5

Prove that if F(p, ¢, z) is continuously differentiable, the maximum directional derivative of F at any point is

iven b y 2+L E 2+ f ’
sven Y\ \op) T2\ 5 0z )

DIFFERENTIATION UNDER THE INTEGRAL SIGN

8.48.

8.49.

8.50.

8.51.

8.52.

8.53.

1/
If ¢p(a) = J cosax’ dx, find @
Ja da

1/ 5 5 1 1 1 5
Ans. fJ. x°sinax” dx — — cos— — —= cosa
! o

Ja 2/a

2
[ X dF
(a) If F(a) = J tan™! ad dx, find Ta by Leibnitz’s rule. (b) Check the result in (@) by direct integration.
o [

1

0
Ans. (a) 2atan™ o — %ln(oz2 +1)

1

1 1
Given J x?dx=——,p> —1. Prove that J x’(Inx)" dx =
0 p+1 0

(=D"m!

sz:l,z,;_,,,

T

Prove that J
0

1+v1—a?
In(1 +acosx)dx:nln(%>, la] < 1.

g mlnd?, lal <1

. Discuss the case |a| = 1.
0, || > 1

Prove that [

In(1 — 2acos x + &%) dx = :
0

4 dx 597
Show that | —— —=——.
Jo (5—=3cosx)® 2048

INTEGRATION UNDER THE INTEGRAL SIGN

8.54.

8.55.

8.56.

8.57.

1 2 2 1
Verify that [ {[ (o = xz)dx} da = [ {[ (o — xz)dot} dx.
B J1 J1 LJo

0

27
Starting with the result J (o — sin x) dx = 2na, prove that for all constants a and b,
0

21
J {(b — sinx)? — (a — sin x)*} dx = 27(b* — o)
0

2
b 2
Use the result J L = —n, a > 1 to prove that

0 o+sinx o —1

27 :
J In( 23500 g orin(2
0 5+4sinx 8
/2 dx cos o

,0Za<ltoshowthatfor0 <a<1,0<b<1

h 1 =
(a) Uset eresutj0 [ Facosy Vo7

/2
J sec xIn (M> dx

. T~ H(cos™" a)* — (cos™" b)*}

/2 57_[2
(b) Show that J secxIn(l + Jcosx) dx = =
0
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MAXIMA AND MINIMA, LAGRANGE MULTIPLIERS

8.58.

8.59.

8.60.

8.61.

8.62.

8.63.

8.64.

8.65.

8.66.

8.67.

Find the maxima and minima of F(x, y,z) = xy*z> subject to the conditions x+y+z=6, x>0,y > 0,
z>0. Ans. maximum value =108 at x =1,y =2,z=3

What is the volume of the largest rectangular parallelepiped which can be inscribed in the ellipsoid
X942 /16 +22/36 =12 Ans. 6443

(a) Find the maximum and minimum values of x> + »* subject to the condition 3x° + 4xy + 6)° = 140.
(b) Give a geometrical interpretation of the results in (a).
Ans. maximum value = 70, minimum value = 20

Solve Problem 8.23 using Lagrange multipliers.

Prove that in any triangle 4 BC there is a point P such that PA° +PB + PC is a minimum and that P s the
intersection of the medians.

(a) Prove that the maximum and minimum values of f(x, y) = X+ Xy —i—y2 in the unit square 0 < x < 1,
0 < y = 1 are 3 and 0, respectively. (b) Can the result of («) be obtained by setting the partial derivatives
of f(x, y) with respect to x and y equal to zero. Explain.

Find the extreme values of z on the surface 2x° + 3% + 22 — 12xy + 4xz = 35.
Ans. maximum = 5, minimum = —5

Establish the method of Lagrange multipliers in the case where we wish to find the extreme values of
F(x, y, z) subject to the two constraint conditions G(x, y,z) =0, H(x, y,z) = 0.

Prove that the shortest distance from the origin to the curve of intersection of the surfaces xyz = a and

y = bx where a > 0,b > 0, is 3y/a(h*> + 1)/2b.

Find the volume of the ellipsoid 11x> + 9% + 152 — 4xy + 10yz — 20xz = 80.  Ans. 647+/2/3

APPLICATIONS TO ERRORS

8.68.

8.69.

The diameter of a right circular cylinder is measured as 6.0 + 0.03 inches, while its height is measured as
4.0 £0.02 inches. What is the largest possible (a) error and (b) percent error made in computing the
volume?  Ans. (a) 1.70in, () 1.5%

The sides of a triangle are measured to be 12.0 and 15.0 feet, and the included angle 60.0°. If the lengths can
be measured to within 1% accuracy, while the angle can be measured to within 2% accuracy, find the
maximum error and percent error in determining the (a) area and (b) opposite side of the triangle.

Ans. (a) 2.501 £, 3.21%; (b) 0.287 ft, 2.08%

MISCELLANEOUS PROBLEMS

8.70.

8.71.

If p and ¢ are cylindrical coordinates, @ and b are any positive constants, and » is a positive integer, prove
that the surfaces p"sinng = a and p" cosng = b are mutually perpendicular along their curves of intersec-
tion.

Find an equation for the (&) tangent plane and (b) normal line to the surface 876¢ = n° at the point where
r=1,60=m/4,¢=m/2,(r,0, ) being spherical coordinates.
X _}’—«/5/2_2—«/5/2

Ans. (a) 4x— (P +4m)y+ @Gr — 1)z = —7*V2, () S iy
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8.72.

8.73.

8.74.

8.75.

8.76.

8.77.

8.78.

8.79.

8.80.

8.81.

8.82.

(a) Prove that the shortest distance from the point (a, b, ¢) to the plane Ax+ By+ Cz+ D =0 s

Aa+ Bb+ Cc+ D
VA? + B + C?

(b) Find the shortest distance from (1, 2, —3) to the plane 2x — 3y + 6z = 20. Ans. (b) 6

The potential " due to a charge distribution is given in spherical coordinates (r, 0, ¢) by

pcoso
2

V =
JE

where p is a constant. Prove that the maximum directional derivative at any point is

pVsin® 6 + 4cos? 6
3
1, m

X" — X" 1
Prove that J X X dx =In m+ 1 if m>0,n>0. Can you extend the result to the case
o Inx n+1

m>—1,n>—1?

(a) If 5> —4ac < 0and a > 0, ¢ > 0, prove that the area of the ellipse ax’ + bxy + ¢y* = 1 is 27/v/4ac — b.
[Hint: Find the maximum and minimum values of x> + y” subject to the constraint ax> + bxy + ¢y = 1]

Prove that the maximum and minimum distances from the origin to the curve of intersection defined by
xXJa* + 2 /p* + 22/ = 1 and Ax + By + Cz = 0 can be obtained by solving for d the equation
A2 B

Rl <y R i

Prove that the last equation in the preceding problem always has two real solutions d? and d? for any real
non-zero constants «, b, ¢ and any real constants A4, B, C (not all zero). Discuss the geometrical significance
of this.

M dx 1 M M

(a) Prove that I, = J tan o + W

0 (¥ +a?)’ T2

X dx
b) Find lim [I,,. This can be denoted b —_—.
( ) Moo M y JO (X2 —|—O{2)2

Is lim —
(e) Is M5 da

d JM dx d .. JM dx

——————=— lim —?
0 (x2+a2)2 do M—oo 0 (Xz +0[2)2

Find the point on the paraboloid z = x> + y* which is closest to the point (3, —6, 4).
Ans. (1,-2,5)

Investigate the maxima and minima of f(x, y) = (x> — 2x + 4% — 8y)%.
Ans. minimum value =0

cosxdx am Ina
acosx+sinx  2al+1) 2+1°

/2
(a) Prove that J
0

/2 2 xd> 374+5-8In2
(b) Use (a) to prove that [ cos ¥ .x 5= ™+ 1 .
Jo (2cosx +sinx) 50

(a) Find sufficient conditions for a relative maximum or minimum of w = f(x, y, z).
(b) Examine w = x> + 17 + 22 — 6xy + 8xz — 10yz for maxima and minima.
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[Hint: For (a) use the fact that the quadratic form Aa* + BB* + Cy* 4+ 2DapB + 2Eay + 2FBy > 0 (ie., is
positive definite) if
A>0, ‘ 4D

D B'>0’

RN
R ~R)
O &




CHAPTER 9

Multiple Integrals

Much of the procedure for double and triple integrals may be
thought of as a reversal of partial differentiation and otherwise is
analogous to that for single integrals. However, one complexity
that must be addressed relates to the domain of definition. With
single integrals, the functions of one variable were defined on
intervals of real numbers. Thus, the integrals only depended on
the properties of the functions. The integrands of double and
triple integrals are functions of two and three variables, respec-
tively, and as such are defined on two- and three-dimensional
regions. These regions have a flexibility in shape not possible
in the single-variable cases. For example, with functions of two
variables, and the corresponding double integrals, rectangular Fig. 9-1
regions, a = x < b, ¢ £y <d are common. However, in
many problems the domains are regions bound above and below by segments of plane curves. In
the case of functions of three variables, and the corresponding triple integrals other than the regions
a =2 x=bhc=y=<deZ:z <[, thereare those bound above and below by portions of surfaces. In
very special cases, double and triple integrals can be directly evaluated. = However, the systematic
technique of iterated integration is the usual procedure. It is here that the reversal of partial differentia-
tion comes into play.

Definitions of double and triple integrals are given below. Also, the method of iterated integration
is described.

DOUBLE INTEGRALS

Let F(x, y) be defined in a closed region # of the xy plane (see Fig. 9-1). Subdivide # into n
subregions A%, of area AA;, k=1,2,...,n. Let (§,n;) be some point of A4,. Form the sum

XI:F(&(’ M) AAy (1
k=1
Consider
n
lim ;F@k, M) Ady &)
207
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where the limit is taken so that the number n of subdivisions increases without limit and such that the
largest linear dimension of each A 4 approaches zero. See Fig. 9-2(«). If this limit exists, it is denoted by

L | Foaa )

and is called the double integral of F(x,y) over the region £.
It can be proved that the limit does exist if F(x, y) is continuous (or sectionally continuous) in Z.
The double integral has a great variety of interpretations with any individual one dependent on the
form of the integrand. For example, if F(x, y) = p(x, y) represents the variable density of a flat iron
plate then the double integral, [, pdA, of this function over a same shaped plane region, 4, is the mass of
the plate. In Fig. 9-2(h) we assume that F(x, y) is a height function (established by a portion of a surface
z = F(x, y)) for a cylindrically shaped object. In this case the double integral represents a volume.

AA,
T z
P anin: T
< BiEDS
ST [ //’/,‘Q

(@)

|

)
Fig. 9-2

ITERATED INTEGRALS

If Z is such that any lines parallel to the y-axis meet the boundary of £ in at most two points (as is
true in Fig. 9-1), then we can write the equations of the curves ACB and ADB bounding # as y = f1(x)
and y = f5(x), respectively, where f(x) and f5(x) are single-valued and continuousina < x < b. In this
case we can evaluate the double integral (3) by choosing the regions A%, as rectangles formed by
constructing a grid of lines parallel to the x- and y-axes and AA4, as the corresponding areas. Then
(3) can be written

J J F(x,y)dxdy = Jb [fi(x) F(x,y)dydx “)

x=a Jy=f(v)

b /2(x)
:J ” F(x,y)dy} dx
x=a UJy=fi(x)



CHAP. 9] MULTIPLE INTEGRALS 209

where the integral in braces is to be evaluated first (keeping x constant) and finally integrating with
respect to x from a to b. The result (4) indicates how a double integral can be evaluated by expressing it
in terms of two single integrals called iterated integrals.

The process of iterated integration is visually illustrated in Fig. 9-3a,b and further illustrated as
follows.

i F(x',y)
!
P — \ ¥
A ) , X
e 1 /2)
b ,,,,,,,,,,,,, J‘ ,,,,,,,,,,,,,, //
y=hHx) y=/rx)
x X
(a) (b)

Fig. 9-3

The general idea, as demonstrated with respect to a given three-space region, is to establish a plane
section, integrate to determine its area, and then add up all the plane sections through an integration
with respect to the remaining variable. For example, choose a value of x (say, x = x"). The intersection
of the plane x = x’ with the solid establishes the plane section. Init z = F(x’, y) is the height function,
and if y = fi(x) and y = f>(x) (for all z) are the bounding cylindrical surfaces of the solid, then the width

V2
is f5(x’) — fi(x"), i.e., y, — y,. Thus, the area of the section is 4 = J F(x',y)dy. Now establish slabs

. . . )1
A;Ax;, where for each interval Ax; = x; — x;_;, there is an intermediate value x/»'. Then sum these to get

an approximation to the target volume. Adding the slabs and taking the limit yields

n b
V= ,}EEO;AJ Axj = J (

a

J'Vz F(x,y) dy) dx

by

In some cases the order of integration is dictated by the geometry. For example, if Z is such that any
lines parallel to the x-axis meet the boundary of £ in at most two points (as in Fig. 9-1), then the
equations of curves CAD and CBD can be written x = g;(y) and x = g,(y) respectively and we find
similarly

JP@n@@:fJM”anww 5)

y=c Jx=g¢,(y)

d 82())
:J {J F(x,y)dx} dy
y=c Ux=g1(y)

If the double integral exists, (4) and (5) yield the same value. (See, however, Problem 9.21.) In writing a
double integral, either of the forms (4) or (5), whichever is appropriate, may be used. We call one form
an interchange of the order of integration with respect to the other form.

R
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In case # is not of the type shown in the above figure, it can generally be subdivided into regions
R, Ry, ... which are of this type. Then the double integral over Z is found by taking the sum of the
double integrals over #,, #,, . ...

TRIPLE INTEGRALS

The above results are easily generalized to closed regions in three dimensions. For example,
consider a function F(x, y, z) defined in a closed three-dimensional region #. Subdivide the region

into n subregions of volume AV}, k=1,2,...,n. Letting (&, n;, {;) be some point in each subregion,
we form
n
lim ; F(5, M 6) AV ©)

where the number 7 of subdivisions approaches infinity in such a way that the largest linear dimension of
each subregion approaches zero. If this limit exists, we denote it by

JJJF(x,y,z)dV (7)

R

called the triple integral of F(x, y, z) over #. The limit does exist if F(, x, y, z) is continuous (or piecemeal
continuous) in %.

If we construct a grid consisting of planes parallel to the xy, yz, and xz planes, the region Z is
subdivided into subregions which are rectangular parallelepipeds. In such case we can express the triple
integral over # given by (7) as an iterated integral of the form

b g2(a)  pfa(x.y) b 22(%) (/2(x.5)
J J J F(x,y,z)dxdydz = J “ “ F(x,y,2) dz} dy:| dx ()

x=a Jy=g,(x) Jz=fi(x.y) x=aLJy=g (x) U z=fi(x.y)

(where the innermost integral is to be evaluated first) or the sum of such integrals. The integration can
also be performed in any other order to give an equivalent result.
The iterated triple integral is a sequence of integrations; first from surface portion to surface portion,
then from curve segment to curve segment, and finally from point to point. (See Fig. 9-4.)
Extensions to higher dimensions are also possible.

2=/&)
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TRANSFORMATIONS OF MULTIPLE INTEGRALS

In evaluating a multiple integral over a region £, it is often convenient to use coordinates other than
rectangular, such as the curvilinear coordinates considered in Chapters 6 and 7.

If we let (u, v) be curvilinear coordinates of points in a plane, there will be a set of transformation
equations x = f(u, v), y = g(u, v) mapping points (x, y) of the xy plane into points (u, v) of the uv plane.
In such case the region # of the xy plane is mapped into a region 2’ of the uv plane. We then have

”F(x, y)dx dy = ”G(u, v) gi: g dudv )
where G(u, v) = F{f(u, v), g(u, v)} and
ox 0x
) ou
M, v) dy  dy (10)
u v

is the Jacobian of x and y with respect to u and v (see Chapter 6).
Similarly if (u, v, w) are curvilinear coordinates in three dimensions, there will be a set of transfor-
mation equations x = f(u, v, w), y = g(u, v, w), z = h(u, v, w) and we can write

JJJF(X, v, 2)dx dy dz = J”G(u, o )| 252D s i (11)
o(u, v, w)
2 %'
where G(u, v, w) = F{f (u, v, w), g(u, v, w), h(u, v, w)} and
% ox 0x
ou dv Iw
Mxoy2) _ |y By by (12)

o, v,w)  |ou v ow
0z 0z o0z
ou v ow

is the Jacobian of x, y, and z with respect to u, v, and w.

The results (9) and (/1) correspond to change of variables for double and triple integrals.
Generalizations to higher dimensions are easily made.

THE DIFFERENTIAL ELEMENT OF AREA IN POLAR COORDINATES, DIFFERENTIAL
ELEMENTS OF AREA IN CYLINDRAL AND SPHERICAL COORDINATES

Of special interest is the differential element of area, dA4, for polar coordinates in the plane, and the
differential elements of volume, dV, for cylindrical and spherical coordinates in three space. With these
in hand the double and triple integrals as expressed in these systems are seen to take the following forms.
(See Fig. 9-5.)

The transformation equations relating cylindrical coordinates to rectangular Cartesian ones
appeared in Chapter 7, in particular,

X =pcos¢,y=psing,z=z

The coordinate surfaces are circular cylinders, planes, and planes. (See Fig. 9-5.)

or Jr Or .
— ¢ constitutes an

At any point of the space (other than the origin), the set of vectors { —,—,
dp 0 0z

orthogonal basis.
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<
w

-

Fig. 9-5

In the cylindrical case r = pcos ¢i + psin¢j + zk and the set is

a . 0 . a
8—; = cos ¢i + sin ¢j, % = —psin @i + p cos ¢j, 8_22 k

ar 9 8
Therefore — ra r =p.
p 8¢ oz ar or
That the geometric interpretation of — 8_¢ X 8_ dpd¢dz is an infinitesimal rectangular parallele-
ap Z

piped suggests the differential element of volume in cylindrical coordinates is
dV = pdpdpdz

Thus, for an integrable but otherwise arbitrary function, F(p, ¢, z), of cylindrical coordinates, the
iterated triple integral takes the form

2 (82(2) (f2(9.2)
J J J Flo. ¢, pdpdepdz
z1 Jg1(2) Jfi(.2)

The differential element of area for polar coordinates in the plane results by suppressing the z
coordinate. It is

8r

dA =
8,0 8¢

" dpde

and the iterated form of the double integral is

P2 ($2(p)

J J Fp, ¢)pdpdd
#1(p)

The transformation equations relating spherical and rectangular Cartesian coordinates are

X = rsinfcos ¢, y = rsinésin ¢, z=rcosf

In this case the coordinate surfaces are spheres, cones, and planes. (See Fig. 9-5.)
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Following the same pattern as with cylindrical coordinates we discover that
dV = r*sin@dr do dp

and the iterated triple integral of F(r, 0, ¢) has the spherical representation

ry (02(¢) (2(r.0)
J J J F(r,0, ¢)r* sin0dr do d¢
01(¢) J 1 (r.0)

r

Of course, the order of these integrations may be adapted to the geometry.
The coordinate surfaces in spherical coordinates are spheres, cones, and planes. If r is held
constant, say, r = a, then we obtain the differential element of surface area

dA = a*sin6do d¢
The first octant surface area of a sphere of radius «a is
/2 (/2 /2 Z /2
J J & sin9d9d¢>:J a2(—cos9)5d¢=J Pdp =2
o Jo 0 0 2

Thus, the surface area of the sphere is 47a’.

Solved Problems

DOUBLE INTEGRALS

9.1. (a) Sketch the region # in the xy plane bounded by y = x>, x =2,y = 1.

(b) Give a physical interpreation to Jj(xz + yz) dxdy.

'%
(¢) Evaluate the double integral in (b).

(a) The required region Z is shown shaded in Fig. 9-6 below.

(b) Since x? + y? is the square of the distance from any point (x, y) to (0, 0), we can consider the double
integral as representing the polar moment of inertia (i.e., moment of inertia with respect to the origin) of
the region # (assuming unit density).

y
2,4

}( ) y=4fr-——----- 2,4)
‘ |
] I
| I
] ]
| |
‘ |
v=f z | |
| R |

A/idxdy x=p SO
- ___! 1
b y=lp-——gf f -
}yZI } dxdy |
1 1 i

0] x=1 x=2 . o } X
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9.2.

9.3.
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We can also consider the double integral as representing the mass of the region # assuming a
density varying as x> + »°.

(¢) Method 1: The double integral can be expressed as the iterated integral

3 X

2 X’ 2 X2 2 V
J [ (> + 1)) dydx = [ [ P+ dy}dx = [ Xy +—
x=1Jy=1 Jx=1 | Jx=1 3

) y=1

2 6
_ 4, x o 1 1006
_L=1(A +—3 X 3)dx_105

The integration with respect to y (keeping x constant) from y = 1 to y = x? corresponds formally
to summing in a vertical column (see Fig. 9-6). The subsequent integration with respect to x from x = 1
to x = 2 corresponds to addition of contributions from all such vertical columns between x = 1 and
x=2.

dx
y=1

Method 2: The double integral can also be expressed as the iterated integral

4 2 4 2 " 43 2
J J (x> + Y dxdy = J J & +y)dxtdy = J 43 dy
y=1Jx=y5 y=1 xX=y y=1 3 X=y
4 3/2
8 5,y 5 1006
= Syl O gy = 2
L:l (3 R TR R TiE:

In this case the vertical column of region Z in Fig. 9-6 above is replaced by a horizontal column as
in Fig. 9-7 above. Then the integration with respect to x (keeping y constant) from x = ,/y to x =2
corresponds to summing in this horizontal column. Subsequent integration with respect to y from
y =1to y =4 corresponds to addition of contributions for all such horizontal columns between y = 1
and y = 4.

Find the volume of the region bound by the elliptic paraboloid z = 4 — x> — ‘—1‘ y? and the plane
z=0.

Because of the symmetry of the elliptic paraboloid, the result can be obtained by multiplying the first
octant volume by 4.

Letting z = 0 yields 4x> + y* = 16. The limits of integration are determined from this equation. The
required volume is

2 (2VASR 1 2 1 WA’
4JJ 4—x2——y? dydx:4J 4y — Xy — - dx
0
= 16I1
Hint: Use trigonometric substitutions to complete the integrations.
The geometric model of a material body is a plane region R bound by y = x> and y = v/2 — x2 on

the interval 0 < x < 1, and with a density function p = xy (a) Draw the graph of the region.
(b) Find the mass of the body. (¢) Find the coordinates of the center of mass. (See Fig. 9-8.)

(@)

y=\12—x2

Fig. 9-8
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b ofs | I V-
b) M:J J pdydx:J J yxdydx:J — xdx
adf 0Je 0| 2

|
1 > 46
1 5 4 x* X X 7
= =x2-x*— S S =_
sz( XX dx [2 8 12}0 24
(¢) The coordinates of the center of mass are defined to be

1 rjfz(X) 1
X=— x pdydx and y=—
M Ja)p M

where

b pfa(x)
M = [ [ pdydx
Ja Jfi(x)

Thus,

2

9.4. Find the volume of the region common to the intersecting cylinders x*+)° =4* and

x2 —l—z2 = az.

Required volume = 8 times volume of region shown in Fig. 9-9

2 2

—X

d a
=8 J [ zdy dx
x=0 Jy=0

a «/nz—xz
:SJ J Va? —x*dydx

x=0 Jy=0

a 3
:SJ (az—xz)dx:%

x=0

As an aid in setting up this integral, note that z dy dx corresponds to the volume of a column such as
shown darkly shaded in the figure. Keeping x constant and integrating with respect to y from y =0 to
y = v a* — x? corresponds to adding the volumes of all such columns in a slab parallel to the yz plane, thus
giving the volume of this slab. Finally, integrating with respect to x from x = 0 to x = @ corresponds to

adding the volumes of all such slabs in the region, thus giving the required volume.

9.5. Find the volume of the region bounded by

z=x4+y,z=6,x=0,y=0,z=0
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X2+22=ad? z=6
L R
P N ==
z
z=x+ty
dy dx Y <
v =Va®-x° z=0) y
(r=0,z=0)
Y X
Fig. 9-9 Fig. 9-10

Required volume = volume of region shown in Fig. 9-10

r JH{6 ~ (x+ )} dvdx

x=0 Jy=0

6 1 6—x
| 65

x=0 2 y=0

6
:J ~(6—x)?dx =36
02

X=l

In this case the volume of a typical column (shown darkly shaded) corresponds to {6 — (x + y)} dy dx.
The limits of integration are then obtained by integrating over the region # of the figure. Keeping x
constant and integrating with respect to y from y =0 to y = 6 — x (obtained from z =6 and z=x+y)
corresponds to summing all columns in a slab parallel to the yz plane. Finally, integrating with respect to x
from x =0 to x = 6 corresponds to adding the volumes of all such slabs and gives the required volume.

TRANSFORMATION OF DOUBLE INTEGRALS

9.6. Justify equation (9), Page 211, for changing variables in a double integral.
In rectangular coordinates, the double integral of F(x, y) over the region # (shaded in Fig. 9-11) is
J JF (x,y)dxdy. We can also evaluate this double integral by considering a grid formed by a family of v and

A . . .
v curvilinear coordinate curves constructed on the region # as shown in the figure.

y
v = constant
or
ou Ay
AR R
P
or
v Av
r u = constant
o X

Fig. 9-11
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9.7.

9.8.

Let P be any point with coordinates (x, y) or (u, v), where x = f(u, v) and y = g(u,v). Then the vector r

from O to Pis given by r = xi + yj = f(u, v)i + g(u, v)j. The tangent vectors to the coordinate curves u = ¢;

and v = ¢,, where ¢; and ¢, are constants, are dr/dv and dr/du, respectively. Then the area of region AZ of

. L . a d
Fig. 9-11 is given approximately by a—r X a—r Au Av.
o v
But
81 E)J k ox ay
or or |25 20l \ou duly _ 9x.)
o 90 SZ g” )
22 0w w
v
so that or X o AuAv = ‘?(X’ Y) AuAv
ou a(u, v)
The double integral is the limit of the sum
a(x, »)
F{f(u,v), g(u, v)} Au Av
2 (u, v)
taken over the entire region #Z. An investigation reveals that this limit is
. ax. v
[ [Pt gmon 5ot auas
a(u, v)

gy
where %' is the region in the uv plane into which the region # is mapped under the transformation

x = f(u,v),y = g(u, v).
Another method of justifying the above method of change of variables makes use of line integrals and
Green’s theorem in the plane (see Chapter 10, Problem 10.32).

If u=x?—)% and v = 2xy, find a(x, y)/d(u, v) in terms of u and v.

au,v) _2x =2y
Hx,y) T2y 2x

From the identify (x> + 1) = (x*> — »*)* + (2xy)* we have
P+ =+ and X+ =V +1?
Then by Problem 6.43, Chapter 6,

ax,y) 1 _ 1 _ 1
Au.v) B 0)/Ax. ) AT+ aiP 1P

Another method: Solve the given equations for x and y in terms of u and v and find the Jacobian directly.

ux u y
Uy

‘ =4(x" +)7)

Find the polar moment of inertia of the region in the xy plane bounded by x*>—)> =1,
2

x> —1? =9, xy = 2, xy = 4 assuming unit density.
Under the transformation x> — 32 = u, 2xy = v the required region # in the xy plane [shaded in Fig.
9-12(a)] is mapped into region %’ of the uv plane [shaded in Fig. 9-12(h)]. Then:

a(x, y)

2 0) du dv

Required polar moment of inertia = JJ(xz +3) dxdy = JJ(‘C + )l
7

'

9 8
[[\/u + v dudu 1[ J dudv =18
4\/1,4 —‘,—’U 4 u=1 Jv=4

where we have used the results of Problem 9.7.
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y
v
T v=38
[
[
R Fedudv
[
L v=4
l<-u=1 u=9-—>
X u
(a) (b)

Fig. 9-12
Note that the limits of integration for the region 2’ can be constructed directly from the region Z in the

xy plane without actually constructing the region #’. In such case we use a grid as in Problem 9.6. The
coordinates (u, v) are curvilinear coordinates, in this case called hyperbolic coordinates.

9.9. Evaluate JJ,/xz + 32 dx dy, where £ is the region in the xy plane bounded by x*> 4+ )? = 4 and
%
X2+ y2 =09.

The presence of x* + »* suggests the use of polar coordinates (p, ¢), where x = pcose, y = psin¢ (see

Problem 6.39, Chapter 6). Under this transformation the region £ [Fig. 9-13(a) below] is mapped into the
region 2’ [Fig. 9-13(b) below].

y ¢
2 -
s R’
‘ B
2 3 7
R
(@) (b)
Fig. 9-13
. a(x, y) .
Since = p, it follows that
a(p, ¢)
”\/x2 +y dxdy = ” x2+)2 x. ) dpde = ”p -pdpde
r ) ) ap, @) ) )
2 (3 2r 33 2
19 387
= [ [ P dpdg = [ % dqb:[ 5 do ="
Jg=0Jp=2 Jg=0 3 12 $=0
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We can also write the integration limits for 2’ immediately on observing the region #, since for fixed ¢,
p varies from p = 2 to p = 3 within the sector shown dashed in Fig. 9-13(a). An integration with respect to
¢ from ¢ = 0 to ¢ = 27 then gives the contribution from all sectors. Geometrically, p dp d¢ represents the
area dA as shown in Fig. 9-13(a).

9.10. Find the area of the region in the xy plane bounded by the lemniscate 0° = d’ cos 2¢.

Here the curve is given directly in polar coordinates (p, ¢). By assigning various values to ¢ and finding
corresponding values of p, we obtain the graph shown in Fig. 9-14. The required area (making use of
symmetry) is

as/cos2¢p
d¢

/4 p3

pdopdp :4J 5
$=0

/4 ras/cos2d
..

¢=0

p=0 p=0

/4 /4
= 2J @ cos2¢pdp = a’ sin2¢ =d
¢=0 ¢=0

Lp=m/4
L~ dA=pdp dp

z=a-x-y

dV =dz dy dx

Fig. 9-14 Fig. 9-15

TRIPLE INTEGRALS

9.11. (a) Sketch the three-dimensional region # boundedbyx+y+z=a(a>0),x=0,y=0,z=0.
(b) Give a physical interpretation to

JJJ(XZ +3? + ) dxdyd:z

(¢) Evaluate the triple integral in ().

(a) The required region Z is shown in Fig. 9-15.

(b) Since x> + y* + 2° is the square of the distance from any point (x, v, z) to (0, 0, 0), we can consider the
triple integral as representing the polar moment of inertia (i.e., moment of inertia with respect to the
origin) of the region # (assuming unit density).

We can also consider the triple integral as representing the mass of the region if the density varies
2, 2, 2
as x” +y +z.
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(¢) The triple integral can be expressed as the iterated integral

a a—X (a—x—y
X2 + 2 + Z2 dz dy dx

(a—x

3

C(@a—x—y)

12

N3
})} dy dx

a—x
dx
y=0

x=0 Jy=0 Jz=0

o a—x 73 a—x—y

= J J X4z dy dx
x=0 Jy=0 3 z=0
a a—x

:J J Xa—x)—xy+@—xp' -y +
x=0 Jy=0
a 2.2 _ 3

:J xz(a—x)y—%—l-(a LA
x=0 3

=), 2 3
al 20, _ )2 Y 5

_ J X (LZ X) + (a X) dx = i
2 6 20

a 2 2 4 4 4
waw_w_xw—w+w—m_w—m+wbm}w

[CHAP. 9

The integration with respect to z (keeping x and y constant) from z =0 to z =a — x — y corre-
sponds to summing the polar moments of inertia (or masses) corresponding to each cube in a vertical
column. The subsequent integration with respect to y from y =0 to y = a — x (keeping x constant)
corresponds to addition of contributions from all vertical columns contained in a slab parallel to the yz
plane. Finally, integration with respect to x from x = 0 to x = a adds up contributions from all slabs

parallel to the yz plane.

Although the above integration has been accomplished in the order z, y, x, any other order is

clearly possible and the final answer should be the same.

9.12. Find the (a) volume and (b) centroid of the region # bounded by the parabolic cylinder
z=4—x* and the planes x =0, y =0, y = 6, z = 0 assuming the density to be a constant o.

The region £ is shown in Fig. 9-16.

Fig. 9-16
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(a) Required volume J

x=l
2

xX=

s
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J dxdydz

J J dz dy dx

[ 4= x*)dydx

x)y

dx
=0

2
(24 — 6x%) dx = 32

J
[
-

2 T —
() Total mass = J J J o dzdy dx = 320 by part (a), since o is constant. Then
x=0 Jy=0 Jz=0
2 6 pd-x
J J J oxdzdydx
P Total moment about yz plane  J.—0 J,=0 J.=0 _ 240 3
a Total mass - Total mass T 320 4
4-)
. Total moment about xz plane fy 0 f f 0V oydzdydx 960 _
Y= Total mass Total mass T 320
2 6 4—x
J J J ozdzdydx
5o Total moment about xy plane _Jx=0Jy=0J:=0 _ 2560/5 _§
- Total mass - Total mass T 320 5

Thus, the centroid has coordinates (3/4, 3, 8/95).
Note that the value for y could have been predicted because of symmetry.

TRANSFORMATION OF TRIPLE INTEGRALS

9.13. Justify equation (/7), Page 211, for changing variables in a triple integral.

By analogy with Problem 9.6, we construct a grid of curvilinear coordinate surfaces which subdivide the
region £ into subregions, a typical one of which is AZ (see Fig. 9-17).

ar
f aUAZ/
or
0WAW‘
P lor
L@Au R

Fig. 9-17
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9.14.

9.15.

9.16.
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The vector r from the origin O to point P is
r=xi+yj+zk = f(u, v, w)i + g(u, v, w)j + h(u, v, w)k

assuming that the transformation equations are x = f(u, v, w), y = g(u, v, w), and z = h(u, v, w).

Tangent vectors to the coordinate curves corresponding to the intersection of pairs of coordinate
surfaces are given by dr/du, dar/dv, dr/dw. Then the volume of the region AZ of Fig. 9-17 is given approxi-
mately by
ar or or

X —

or or ax, v, z)
ou dv  ow

AuAv Aw
a(u, v, w) UAUAW

AulAvAw = ‘

The triple integral of F(x, y, z) over the region is the limit of the sum

ax, y, z)

AuAv Aw
a(u, v, w) HAvaw

Z F{f(u,v,w), gu,v, w), h(u, v, w)}

An investigation reveals that this limit is

ax,y,2)

o, v du dv dw

J[ .[F {f(u, v, w), g(u, v, ), h(u, v, w)}

R

where % is the region in the uvw space into which the region % is mapped under the transformation.
Another method for justifying the above change of variables in triple integrals makes use of Stokes’
theorem (see Problem 10.84, Chapter 10).

What is the mass of a circular cylindrical body represented by the region
0=p=¢0=¢ =210 =z < h and with the density function u = zsin? P?

h (2 e
M:J J J zsin2¢pdpd¢dz:n
0oJo Jo

Use spherical coordinates to calculate the volume of a sphere of radius a.

a (/2 (/2 ) 4 R
V:SJ J J a sinfdrdode = - na
oJo Jo 3

Express JJjF (x,y,z)dxdydz in (a) cylindrical and (b) spherical coordinates.

%
(a) The transformation equations in cylindrical coordinates are x = pcos¢, y = psin¢, z = z.
As in Problem 6.39, Chapter 6, d(x, y, z)/3(p, ¢, z) = p. Then by Problem 9.13 the triple integral

becomes

| [60.0.20d0 dpa:
P
where %’ is the region in the p, ¢,z space corresponding to # and where G(p, ¢,z =
F(pcos ¢, psing, z).
(b) The transformation equations in spherical coordinates are x = rsincos ¢, y = rsin@sin¢, z = rcos6.
By Problem 6.101, Chapter 6, a(x, y, z)/3(r, 6, ¢) = r*sin6. Then by Problem 9.13 the triple
integral becomes

J J J H(r, 0, ¢y sin0dr do d¢

2

where %’ is the region in the r, 6, ¢ space corresponding to %, and where H(r, 6, ¢) = F(rsin 6 cos ¢,
rsin@sin ¢, rcos6).
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9.17. Find the volume of the region above the xy plane bounded by the paraboloid z = x* + y* and the
cylinder x* + y* = &°.

The volume is most easily found by using cylindrical coordinates. In these coordinates the equations
for the paraboloid and cylinder are respectively z = p* and p =a. Then

Required volume = 4 times volume shown in Fig. 9-18

/2 ra o
:4J J [ pdzdpdp

$=0 J p=0 Jz=0
/2 ra
=4 J J P dpdg
»=0 J p=0
72 4 a
14 T 4
= 4J — d¢ =—da
ni=0 4 |- 2
z

| z=x2+y?

_2
| 7 orz=p
LS54 1 \—dV=p dz dp d
s 7 L
=% =1 y
e g
~o |
z=0 x2+y2:a2
orp=a
X
Fig. 9-18

The integration with respect to z (keeping p and ¢ constant) from z =0 to z = p* corresponds to
summing the cubical volumes (indicated by d}’) in a vertical column extending from the xy plane to the
paraboloid.  The subsequent integration with respect to p (keeping ¢ constant) from p=0 to p=a
corresponds to addition of volumes of all columns in the wedge-shaped region. Finally, integration with
respect to ¢ corresponds to adding volumes of all such wedge-shaped regions.

The integration can also be performed in other orders to yield the same result.

We can also set up the integral by determining the region 2’ in p, ¢, z space into which Z is mapped by
the cylindrical coordinate transformation.

9.18. (a) Find the moment of inertia about the z-axis of the region in Problem 9.17, assuming that the
density is the constant 0. (b) Find the radius of gyration.

(a) The moment of inertia about the z-axis is

/2 ra pz
1_.:4J J J o -opdzdpdd

¢ Jp=0Jz=0
/2 ra /2 6 |a 6
:40J J depd¢:4aJ Ll ap="4C
9=0.Jp=0 9=0 6 [0 3
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9.19.
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The result can be expressed in terms of the mass M of the region, since by Problem 9.17,

. b1
M = volume x density = 5“40

Ta o wa

3 mat

¢ oM

2
§Ma2

Note that in setting up the integral for I, we can think of opdzdpd¢ as being the mass of the
cubical volume element, p2 -opdzdpdg, as the moment of inertia of this mass with respect to the z-axis

and JJ J ,o2 -opdzdpdg as the total moment of inertia about the z-axis. The limits of integration are

»
determined as in Problem 9.17.

(b) The radius of gyration is the value K such that MK> = %Maz, ie., K> = %az or K =ay/2/3.
The physical significance of K is that if all the mass M were concentrated in a thin cylindrical shell
of radius K, then the moment of inertia of this shell about the axis of the cylinder would be I..

(a) Find the volume of the region
bounded above by the sphere
X+ y2 +22=d> and below by the
cone Zsin‘a = (x2 —|—y2) cos’ o, where
« is a constant such that 0 £ o < 7.
(b) From the result in (a), find the
volume of a sphere of radius a.

In spherical coordinates the equation
of the sphere is r=a and that of the
cone is 6 =«. This can be seen directly
or by using the transformation equations
x =rsinfcos¢, y = rsinfsin¢g, z = rcosb.
For example, z° sin’ @ = (x* + ) cos® &
becomes, on using these equations,

1% cos® fsin’ o =
(r? sin® @ cos® ¢ + r* sin” O sin® ¢) cos” o

. 2 . .
1.e., 1° cos’ fsin® a = 1* sin’ @ cos’ @

from which tanf = +tane and sof =a or 0 = — a.

(a) Required volume = 4 times volume (shaded) in Fig. 9-19

/2 o a
:4J [ J P sinOdrdode

¢=0 Jo=0 Jr=0

/2 o ',3
=4 J J —sinf
¢=0 Jo=0 3

3

3 Jo=o0 Joo

4 3 (/2
= J —cosf
3 ¢=0

2’

= T(l — cosa)

o

0=0

d6de
r=0

3 (/2 o
=53-J J sin 6 d6 dg

d¢

O=a
dV =r?sin 6 dr d dp

Fig. 9-19

It is sufficient to consider one of these, say, 6 = «.

The integration with respect to r (keeping 6 and ¢ constant) from r = 0 to r = a corresponds to
summing the volumes of all cubical elements (such as indicated by dV') in a column extending from
r=0tor =a. Thesubsequent integration with respect to 6 (keeping ¢ constant) from 6 = 0to 6 = 7 /4
corresponds to summing the volumes of all columns in the wedge-shaped region. Finally, integration
with respect to ¢ corresponds to adding volumes of all such wedge-shaped regions.
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(b) Letting @ = 7, the volume of the sphere thus obtained is

2 4
%(1 —cosm) =-na

9.20. (a) Find the centroid of the region in Problem 9.19.
(b) Use the result in (@) to find the centroid of a hemisphere.

(a) The centroid (x, y, 2) is, due to symmetry, given by X = y = 0 and

. Total moment about xy plane _ [ [ [zodV
= Total mass T [[feav

Since z = rcos 8 and o is constant the numerator is

/2 o a , /2 ],4
40J J [ rcos6 - r” sinOdrd@dqb:4aJ [ —
$=0 Jo=0 Jr=0 0=0 Jo=0 4

a

sin 6 cos 0 db d¢
r=0

/2 o
:oa4J J sinfcos0dode

¢=0 Jo=0
4 [ sin?0]* noa* sin’ «
= od dp =T @
o=0 2 lo=o 4

The denominator, obtained by multiplying the result of Problem 9.19(a) by o, is %naa3(l —cosw).
Then

_ Lnod sin® a (1 + cosa).
=4 a o
2moa’(1 — cosa) ~3

(b) Lettinga =m/2,Z=3a.

MISCELLANEOUS PROBLEMS

9.21. Prove that (a) J ”;(fﬂy) dy}dx—%, (b) J {E(;;yy) dx}dy: —%.
@ JI{J; (:w:y) } J {Jo Y(:J(rij)Ly)dy}dx
LGS aap) oo
1
Jo((wry) xjr})

1

dx

y=0
!
0o 2

! -1
Jo(x+1) x+1

(L ( (1
(b) This follows at once on formally interchanging x and y in («) to obtain J “ = x} dx} dy = ! and
then multiplying both sides by —1. 0 (x+p) 2

This example shows that interchange in order of integration may not always produce equal results.
A sufficient condition under which the order may be interchanged is that the double integral over the

corresponding region exists. In this case ij dxdy, where # is the region

0<x=1,0=<y <1 fails to exist because of the dlscontmulty of the integrand at the origin. The
integral is actually an improper double integral (see Chapter 12).

X

9.22. Prove that J
0

“t F(u) du} di = r(x — w)F(u) du.
0 0
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Let I(x)= J;{J; F(u) du} dt, J(x)= E(x — u)F(u)du. Then

I'(x) = J; Fu)du, J'(x)= J; F(u) du

using Leibnitz’s rule, Page 186. Thus, I'(x) = J'(x), and so I(x) — J(x) = ¢, where c is a constant. Since
1(0) =J(0) =0, ¢c =0, and so I(x) = J(x).
The result is sometimes written in the form

J Jx F(x)dx® = J:(x — W)F(u) du

0Jo

The result can be generalized to give (see Problem 9.58)

r r . [.\— Fydd = _1 o J:(x W F G du

0Jo JO

Supplementary Problems

DOUBLE INTEGRALS

9.23.

9.24.

9.25.

9.26.

9.27.

9.28.

9.29.

(a) Sketch the region £ in the xy plane bounded by 3> = 2x and y = x. () Find the area of Z. (¢) Find
the polar moment of inertia of # assuming constant density o.
Ans. (b) 2; (c) 480/35 =72M /35, where M is the mass of 2.

Find the centroid of the region in the preceding problem. Ans. X = ‘5—‘,)7 =1
3 N 4=y
Given (x+y)dxdy. (a) Sketch the region and give a possible physical interpretation of the

y=0 Jx=1
double integral. (b) Interchange the order of integration. (c¢) Evaluate the double integral.

2 4=’
Ans. (b) J [ (x+yp)dydx, (c) 241/60

x=1Jy=0
2 X 4 2
.70 . T 4 2
Show that J J sin 2 dy dx + J J sin = dydx = (n—:— ).
x=1Jy=y~x 2y x=2Jy=yx 2y U

Find the volume of the tetrahedron bounded by x/a + y/b+ z/c = 1 and the coordinate planes.
Ans. abc/6

Find the volume of the region bounded by z = X +y2, z=0,x=—-a,x=a,y=—a,y =a.
Ans. 84*/3

Find (@) the moment of inertia about the z-axis and (b) the centroid of the region in Problem 9.28
assuming a constant density o.
Ans. (@) Y2d°c = ¥ Md*, where M = mass; (b) ¥=7=0,Z2=1La

TRANSFORMATION OF DOUBLE INTEGRALS

9.30.

Evaluate [J,/xz + y2 dx dy, where Z is the region x> + )* < d°. Ans. ind’
"%
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931.  If % is the region of Problem 9.30, evaluate [ [f“”-“” dxdy.  Ans. m(1—e)

9.32. By using the transformation x + y = u, y = uv, show that

1 rl—x
J J &1 gy dx = el
x=0 2

y=0

9.33. Find the area of the region bounded by xy =4, xy =8, x)° = 5, x)° = 15. [Hint: Let xy = u, x)° = v.]
Ans. 2In3

9.34. Show that the volume generated by revolving the region in the first quadrant bounded by the parabolas

¥ =x,17 = 8x, x% = y, x> = 8y about the x-axis is 2797/2. [Hint: Let y* = ux, x> = vy.]

9.35.  Find the area of the region in the first quadrant bounded by y = x*,y = 4x°, x = )*, x = 4)°.

Ans. %
) . xX—y sin 1 .
9.36. Let # be the region bounded by x + y=1,x =0,y = 0. Show that | | cos T dxdy = 5 [Hint: Let
x_y:u,x-}-y:y.] g XTy
TRIPLE INTEGRALS
1ol g2
9.37. (a) Evaluate J J [ xyzdzdydx. (b) Give a physical interpretation to the integral in (a).
x=0 Jy=0 Jz=4/x*+)?

Ans. (a) %

9.38. Find the (a) volume and (b) centroid of the region in the first octant bounded by x/a+y/b+z/c =1,
where a, b, ¢ are positive. Ans. (a) abc/6; (b)) x=a/4.y=b/4,Z=c/4

9.39. Find the (a) moment of inertia and (b) radius of gyration about the z-axis of the region in Problem 9.38.
Ans. (a) M(a*+bH/10, (b) (@ +b>)/10

9.40. Find the mass of the region corresponding to x* + * +z> < 4,x = 0,y = 0,z = 0, if the density is equal
to xyz. Ans. 4/3

9.41. Find the volume of the region bounded by z = x> + »* and z = 2x. Ans. /2

TRANSFORMATION OF TRIPLE INTEGRALS
9.42. Find the volume of the region bounded by z =4 — x> — J and the xy plane. Ans. 8w

9.43. Find the centroid of the region in Problem 9.42, assuming constant density o.
Ans. )E:)‘/:O,E:%

9.44. (a) Evaluate JJJ,/;{Z + 3% + 22 dx dy dz, where Z is the region bounded by the plane z = 3 and the cone

7
z=+/x> 4% (b) Give a physical interpretation of the integral in (a). [Hint: Perform the integration in
cylindrical coordinates in the order p, z, ¢.] Ans. 27n(23/2 - 1)/2

9.45.  Show that the volume of the region bonded by the cone z = \/x? + y? and the paraboloid z = x* + ) is 7/6.

9.46. Find the moment of inertia of a right circular cylinder of radius a and height b, about its axis if the density is
proportional to the distance from the axis. Ans. %Ma2
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9.47.

9.48.

9.49.

MULTIPLE INTEGRALS [CHAP. 9

dxdyd. . .

(a) Evaluate JJJ%, where # is the region bounded by the spheres x> + y* + z> = ¢* and
S (x2+y2+22)/

x>+ +22 =0 wherea > b > 0. (b) Give a physical interpretation of the integral in (a).

Ans. (a) 4mln(a/b)

(a) Find the volume of the region bounded above by the sphere r = 2acos 6, and below by the cone ¢ = «
where 0 < a < /2. (b) Discuss the case o = /2. Ans. ‘3—‘7m3(1 —cos*a)

Find the centroid of a hemispherical shell having outer radius a and inner radius b if the density (a) is
constant, (b) varies as the square of the distance from the base. Discuss the case a = b.

Ans. Taking the z-axis as axis of symmetry: (¢) x=y=0,z= %(a4 —thid-bY);, () x=j=0,
2=3(a" - b)/(@ - D)

MISCELLANEOUS PROBLEMS

9.50.

9.51.

9.52.

9.53.

9.54.

9.55.

9.56.

9.57.

9.58.

Find the mass of a right circular cylinder of radius a and height 4 if the density varies as the square of the
distance from a point on the circumference of the base.
Ans. %7mzbk(9a2 + 2b%), where k = constant of proportionality.

Find the (a) volume and (b) centroid of the region bounded above by the sphere x> + 37 + 2> = a* and
below by the plane z = b where @ > b > 0, assuming constant density.
Ans. (@) in(2d’ —=3ab+b); () x=5=0,Z=3(a+b)/Q2a+b)

A sphere of radius a has a cylindrical hole of radius b bored from it, the axis of the cylinder coinciding with a
diameter of the sphere. Show that the volume of the sphere which remains is %n[cf - (a2 — b2)3/2].

A simple closed curve in a plane is revolved about an axis in the plane which does not intersect the curve.
Prove that the volume generated is equal to the area bounded by the curve multiplied by the distance
traveled by the centroid of the area (Pappus’ theorem).

Use Problem 9.53 to find the volume generated by revolving the circle x> + (v — b’ = ¢*, b > a > 0 about
the x-axis. Ans. 2m°d%b

Find the volume of the region bounded by the hyperbolic cylinders xy = 1, xy =9, xz = 4, xz = 36, yz = 25,
yz=49. [Hint: Let xy = u, xz = v, yz = w.] Ans. 64

Evaluate JJJ\/I — (x%/a* + y?/b* + 22 /) dx dy dz, where # is the region interior to the ellipsoid

72
Xja* + 12 /* + 22/ = 1. [Hint: Let x = au, y = bv, z = cw. Then use spherical coordinates.]

Ans. %n2abc

2w
eV3

X =ucosa —wvsina, y =usina +vcosa and choose o 50 as to eliminate the xy term in the integrand.
Then let u = apcos ¢, v = bpsin ¢ where a and b are appropriately chosen.]

If # is the region x*4xy+y* <1, prove that J[ef(x#xyﬂ’z)dxdy: (e—1). [Hint: Let

Prove that J J J F(x)dx" = ! J (x — u)" " F(u)du for n =1,2,3, ... (see Problem 9.22).
0Jo 0 (n=1"Jo



CHAPTER 10

Line Integrals, Surface
Integrals, and Integral
Theorems

Construction of mathematical models of physical phenomena requires functional domains of greater
complexity than the previously employed line segments and plane regions. This section makes progress
in meeting that need by enriching integral theory with the introduction of segments of curves and
portions of surfaces as domains. Thus, single integrals as functions defined on curve segments take
on new meaning and are then called /ine integrals. Stokes’s theorem exhibits a striking relation between
the line integral of a function on a closed curve and the double integral of the surface portion that is
enclosed. The divergence theorem relates the triple integral of a function on a three-dimensional region
of space to its double integral on the bounding surface. The elegant language of vectors best describes
these concepts; therefore, it would be useful to reread the introduction to Chapter 7, where the impor-
tance of vectors is emphasized. (The integral theorems also are expressed in coordinate form.)

LINE INTEGRALS

The objective of this section is to geometrically view the domain of a vector or scalar function as a
segment of a curve. Since the curve is defined on an interval of real numbers, it is possible to refer the
function to this primitive domain, but to do so would suppress much geometric insight.

A curve, C, in three-dimensional space may be represented by parametric equations:

x=/0y=L0.z=/0O, a=t1=b ()

or in vector notation:
X =r(¢) )
where
r(t) = xi+ yj+zk
(see Fig. 10-1).
229
Copyright 2002, 1963 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



230 LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS [CHAP. 10

Fig. 10-1

For this discussion it is assumed that r is continuously differentiable. While (as we are doing) it is
convenient to refer the Euclidean space to a rectangular Cartesian coordinate system, it is not necessary.
(For example, cylindrical and spherical coordinates sometimes are more useful.) In fact, one of the
objectives of the vector language is to free us from any particular frame of reference. Then, a vector
Alx(7), ¥(1), z(¢)] or a scalar, O, is pictured on the domain C, which according to the parametric repre-
sentation, is referred to the real number interval a < ¢ < b.

The Integral

LA - dr 3)

of a vector field A defined on a curve segment C is called a line integral. ~The integrand has the
representation

Aldx+A2dy+A3dz

obtained by expanding the dot product.
The scalar and vector integrals

JC O dr = lim PICIT AV @
k=1

L A(Ddr = Tim Y~ Ak, nx. SAD); ©)
k=1

can be interpreted as line integrals; however, they do not play a major role [except for the fact that the
scalar integral (3) takes the form (4)].
The following three basic ways are used to evaluate the line integral (3):

1. The parametric equations are used to express the integrand through the parameter ¢. Then

5]
JA-dr:J Ay
c dt

4l

2. If the curve C is a plane curve (for example, in the xy plane) and has one of the representations
y=f(x) or x =g(y), then the two integrals that arise are evaluated with respect to x or y,
whichever is more convenient.
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3. If the integrand is a perfect differential, then it may be evaluated through knowledge of the end
points (that is, without reference to any particular joining curve). (See the section on indepen-
dence of path on Page 232; also see Page 237.)

These techniques are further illustrated below for plane curves and for three space in the problems.

EVALUATION OF LINE INTEGRALS FOR PLANE CURVES

If the equation of a curve C in the plane z = 0 is given as y = f(x), the line integral (2) is evaluated
by placing y = f(x), dy = f'(x) dx in the integrand to obtain the definite integral

[ Pl S0} dx + Qb () () dx %

a

which is then evaluated in the usual manner.
Similarly, if C is given as x = g(y), then dx = g'(y) dy and the line integral becomes

by
J{ P{g(y). y}g'(y)dy + Q{g(y), y} dy ®
If C is given in parametric form x = ¢(z), y = ¥(¢), the line integral becomes
5]
J PO, (D)6 (1) di -+ QU0 w0, ¥ (1 e ©

where f; and ¢, denote the values of ¢ corresponding to points 4 and B, respectively.
Combinations of the above methods may be used in the evaluation. If the integrand A - dr is a
perfect differential, d®, then

(c.d)
J A-dr = f d® = 0(c,d) — O(a, b) 6)
Cc (a,b)

Similar methods are used for evaluating line integrals along space curves.

PROPERTIES OF LINE INTEGRALS EXPRESSED FOR PLANE CURVES

Line integrals have properties which are analogous to those of ordinary integrals. For example:

1. J P(x,y)dx + Q(x,y)dy = J P(x, y)dx + J O(x, y)dy
C c C

(a3,b7) (ay,by)
2. J de+Qdy:—J Pdx+qdy
(ay,by) (az,b7)

Thus, reversal of the path of integration changes the sign of the line integral.

(a3,b3) r(a,b7)
de+Qdy+J Pdx+ Qdy

(a3,b3)

(a2,b7)
3. J Pdx+Qdy = J
(a2,b1) (a1,by)

where (a3, b3) is another point on C.

Similar properties hold for line integrals in space.
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SIMPLE CLOSED CURVES, SIMPLY AND MULTIPLY CONNECTED REGIONS

A simple closed curve is a closed curve which does not intersect itself anywhere. Mathematically, a
curve in the xy plane is defined by the parametric equations x = ¢(¢), y = ¥(¢) where ¢ and  are single-
valued and continuous in an interval #; < ¢t < 1t,. If ¢(¢;) = ¢(2,) and Y(t,) = ¥(1,), the curve is said to
be closed. 1If ¢p(u) = ¢p(v) and Y(u) = ¥(v) only when u = v (except in the special case where v = ¢; and
v = t,), the curve is closed and does not intersect itself and so is a simple closed curve. We shall also
assume, unless otherwise stated, that ¢ and y are piecewise differentiable in #; < ¢t < 1,.

If a plane region has the property that any closed

curve in it can be continuously shrunk to a point
without leaving the region, then the region is called
simply connected; otherwise, it is called multiply con- Positive

nected (see Fig. 10-2 and Page 118 of Chapter 6). orientation

As the parameter ¢ varies from #; to f,, the plane  Simple crossed curve Multiply connected
curve is described in a certain sense or direction.
For curves in the xy plane, we arbitrarily describe
this direction as positive or negative according as a person traversing the curve in this direction with his
head pointing in the positive z direction has the region enclosed by the curve always toward his left or
right, respectively. If we look down upon a simple closed curve in the xy plane, this amounts to saying
that traversal of the curve in the counterclockwise direction is taken as positive while traversal in the
clockwise direction is taken as negative.

Fig. 10-2

GREEN’S THEOREM IN THE PLANE

This theorem is needed to prove Stokes’ theorem (Page 237). Then it becomes a special case of that
theorem.
Let P, Q, dP/dy, 0Q/dx be single-valued and continuous in a simply connected region # bounded by

a simple closed curve C. Then
ad aP
% Pdx+Qdy = [J(—Q——>dxdy (10)
c . ox 9y

where % is used to emphasize that C is closed and that it is described in the positive direction.

c
This theorem is also true for regions bounded by two or more closed curves (i.e., multiply connected
regions).  See Problem 10.10.

CONDITIONS FOR A LINE INTEGRAL TO BE INDEPENDENT OF THE PATH

The line integral of a vector field A is independent of path if its value is the same regardless of the
(allowable) path from initial to terminal point. (Thus, the integral is evaluated from knowledge of the
coordinates of these two points.)

For example, the integral of the vector field A = yi + xj is independent of path since

X2)2

J A -dr :J vdx +xdy :J d(xy) = x2, — X1V
C C X1

Thus, the value of the integral is obtained without reference to the curve joining P; and P,.

This notion of the independence of path of line integrals of certain vector fields, important to theory
and application, is characterized by the following three theorems:

Theorem 1. A necessary and sufficient condition that J A - dr be independent of path is that there
exists a scalar function ® such that A = VO. ¢
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Theorem 2. A necessary and sufficient condition that the line integral, J A - dr be independent of path
is that Vx A = 0. ¢

Theorem 3. 1f V x A = 0, then the line integral of A over an allowable closed path is 0, i.e., §)A -dr =0.

If C is a plane curve, then Theorem 3 follows immediately from Green’s theorem, since in the plane
case V x A reduces to

04, 04,
ay  ax
R . d(mv) . . .. .
EXAMPLE. Newton’s second law for forces is F = i where m is the mass of an object and v is its velocity.
When F has the representation F = —V0, it is said to be conservative. The previous theorems tell us that the

integrals of conservative fields of force are independent of path. Furthermore, showing that V x F =0 is the
preferred way of showing that F is conservative, since it involves differentiation, while demonstrating that ® exists
such that F = —V@ requires integration.

SURFACE INTEGRALS

Our previous double integrals have been related to a very special surface, the plane. Now we
consider other surfaces, yet, the approach is quite similar. Surfaces can be viewed intrinsically, i.e., as
non-Euclidean spaces; however, we do not do that. Rather, the surface is thought of as embedded in a
three-dimensional Euclidean space and expressed through a two-parameter vector representation:

X =r(vy, v2)
While the purpose of the vector representation is to be general (that is, interpretable through any

allowable three-space coordinate system), it is convenient to initially think in terms of rectangular
Cartesian coordinates; therefore, assume

r=xi+yj+zk
and that there is a parametric representation
x =r(vy, v2), y = r(vy, v2), 2 = r(vy, v2) (1)

The functions are assumed to be continuously differentiable.
The parameter curves v, = const and v; = const establish a coordinate system on the surface (just as
y = const, and x = const form such a system in the plane). The key to establishing the surface integral
of a function is the differential element of surface area. (For the plane that element is d4 = dx, dy.)
At any point, P, of the surface
ar or

dx = — dv, + —

dU2
vy vy

spans the tangent plane to the surface. In particular, the directions of the coordinate curves v, = const
. or or . .
and v; = const are designated by dx; = o0 dv, and dx, = o dv,, respectively (see Fig. 10-3).
U] )

The cross product

r ar
XmdeZ =— X— d’Ul d’U2
8’01 8’[}2
. . . ar or|. . . .
is normal to the tangent plane at P, and its magnitude Poalr U the area of a differential coordinate
V1 L)

parallelogram.
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(This is the usual geometric interpretation of the cross product abstracted to the differential level.)

This strongly suggests the following definition:

Definition. The differential element of surface area is

ar

ds = |
s 81)1

a
X —r d’Ul dU2
8112

For a function ®(v;, v;) that is everywhere integrable on S

U ©ds = U o1, v2)

is the surface integral of the function ©.

ar

o
— dv, d
8@1 x 81}2 U1

In general, the surface integral must be referred to three-space coordinates to be evaluated.

surface has the Cartesian representation z = f(x, y) and the identifications
V) =X, U0 =),z2 =4f‘(1)1,’l)2)

are made then

o . n 0z or - sz
— —i+ Kk, Bl et
o, 0x vy . ay
and
ar ar dz ., 0z,
—x—=Kk——j——
o,  dvy ay 0x
Therefore,
1/2
or ol | 822+ e E
v Ovy| ax ay

Thus, the surface integral of ® has the special representation

az\> [9z\° v
S = JJ O(x, y, Z)|:1 + (a) +(5) i| dx dy

(12)

(13)

If the

(14)

If the surface is given in the implicit form F(x, y,z) = 0, then the gradient may be employed to
obtain another representation. To establish it, recall that at any surface point P the gradient, VF is

perpendicular (normal) to the tangent plane (and hence to S).
Therefore, the following equality of the unit vectors holds (up to sign):
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VF ar or
==
|VF| ax ay

[Now a conclusion of the theory of implicit functions is that from F(x, y, z) = 0 (and under appro-
priate conditions) there can be produced an explicit representation z = f(x, y) of a portion of the surface.

This is an existence statement. The theorem does not say that this representation can be explicitly
produced.] With this fact in hand, we again let v; = x, v, = y, z = f(v;, v;). Then

ar ar
X

— X — 15
8’01 87.)2 ( )

VF = Fi+f,j+Fk
Taking the dot product of both sides of (/5) yields

F. |
VA [ o
81}1 8112

The ambiguity of sign can be eliminated by taking the absolute value of both sides of the equation.
Then

or ar
X

_VF| [(F) + (F) +F)
TR |F.|

871)1 3'[}2
and the surface integral of ® takes the form

J J [(F)* + (F,)* + (F.)1'?
|F.|

dx dy (16)

The formulas (/4) and (/6) also can be introduced in the following nonvectorial manner.

Let S be a two-sided surface having projection # on the xy plane as in the adjoining Fig. 10-4.
Assume that an equation for S'is z = f(x, ), where f is single-valued and continous for all x and y in % .
Divide # into n subregions of area Ad,,p=1,2,...,n, and erect a vertical column on each of these
subregions to intersect S in an area AS,,.

z

A4, = Ax,Ay,

Fig. 10-4

Let ¢(x, y, z) be single-valued and continuous at all points of S. Form the sum

> b 0p. ) AS, (17)
p=1
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where (£,, 1,, {,) is some point of AS,. If the limit of this sum as n — oo in such a way that each
AS, — 0 exists, the resulting limit is called the surface integral of ¢(x, y, z) over S and is designated by

JJ o(x,y,2)dS 8

Since AS, = | secy,| Ad, approximately, where y, is the angle between the normal line to S and the
positive z-axis, the limit of the sum (/7) can be written

J.J¢(x, v, z)| secy| dA (19)

The quantity |sec y| is given by

1 az\> (82>
Iseerl =1 \/ * <8x> +(ay) (@)

Then assuming that z = f(x, y) has continuous (or sectionally continuous) derivatives in %, (19) can be

written in rectangular form as
[ z\> [az\*
Jqu(x,y,z) 1+ — ) +(=—) dxdy 21
0x ay
%
In case the equation for S is given as F(x, y,z) = 0, (21) can also be written

JEP + (F) + (R
J Jq&(x, ,2) 7] dx dy (22)

R»

The results (27) or (22) can be used to evaluate (18).

In the above we have assumed that S is such that any line parallel to the z-axis intersects S in only
one point. In case S is not of this type, we can usually subdivide S into surfaces S;, S,, ..., which are of
this type. Then the surface integral over S is defined as the sum of the surface integrals over S, S5, .. ..

The results stated hold when S is projected on to a region % on the xy plane. In some cases it is
better to project S on to the yz or xz planes. For such cases (/8) can be evaluated by appropriately
modifying (21) and (22).

THE DIVERGENCE THEOREM

The divergence theorem establishes equality between triple integral (volume integral) of a function
over a region of three-dimensional space and the double integral of the function over the surface that
bounds that region. This relation is very important in the expression of physical theory. (See Fig.
10-5.)

Divergence (or Gauss) Theorem
Let A be a vector field that is continuously differentiable on a closed-space region, ¥, bound by a

smooth surface, S. Then
JJJV-AdV:JJA-ndS (23)
Vv s

where n is an outwardly drawn normal.
If n is expressed through direction cosines, i.e., n =icosa + jcos 8+ kcosy, then (23) may be
written
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n

el

y
X
Fig. 10-5
94, 94, 094
JJJ(—l—f— —2 +—3> dVv = JJ(Al cosa + A, cos B+ Ajcosy)dS (24)
ox ay 0z
s
The rectangular Cartesian component form of (23) is
A A A
”J(Q+2+b>dr/=JJ(Aldydz+A2dzdx+A3dxdy) (25)
ox ay a9z
s

EXAMPLE. If B is the magnetic field vector, then one of Maxwell’s equations of electromagnetic theory is
V-B=0. When this equation is substituted into the left member of (23), the right member tells us that the
magnetic flux through a closed surface containing a magnetic field is zero. A simple interpretation of this fact
results by thinking of a magnet enclosed in a ball. All magnetic lines of force that flow out of the ball must return
(so that the total flux is zero). Thus, the lines of force flow from one pole to the other, and there is no dispersion.

STOKES’ THEOREM

Stokes’ theorem establishes the equality of the double integral of a vector field over a portion of a
surface and the line integral of the field over a simple closed curve bounding the surface portion. (See
Fig. 10-6.)

Suppose a closed curve, C, bounds a smooth surface portion, S. If the component functions of
x = r(v;, v,) have continuous mixed partial derivatives, then for a vector field A with continuous partial
derivatives on S

Sl;CA-dr:JJn-VxAdS (26)
s

where n = cos i + cos fj + cos yk with «, 8, and y representing the angles made by the outward normal

n and i, j, and k, respectively.
Then the component form of (26) is
34, 04, 34, 04,
(82 — ax>cosﬂ+<8x s cosy |dS
(27)

94; 04
ﬂ; (A dx+ Ay dy + A5 dz) = ”[(J—J> cosa +
c ay 0z
S

If Vx A =0, Stokes’ theorem tells us that % A -dr=0. Thisis Theorem 3 on Page 237.
c
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Fig. 10-6

Solved Problems

LINE INTEGRALS

(1,2)
10.1. Evaluate J (x* — y)dx 4+ (* + x)dy along (a) a straight line from (0, 1) to (1,2), (b) straight
(O8]
lines from (0, 1) to (1, 1) and then from (1, 1) to (1,2), (c) the parabola x =1, y = * + 1.

(a) An equation for the line joining (0, 1) and (1, 2) in the xy plane is y = x + 1. Then dy = dx and the line
integral equals

J] 0{x2 — (x4 Dydx+{(x+ 1)? + x}dx = J;(2x2 +2x)dx = 5/3
(b) Along the straight line from (0, 1) to (1, 1), y = 1, dy = 0 and the line integral equals
JI 0(x2 — Ddx + (1 +x)(0) = J;(xz —dx=-2/3

Along the straight line from (1, 1) to (1,2), x = 1, dx = 0 and the line integral equals

r A=9)O0+ (7 + Dy = jf(yz T dy = 10/3

y=

Then the required value = —2/3 4+ 10/3 = 8.3.

(¢) Since t =0 at (0,1) and r =1 at (1, 2), the line integral equals

o1 1
J (P =@+ Dydt+ (P + 1)+ 1) 2tdr = J QP +4°2 +2°P + 21— 1)dr =2
=0 0

10.2. IfA = (3x% — 6y2)i + (2y + 3x2)j + (1 — 4xyz>)k, evaluate J A - dr from (0,0,0) to (1, 1, 1) along
the following paths C: ¢
(a) x:l,y:tz,z:t3
(b) The straight lines from (0, 0, 0) to (0, 0, 1), then to (0, 1, 1), and then to (1, 1, 1)
(¢) The straight line joining (0, 0, 0) and (1, 1, 1)

J A-dr= J {(3x% — 6y2)i + 2y + 3x2)j + (1 — 4xyz>)k} - (dxi + dyj + dzk)
C C
= J (3x% — 6yz)dx + 2y + 3x2)dy + (1 — 4xyz>) dz
C

(@) Ifx=1ty=1,z=7, points (0,0,0) and (1, 1, 1) correspond to ¢ = 0 and 7 = 1, respectively. Then
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(1
J A-dr= J (382 — 6(2)()y dr + (27 + 3P} d(1) + {1 — 4N} d(F)
C =0
1
= [ B =6 di+ (4° + 68°)dr + (37 — 126" dr =2
J1=0
Another method:
Along C, A=0GF—-60)i+Q+3Mj+(1 -4 )k and r=xi+yj+zk=ri+7j+rk,
dr = (i +2tj+ 3°k)dt.  Then

1
j A-dr :J B = 6°)di + (47 + 6°) di + 3 — 126Ny dr = 2
C 0

(b) Along the straight line from (0, 0,0) to (0,1, 1), x =0,y = 0, dx = 0, dy = 0, while z varies from 0 to 1.
Then the integral over this part of the path is

1 1
J {3(0)> — 6(0)(2)}0 + {2(0) + 3(0)(2)}0 + {1 — 4(0)(0)(z*)} dz = [ dz =1
z=0 Jz=0
Along the straight line from (0,0, 1) to (0,1, 1), x =0,z = 1, dx = 0, dz = 0, while y varies from 0
to 1. Then the integral over this part of the path is

2ydy =1
0

1 1
|| (307 = 60010 + 2+ 30D}y + 11 401210 = |

Along the straight line from (0, 1, 1) to (1, 1, 1), y =1,z =1,dy = 0, dz = 0, while x varies from 0
to 1. Then the integral over this part of the path is

1 1
J (3x% — 6(1)(1)} dx + {2(1) 4 3x(1)}0 + {1 — 4x(1)(1)*}0 = {
0

X= x=l

3x>—6)dx=-5
0

Adding, J A-dr=1+1-5=-3.

c
(¢) The straight line joining (0, 0, 0) and (1, 1, 1) is given in parametric form by x =,y =1t,z=1¢ Then

1
J A-dr= J B =65 di+ Qi+ 33 di+ (1 — 4" dr = 6/5
C 1=0

10.3. Find the work done in moving a particle once around an
ellipse C in the xy plane, if the ellipse has center at the r=uxi+yj

V
origin with semi-major and semi-minor axes 4 and 3, =4costi+3sint]
respectively, as indicated in Fig. 10-7, and if the force r

field is given by !

F = (3x — 4y + 22)i 4+ (4x + 2y — 320)j+ 2xz — 4 + )k

In the plane z=0,F = (3x — 4p)i + (4x + 2»)j — 45’k and
dr = dxi+ dyj so that the work done is Fig. 10-7

4; F-dr= J {(3x — 4p)i + (4x + 2p)j — 47K} - (dxi + dyj)
c c
= f}; (Bx —4y)dx + (4x + 2y) dy
c

Choose the parametric equations of the ellipse as x = 4 cos ¢, y = 3 sin ¢, where ¢ varies from 0 to 27 (see
Fig. 10-7). Then the line integral equals

2
J {3(4cost) —4(3sint)}{—4sin t} dt 4+ {4(4cost) + 2(3sin £)}{3 cos 1} dt
t=0

2
= [ (48 — 30sin rcos 1) dr = (481 — 15sin® 1)[J" = 967
J =0
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In traversing C we have chosen the counterclockwise direction indicated in Fig. 10-7. We call this the
positive direction, or say that C has been traversed in the positive sense. 1If C were tranversed in the
clockwise (negative) direction, the value of the integral would be —96.

10.4. Evaluate J yds along the curve C given by y = 2,/x from x =3 to x = 24.
c

Since ds = /dx> + dy? = /1 + (') dx = /T F 1/xdx, we have
24 24 4 24
Jyds=J 2\/>_c\/1+1/xdx:21 «/x+1dx:§(,x+1)3/2 =156
C 2 3 3

GREEN’S THEOREM IN THE PLANE y

10.5. Prove Green’s theorem in the plane if C is a closed curve
which has the property that any straight line parallel to
the coordinate axes cuts C in at most two points.

Let the equations of the curves AEB and AFB (see adjoin-
ing Fig. 10-8) be y = Y (x) and y = Y,(x), respectively. If Z is
the region bounded by C, we have

b Y2(x)
”f dxdy = J U or dy} i
ay x=a

y=Yi(
b Yix b
= | e = [ o v - P Yl

a

Fig. 10-8

X=a

b a
:—J P(x, Yl)dx—J P(x, Yz)dx:—§ Pdx
a b C

Then

opP
(1) i;de:—J.J—dxd
c g ay i’

Similarly let the equations of curves EAF and EBF be x = X (y) and x = X,(y) respectively. Then

%

y=eLx=n(p) X

= [ ectinar+ [0 nar={ 0w

= [ 122 gear
Then (®) {)C Qdy = JJ e dx dy
Adding (1) and (2), % Pdx+Qdy = JJ(% - ?Tf) dx dy
C '/

R

10.6. Verify Green’s theorem in the plane for
ﬂ; Qxy — XN dx + (x + %) dy
c

where C is the closed curve of the region bounded by y = x* and )* = x.
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The plane curves y = x> and y* = x intersect at (0, 0) and (1, 1). The positive direction in traversing C
is as shown in Fig. 10-9.

Along y = x?, the line integral equals

1 1
J {2x)(x%) — X} dx + {x + (D} d(x?) = J Qx* +x% +2x%)dx =17/6
=0

x=l 0
Along y* = x the line integral equals

y=1

0 0
[ 202 () = GPOA) + (P + 37 dy = Jl @ —2° + 27 dy = —17/15

Then the required line integral = 7/6 — 17/15 = 1/30.

30 0P Kl P |
J[(ax—a—y)dxdy_J”{?x(x—l-}) 8y(2xy x)}dxdy (1,1

. SEW:
:JJ(1—2x)dxdy:J J (1 —2x)dy dx
x=0 Jy=x2
' )

|
| e
S IR 3
x=0 .

1
= J 2 =232 — ¥ 4+ 2x%) dx = 1/30
0

Fig. 10-
Hence, Green’s theorem is verified. '8 ?

10.7. Extend the proof of Green’s theorem in the plane given in Problem
10.5 to the curves C for which lines parallel to the coordinate axes Y
may cut C in more than two points. g

Consider a closed curve C such as shown in the adjoining Fig. 10-10,
in which lines parallel to the axes may meet C in more than two points.
By constructing line ST the region is divided into two regions #, and %,,

which are of the type considered in Problem 10.5 and for which Green’s
theorem applies, i.e.,

(1) J de+Qdy:“.(?§72§>dxdy, _ v )

STUS P2

Fig. 10-10
] P g
2 J de—l—Qdy:JJ — ——)dxdy
ax oy
SVTS %

©n

Adding the left-hand sides of (/) and (2), we have, omitting the integrand P dx + Q dy in each case,

Jo)=le ] ]e]=1+]= ]

STUS  SVTS sr TUS SVIT TS TUS  SVT TUSVT

using the fact that J =— J .

ST TS

Adding the right-hand sides of (/) and (2), omitting the integrand, [J+ [J = [J where % consists of
regions %, and %,. N

[ [ P
Then J Pdx+Qdy = J J (2—Q - 2—) dxdy and the theorem is proved.
X )
TUSYT % )

A region Z such as considered here and in Problem 10.5, for which any closed curve lying in % can be
continuously shrunk to a point without leaving £, is called a simply connected region. A region which is not



242

10.8.

10.9.

10.10.

LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS [CHAP. 10

simply connected is called multiply connected. We have shown here that Green’s theorem in the plane
applies to simply connected regions bounded by closed curves. In Problem 10.10 the theorem is extended to
multiply connected regions.

For more complicated simply connected regions, it may be necessary to construct more lines, such as
ST, to establish the theorem.

Show that the area bounded by a simple closed curve C is given by %ﬂ; xdy — ydx.
c

In Green’s theorem, put P = —y, Q = x. Then

i{) xdy —ydx = J J(i(x) —3(—}))> dxdy = 2J J dxdy =24
c ox ay

where A is the required area. Thus, 4 = %% xdy — ydx.
c

Find the area of the ellipse x = acosf, y = bsin6.

21
Area = %% xdy —ydx = % J (acos6)(bcos ) do — (bsin 6)(—asin ) dO
c 0

2 o2
= %J ab(cos® 6 + sin”6) df = %J abd = mab
0 0

Show that Green’s theorem in the plane is also valid for a multiply connected region # such as
shown in Fig. 10-11.

The shaded region %, shown in the figure, is multiply
connected since not every closed curve lying in % can be
shrunk to a point without leaving %, as is observed by con-
sidering a curve surrounding DEFGD, for example. The
boundary of %, which consists of the exterior boundary
AHJKLA and the interior boundary DEFGD, is to be tra-
versed in the positive direction, so that a person traveling in
this direction always has the region on his left. It is seen that
the positive directions are those indicated in the adjoining
figure.

In order to establish the theorem, construct a line, such
as AD, called a cross-cut, connecting the exterior and interior o
boundaries. The region bounded by ADEFGDALKJHA is
simply connected, and so Green’s theorem is valid. Then

90 9P

Pdx+Qdy = ”(E_;T» dxdy

ADEFGDALKJHA R

Fig. 10-11

But the integral on the left, leaving out the integrand, is equal to
[« [ «]« | =]«
AD  DEFGD DA ALKJHA  DEFGD  ALKJHA

since J = —J . Thus, if C; is the curve ALKJHA, C, is the curve DEFGD and C is the boundary of #
AD DA

consisting of C; and C, (traversed in the positive directions), then J +J = J and so
o Jo c

§ Pdx+Qdy = JJ(Q—£> dx dy
c ax  ay
7
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INDEPENDENCE OF THE PATH

10.11.

10.12.

Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at each point
of a simply connected region 4. Prove that a necessary and sufficient condition that

+ Pdx + Qdy =0 around every closed path C in # is that dP/dy = dQ/dx identically in £.
Je

Sufficiency. Suppose dP/dy = dQ/dx. Then by Green’s theorem,

% Pdx+Qdy = JJ(ﬁ—%) dxdy =0
c ax  ay
7

where Z is the region bounded by C.
Necessity.
Suppose 1; Pdx + Qdy = 0 around every closed path C in # and that dP/dy # dQ/dx at some point of
¢

2. In particular, suppose dP/dy — dQ/dx > 0 at the point (xg, y).
By hypothesis 9P/dy and dQ/dx are continuous in £, so that there must be some region 7 containing
(xg,y9) as an interior point for which aP/dy —9Q/dx > 0. If T is the boundary of 7, then by Green’s

theorem
c{) Pdx+Qdy= [J<@—£> dxdy >0
Jr . ox  dy

T

contradicting the hypothesis that }de + Qdy = 0 for all closed curves in Z. Thus dQ/dx — dP/dy cannot
be positive.

Similarly, we can show that dQ/dx — dP/dy cannot be negative, and it follows that it must be identically
zero, i.e., dP/dy = 0Q/dx identically in %.

Let P and Q be defined as in Problem 10.11. Prove that a B
B D
necessary and sufficient condition that J Pdx + Qdy be inde- q
4
pendent of the path in £ joining points 4 and B is that 4
E
oP/dy = 0Q/dx identically in £.
Fig. 10-12
Sufficiency. If 9P/dy = dQ/0x, then by Problem 10.11,
Pdx+Qdy =
ADBEA

(see Fig. 10-12). From this, omitting for brevity the integrand P dx + Q dy, we have
. . JC G
ADB  BEA ADB BEA  AEB

i.e., the integral is independent of the path.

Necessity.
If the integral is independent of the path, then for all paths C; and C, in # we have

Cy C
ADB AEB ADBEA

From this it follows that the line integral around any closed path in £ is zero, and hence by Problem 10.11
that 9P/dy = 9Q/0x.
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10.13. Let P and Q be as in Problem 10.11.

(@)

(b)

(@)

Prove that a necessary and sufficient condition that P dx + Q dy be an exact differential of a
function ¢(x, y) is that dP/dy = 9Q/dx.

B B
Show that in such case J Pdx+Qdy = J d¢p = ¢(B) — ¢(A) where A and B are any two
points. 4 A

Necessity.

a a
If Pdx+Qdy=d¢= 3—¢ dx + a—qb dy, an exact differential, then (/) d¢/dx = P, (2) d¢/dy = 0.
x )y

Thus, by differentiating (/) and (2) with respect to y and x, respectively, dP/dy = dQ/dx since we are
assuming continuity of the partial derivatives.

Sufficiency.
By Problem 10.12, if dP/dy = 9Q/dx, then Jde + Qdy is independent of the path joining two

points. In particular, let the two points be (a, b) and (x, y) and define

(x,9)

anzj Pdx+Qdy
(a,b)

Then

X+AX,y (x,

¢@+Amﬁ—ﬂmwzj

(a,b)

de-l—Qdy—J

)
Pdx+ Qdy
(a.b)

(Xx+Ax,p)
= J Pdx+Qdy
(x.)

Since the last integral is independent of the path joining (x, y) and (x 4+ Ax, y), we can choose the path
to be a straight line joining these points (see Fig. 10-13) so that dy =0. Then by the mean value
theorem for integrals,

P+ Ax, ) —plx,y) 1 J(HA“O

= Pdx = P(x +6 Ax, 0<f<l
A A x (x + X,)) <0<

Taking the limit as Ax — 0, we have d¢/dx = P.
Similarly we can show that d¢/dy = Q.

a a
Thus it follows that Pdx+ Qdy = a—f dx + a_qb dy = d¢.
A )y

) (x+Ax,y)

(a, b)

Fig. 10-13
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() Let A= (x1,3)). B=(x2,2). From part (a),

(x,))

¢<x,y>:J RIS

(a,

Then omitting the integrand P dx + Q dy, we have

J'B _ J() _ j(’“’”) - J() — B2, 12) — B 1) = H(B) — (A)

A (1) (a.b) (a.b)

(3.4)
10.14. (a) Prove that J (6x3% — y*) dx + (6x°y — 3x?) dy is independent of the path joining (1, 2) and
(1,2)
(3,4). (b) Evaluate the integral in (a).
(@) P=6xy>—y* 0 =06xy—3xy>. Then dP/dy = 12xy — 33> = 8Q/0x and by Problem 10.12 the line
integral is independent of the path.
(b) Method 1: Since the line integral is independent of the path, choose any path joining (1, 2) and (3, 4),
for example that consisting of lines from (1, 2) to (3, 2) [along which y = 2, dy = 0] and then (3, 2) to
(3, 4) [along which x = 3, dx = 0]. Then the required integral equals

3 4
J (24x—8)dx+J (54y — 9y*) dy = 80 + 156 = 236
1 y=2

xX=

. aP d 0 a
Method 2: Since @ = a—g we must have (1) a—f =6xy° — ), 2) £ = 6x%y — 3x)%.

From (I), ¢ = 3x%* —x3* +f(y). From (2), ¢ = 3x*)* — xp° + g(x). The only way in which
these two expressions for ¢ are equal is if f(y) = g(x) = ¢, a constant. Hence ¢ = 3x2)%> — x)° + c.
Then by Problem 10.13,

(3.4

(3,4) )
J . (6x% — ¥ dx + (6x°y — 3xyP) dy = J ) dGBx** —xp* +¢)
(1,2) (1,

=37 — x4 e} =236

Note that in this evaluation the arbitrary constant ¢ can be omitted. See also Problem 6.16, Page 131.
We could also have noted by inspection that
(6x% — ) dx + (6x2y — 3xy)) dy = (6x)° dx + 6x°y dy) — (1 dx + 3xy* dy)
= dG3x%y") — d(xy’) = d(3x°y* — xp?)

from which it is clear that ¢ = 3x%)* — x)* + .

10.15. Evaluate fi;(xzy cosx + 2xy sinx — y*e")dx + (x> sinx — 2ye*)dy around the hypocycloid
X2 P 2
P = x*ycosx+ 2xysinx — y?e, 0 = x> sinx — 2ye’

Then 8P/dy = x> cos x + 2xsin x — 2ye” = 3Q/dx, so that by Problem 10.11 the line integral around any
closed path, in particular x** 4?3 = &*/3 is zero.
SURFACE INTEGRALS

10.16. If y is the angle between the normal line to any point (x,y,z) of a surface S and the
positive z-axis, prove that



246 LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS [CHAP. 10

VI +F2
Isecy|=(/1+z2+25="—""——

|F?
according as the equation for S is z=f(x,y) or F(x,y,z)=0.
If the equation of S is F(x, y,z) = 0, a normal to S at (x, y,z) is VF = F\i+ F,j+ F.k. Then

VF -k =|VF|klcosy or  F,=,F}+F+Fcosy
[F}+ F} + F?

from which |secy| = T

as required.

In case the equation is z=f(x,y), we can write F(x,y,z)=z—f(x,y)=0, from which
Fy=-z,,F,—z, F.=1and we find |secy| = /1 + 22 + z3.

10.17. Evaluate JJ U(x, y, z) dS where S is the surface of the paraboloid z =2 — (x2 + yz) above the xy

s
plane and U(x, y,z) is equal to (a) 1, (b) x*+)°, (¢) 3z. Give a physical interpretation in
each case. (See Fig. 10-14.)

The required integral is equal to

J[U(x,y, 1+ 22+ 2 dxdy (1)
%

where Z is the projection of S on the xy plane given by
X2+y2=2,Z=0.

Since z, = —2x, z, = =2y, (/) can be written
[J U(x,y, 2/ 1 +4x% + 42 dx dy 2
% dx dy

(a) If U(x,y,z) =1, (2) becomes
”,/1 +4x2 + 4)2 dx dy Fig. 10-14
R

To evaluate this, transform to polar coordinates
(p, ¢). Then the integral becomes

2 V2 21 1 \/5 137T
J J \/1+4pzpdpd¢=J L a2 -
oo 12

=0 J p=0

p=0

Physically this could represent the surface area of S, or the mass of S assuming unit density.

(b) If U(x,y.2) = x* + 7, (2) becomes J l(x2 +*)\/1 + 4x2 4+ 4y? dx dy or in polar coordinates

27 V2 14
J J N1 +4prdpdp = ——

I
=0 Jp=0 30

where the integration with respect to p is accomplished by the substitution /1 + 40> = u.
Physically this could represent the moment of inertia of S about the z-axis assuming unit density,
or the mass of S assuming a density = x° + »°.
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(¢) If U(x,y,z) =3z, (2) becomes
“ 3zy/1 +4x2 4+ 4y dx dy = ”3{2 — (P DN +4x2 4+ 4y dx dy
; ;
or in polar coordinates,
2w (V2 1117
J J 302 — W1+ 402 dpde = o
=0 J p=0

Physically this could represent the mass of S assuming a density = 3z, or three times the first
moment of S about the xy plane.

10.18. Find the surface area of a hemisphere of radius « cut off
by a cylinder having this radius as diameter.

Equations for the hemisphere and cylinder (see Fig. 10-15)
are glven respectively by x + y +2=d (or

Vi@ —x2 =) and (x — a/2)* +)* = d*/4 (or x° + )* —ax)

Since
z, = \/Lﬂ:jj:—y and z, = \/ﬁ
we have Fig. 10-15
Required surface area = 2 J [ J1+22+ zf,. dxdy =2 J J#L),Z dxdy
2 2

Two methods of evaluation are possible.

Method 1: Using polar coordinates.
Since x* + y* = ax in polar coordinates is p = acos ¢, the integral becomes

/2 pacos¢ a /2
ZJ J ﬁpdpd¢:2aj —Va* — p?
a—p

¢=0 J p=0 $=0

acos ¢

d¢

p=0

/2
= Zuzj (1 —sing)d¢ = (7 — 2)d’
0

Method 2: The integral is equal to

a v (I.foz a a 2
ZJ J 7dvd’c—2aJ sin”! dx
x=0 Jy=0 @ — x> -y x=0 ax —

a sm‘ /

/4 /4
4a2[ 6tan 'sec” d6 = 4a2{%9tan2 op’* —%J tanzedG}
Jo 0

Letting x = atan? 6, this integral becomes

/4
=24 {Gtan o5t — J (sec® 6 — 1)d9}
=2a {7{/4 ~ (tanf — 9)|”/“} — (7 —2)d

Note that the above integrals are actually improper and should be treated by appropriate limiting
procedures (see Problem 5.74, Chapter 5, and also Chapter 12).
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10.19.

10.20.

10.21.
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Find the centroid of the surface in Problem 10.17.

szdS JJZ,/I +4x? + 4y% dx dy
s

%
JJdS JJ,/1+4x2+4y2dxdy
s %

The numerator and denominator can be obtained from the results of Problems 10.17(c) and 10.17(a),

1 111
respectively, and we thus have z = 31737;/ y 30 =30

By symmetry, x =y =0 and z=

Evaluate JJA-ndS, where A:xyi—x2j+(x~|—z)k, S is that portion of the plane

s . .
2x + 2y 4+ z = 6 included in the first octant, and

n is a unit normal to S. (See Fig. 10-16.) z
A normal to S is VQ2x+2y+z—6)= 2i+
2i+2j+k 2i+2j+k
2j+k,and son = ke e . Then
/22 +22 + 12 3
2i+2j+k
Aon = {xi— P+ (x4 k) - (%)
_ 2xy —2x* 4 (x4 2)
a 3
_2xy—2x2+(x+6—2x—2y)
a 3
_2xy—2x2 —x—-2y+4+6
- 3
The required surface integral is therefore Fig. 10-16
2xy =2 —x—2y+6 2xy—2x° —x—2y+6
O | S
s %
2xy —2x% —x =2
—JJ( il 3\ er6)\/12—1—22—+—22dxdy
3 3—x
= J J (2xy —2x* — x = 2y + 6) dy dx
x=0 Jy=0
3
= J (xp? = 2x%y — xy — Y2 4+ 6y)s "V dx = 27/4
x=0
In dealing with surface integrals we have restricted A| ¢
ourselves to surfaces which are two-sided. Givean , D

example of a surface which is not two-sided. AD
Take a strip of paper such as ABCD as shown in the

adjoining Fig. 10-17. Twist the strip so that points 4 and

B fall on D and C, respectively, as in the adjoining figure.

If n is the positive normal at point P of the surface, we

find that as n moves around the surface, it reverses its

original direction when it reaches P again. If we tried

to color only one side of the surface, we would find the

whole thing colored. This surface, called a Mdbius strip, Fig. 10-17
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is an example of a one-sided surface. This is sometimes called a nonorientable surface. A two-sided surface
is orientable.

THE DIVERGENCE THEOREM

10.22. Prove the divergence theorem. (See Fig. 10-18.)

$y:z2=f(x,)

Spiz=f1(x,»)

Vv

Fig. 10-18

Let S be a closed surface which is such that any line parallel to the coordinate axes cuts .S in at most two
points. Assume the equations of the lower and upper portions, S| and S,, to be z = fi(x, y) and z = f5(x, ),
respectively. Denote the projection of the surface on the xy plane by #. Consider

(2(x.3)
JJJ3543 av = J”% ddy dx = ”U a4, dz] dy dx
) 0z ) 0z JU=hc 0z
= JJA_’ﬁ(xvy’ Z)
#

For the upper portion S, dy dx = cos y, dS, = k - n, dS, since the normal n, to S, makes an acute angle
y, with k.

For the lower portion S|, dy dx = —cos y; dS| = —k - n; dS since the normal n; to S; makes an obtuse
angle y; with k.

S

dydx = JJ[A3(x, Vo) — As(x,y )] dy d

z=fi

Then J jAa(x, Vo) dydx = j JA3 k-nydS,
R S,
“As(x,y,mdydx —_ [ [A3k —
J. )

and

[JA;(x,y,fz)dydx—J‘JA3(x,y,f])dydx: ‘['[A3k~n2dSz+JJA3k4n1 ds;

% % S5 S

:JJA3k~ndS
N
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so that

i [[[% =[] as-nas
V

Similarly, by projecting S on the other coordinate planes,

()] UJ.%dV=LJ.A1i-ndS
@ UJ%W:JSJ'AZJ nds

Adding (1), (2), and (3),

A A A
”J<D+D+a, ‘) av = | [caii+ i+ 4 -mas
ax ay 0z
V

or Ujv.AdV—UA.nds

[CHAP. 10

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes meet
them in more than two points. To establish this extension, subdivide the region bounded by S into
subregions whose surfaces do satisfy this condition. The procedure is analogous to that used in Green’s

theorem for the plane.

10.23. Verify the divergence theorem for A = (2x — 2)i 4+ x*yj — xz°k taken over the region bounded by

x=0,x=1,y=0,y=1,z=0,z=1.

We first evaluate JJA -ndS where S is the surface of the cube in Fig. 10-19.

z

Face DEFG: n=1i,x=1. Then
1l C
” A~ndS:J J{(2fz)i+jf_72k}-idydz
DEFG 070
1l D
:J [(2—2)dydz:3/2
0Jo
0}
Face ABCO: n=—i,x=0. Then
. ol pl
JJ A-ndS:J J(—zi)-(—i)dydz G
ABCO 070
1l
:J J zdydz=1/2
0Jo x
Fig. 10-19
Face ABEF: n=j,y=1. Then

1 rl 1 rl
JA~ndS:[ [{(2x—z)i+x2j—xz2k}~jdxdz:[ [ X dxdz=1/3
ABEF 7070

Face OGDC: n=—j,y=0. Then

1 pl
J A-ndS = J J {@x — 2)i — x2°k} - (—j)dxdz =0
0Jo

oGDC

y
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Face BCDE: n=k,z=1. Then

1 ¢l 1 pl
” A-ndS:[ J{(2x—l)i+x2yj—xk}~kdxdy:J J —xdxdy—1/2
0Jo

Jo Jo
BCDE

Face AFGO: n= —k,z=0. Then

1 ¢l
A-ndS = J J (2xi — ¥*yj} - (k) dxdy = 0
AFGO 070

Adding, J.JA-ndS:%+%+%+07%+O:%. Since
N

1

R

the divergence theorem is verified in this case.

10.24. Evaluate JJr -ndS, where S is a closed surface.

By the divergence theorem,

[Jruis-
-]
J

J -rdV

?
J( ]+d k>~(xi+yj+zk)dV

j("x Wy )dV_3[”dV=3V

1
!

1

where V' is the volume enclosed by S

10.25. Evaluate J szz dy dz + (x*y — 2%) dzdx + (2xy + y*z) dx dy, where S is the entire surface of the

s
hemispherical region bounded by z = /a> — x> —y*> and z=0 (a) by the divergence theorem
(Green’s theorem in space), (b) directly.

(a) Since dydz = dS cosa, dz dx = dS cos B, dx dy = dS cos y, the integral can be written

JJ{XZz cosa + (xzy —2%)cos B+ (2xy +yzz) cosy}dS = JJA -ndS
N s

where A = xz%i + (x%y — 2)j + (2xy + y*2)k and n = cos ai + cos Bj + cos yk, the outward drawn unit
normal.
Then by the divergence theorem the integral equals

UJ.V-AdV:JlJ‘{a_i(xzz)Jraiy(xzy_zs)+8_32(2xy+y22)}dV:J-U.(xzﬂhrzz)d[/

where V is the region bounded by the hemisphere and the xy plane.
By use of spherical coordinates, as in Problem 9.19, Chapter 9, this integral is equal to

/2 (/2 o 5
4 [ [ [ 2. sin0dr do dp = >
Jo=0 Jo=0 Jr=0 5
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(b) If S| is the convex surface of the hemispherical region and S, is the base (z = 0), then

2

a a’—y a a*—y?
ijzzdydz:J J zz,/az—yz—zzdzdy—J J —2Ja? =2 —2dzdy
y=—a Jz=0 Z=|

s, ) y=—a 0
rd v (12*.\’2
JJ(xzy—Z3)dzdx :J J {xzx/a2 —x2 -z —23}dzdx
x=—a Jx=0
X X: aJx
a @ —x?
—J J (—x2Va? = x2 = 22 — Py dzdx
x=—a Jz=0
J‘J‘ 5 a vaz—xz 5
2xy+y z)dxdy:J J (2xy +y*y/a® — x> —y*}dy dx
g x=—a Jy=—vi=Z
ijzzdydz:o, J[(xzy—z3)dzdx20,
2 s,
a a?—x?
”(2xy +y?2)dxdy = “{2xy + 2 (0)y dx dy = j J 2xydydx =0
x=—a Jy=—va*—x?
S, Ss

By addition of the above, we obtain

2

a a —y* a N
4J J zz,/az—yz—z2dzdy+4j J XVat = xF =2 dzdx

=0 Jx=0 x=0 Jz=0

2 2

a a —Xx
+4[ J yhJat —x2 = yrdydx
x=0 Jy=0

Since by symmetry all these integrals are equal, the result is, on using polar coordinates,

2 2

a a”—Xx /2 ra 2 5
y=0

x=0 Jy: =0 J p=0

STOKES’ THEOREM

10.26. Prove Stokes’ theorem.

Let S be a surface which is such that its projections on the xy, yz, and xz planes are regions bounded by
simple closed curves, as indicated in Fig. 10-20. Assume S to have representation z = f(x, y) or x = g(y, z)
or y = h(x, z), where f, g, h are single-valued, continuous, and differentiable functions. We must show that

U(V x A)-ndS = U[v X (Ayi+ Ayj+ A3k)] - ndS

:J A - dr
c
where C is the boundary of S.
Consider first JJ[V x (A;i)] - ndS.
N
i j k
. . 9 8 9| 04,., 94,
S VxAi)=|— — —|=—j——
ince V(D =150 o T ) Ty
4 0 0
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o, y
x
Fig. 10-20
[Vx(Ali)]~ndS:(%n-j—%n-k)dS (1)

If z = f(x, y) is taken as the equation of S, then the position vector to any point of S is r = xi + yj + zk =

. ad .0 . 0d or . .
xi+ yj 4+ f(x, y)k so that x =j+ “k= j+ —fk. But x is a vector tangent to S and thus perpendicular to
n, so that 4 % % %

0z
n~a—;:n~j+5n~k:0 or n-j:—@n‘k

Substitute in (/) to obtain

<%n.j_%n.k)dsz(_%%n.k_%mk)dk?
Z

ay 0z ay ay
or
A A, 0z
IV ()] -nds = —( A1 24002\ |y s )
ay 0z oy
A A F
Now on S, 4(x, y, z) = Ai[x, y, f(x, y)] = F(x, y); hence, ] —|—b % = o and (2) becomes
ay dz dy dy
oF oF
[Vx(A41)]-ndS=——n-kdS=——dxdy
dy dy
Then

JJ[V X (A1i)] - ndS = JJ—% dx dy

where Z is the projection of S on the xy plane. By Green’s theorem for the plane, the last integral equals
% F dx where I is the boundary of #. Since at each point (x, y) of I the value of F is the same as the value

r
of A; at each point (x, y, z) of C, and since dx is the same for both curves, we must have

%Fdx:% Ay dx
r c
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or

JJ[V X (A1) -ndS = %CAI dx

Similarly, by projections on the other coordinate planes,

U[v x (A>))] - ndS = i Ay dy, U[V x (A;K)] - ndS = f’;c Ay dz

Thus, by addition,

JSJ‘(V x A)-ndS = %CA-dr

The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. For
assume that S can be subdivided into surfaces S;, S, ..., S; with boundaries C;, C5, ..., C; which do satisfy
the restrictions. Then Stokes’ theorem holds for each such surface. Adding these surface integrals, the total
surface integral over S is obtained. Adding the corresponding line integrals over Cy, Cs, ..., Cy, the line
integral over C is obtained.

Verify Stoke’s theorem for A = 3yi — xzj + yz°k, where S is z
the surface of the paraboloid 2z = x> + »” bounded by z = 2
and C is its boundary. See Fig. 10-21.

The boundary C of S is a circle with equations
X’ +)*=4,z=2 and parametric equations x=2cost,y=
2sint,z =2, where 0 £t < 2x. Then

{) A-dr:{) 3ydx — xzdy + yz dz
c c

= J.O 3(2sin t)(—2sinf) dt — (2cos 1)(2)(2 cos t) dt
2

2
:J (12sin® ¢ + 8 cos? 1) dt = 20x
0

X

; i K Fig. 10-21

d a 3 ) .
Also, VxA= Frr Z =(z"+x)i—-(z+3)k

3y —xz yz
and :V(x2+y2—22): xi+yj—k

IV(x* + y* = 22)] X+ +1

Then

JJ(VXA)vndS:JJ(VxA)vnlcflx.fl:JJ(xzz—i-xz-l—z—l—S)dxdy

2, 2\? 2, 2
:JJ{x(x ;}) EC ;—y +3]dxdy

R

In polar coordinates this becomes

27 2
[ [ {(pcos¢>)(p4/2)+pzcosz¢+p2/2+3}pdpd¢:2071
J¢=0 J p=0

y
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10.28.

10.29.

10.30.

Prove that a necessary and sufficient condition that SF A - dr = 0 for every closed curve C is that
V x A = 0 identically. ¢

Sufficiency. Suppose V x A =0. Then by Stokes’ theorem
ff A~dr:JJ(VXA)~ndS:O
¢ s
Necessity.

Suppose i) A - dr =0 around every closed path C, and assume V x A # 0 at some point P. Then
c

assuming V x A is continuous, there will be a region with P as an interior point, where V. x A # 0. Let S be
a surface contained in this region whose normal n at each point has the same direction as V x A, i.e.,
V x A = an where « is a positive constant. Let C be the boundary of S. Then by Stokes’ theorem

which contradicts the hypothesis that {) A - dr =0 and shows that Vx A = 0.
c

Py
It follows that V x A = 0 is also a necessary and sufficient condition for a line integral J A - dr to be
independent of the path joining points P; and P,. P

Prove that a necessary and sufficient condition that V x A = 0 is that A = V¢.
Sufficiency. If A = V¢, then V x A =V x V¢ = 0 by Problem 7.80, Chap. 7, Page 179.

Necessity.
If V x A = 0, then by Problem 10.28, {)A -dr = 0 around every closed path and J A - dr is independent

c
of the path joining two points which we take as (a, b, ¢) and (x, y,z). Let us define

(x,),2) (x,0,2)
¢(x,y,z):J A~dr:J Aydx+ Ardy + Az dz
(a,b,c) (a,b,c)
Then
(x+Ax,y,2)
O(x + Ax, y,2) — d(x, , 2) :J Aydx+ A dy + Ay dz
(x,0,2)

Since the last integral is independent of the path joining (x, y, z) and (x + Ax, y, z), we can choose the
path to be a straight line joining these points so that dy and dz are zero. Then

Px+ Ax, y,z) —(x,3,2) _ 1 [ (Fax).2)
Ax T Ax,

Ardx = A (x +0AXx, y,z) 0<0<l1
(x,3,2)
where we have applied the law of the mean for integrals.
Taking the limit of both sides as Ax — 0 gives d¢/dx = A,.
Similarly, we can show that d¢/dy = A,, d¢/0z = Aj3.
o 9. 9 _

Th A=Aji+ Aj+ A3k =—i+— — V.
us, 1+ Aoj+ 4; 8xl+8yj+8z ()

(a) Prove that a necessary and sufficient condition that 4, dx + 4, dy + Az dz = d¢, an exact
differential, is that V x A = 0 where A = A4;i + 4,j + 4Ask.
(b) Show that in such case,

(x2,2,22)

(x2,2,22)
J A]dx+A2dy+A3deJ d¢:¢(x27y2722)_¢(x17y1721)

(x1.p1,21) (x1.p1,21)
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) ) )
(a) Necessity. If A;dx+ Aydy + Aydz = dgp = B gy dy + % dz, then
ox ay oz
ap 3 A
) —=4 @ =4 (3 —=4
ox ay oz

Then by differentiating we have, assuming continuity of the partial derivatives,
94, 34, a4, 34, 94, 94,
ay  ax’ az oy’ dz  ax

which is precisely the condition V x A = 0.

Another method: If 4, dx + A, dy + A3 dz = d¢, then

0 0 d
A:A1i+A2j+A3k:—¢i+—¢j+—¢k:V¢
ax  dy 0z

from which Vx A=V x V¢ = 0.
Sufficiency. If V x A =0, then by Problem 10.29, A = V¢ and
Aldx+A2dy+A3dz:Avdr:V¢~dr:?—¢dx+% dy+?—¢ dz = d¢
x ay 0z

(x.0,2)
(b) From part (a), ¢(x, y,z) = J Aydx+ Ay dy + Az dz.
(a,b,c)

Then omitting the integrand A, dx + A, dy + A3 dz, we have

(x2.2.22) (x2.52,22) (x1,1,21)
J :j —J = ¢(x2, y2, 22) — P(x1, 1, 21)

xry121) (a.b,c) (a,b,c)

10.31. (a) Prove that F = (2xz° + 6y)i + (6x — 2yz)j+ (3x°z> — y»)k is a conservative force field.

(b) Evaluate J F - dr where C is any path from (1, —1,1) to (2,1, —1). (¢) Give a physical
interpretation of the results.

(a) A force field F is conservative if the line integral | F - dr is independent of the path C joining any two

Je
points. A necessary and sufficient condition that F be conservative is that V x F = 0.

i j k
) d ad a . .
Since here V x F = — — — =0, F is conservative
ax ady 0z

2x2 + 6y 6x—2yz 3x2 — y2

() Method 1: By Problem 10.30, F - dr = (2xz° + 6y) dx + (6x — 2yz) dy + (3x°2* — y*) dz is an exact dif-
ferential d¢, where ¢ is such that
¢

() P 2xz + 6y 2 % =6x —2yz 3)
X ay

a
i’ — 322 yz
0z

From these we obtain, respectively,

p=X"2+6xp+f1(.2)  d=6xy—)z4h(x2)  d=x7 =)z 4fi(x)
These are consistent if f,(y,z) = =’z +c, fo(x,2) = x°2° + ¢, f3(x, ) = 6xy+¢, in which case
¢ = x’2 +6xy — y*z+c. Thus, by Problem 10.30,

(2,1,-1)
J(l ;. F-dr=x*2+6xy—y*z+ C|E%L;{; =15
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Alternatively, we may notice by inspection that

F-dr = 2xz° dx + 3x°2% d2) + (6y dx + 6x dy) — Qyz dy + * dz)
=d(x*2%) + d(6xy) — d(y*z) = d(x*2* + 6xy — 1’z +¢)

from which ¢ is determined.

Method 2: Since the integral is independent of the path, we can choose any path to evaluate it; in
particular, we can choose the path consisting of straight lines from (1, —1,1) to (2, —1, 1), then to
(2,1, 1) and then to (2,1, —1). The result is

1271(2x —6)dx + J: B

X=

(12— 2y)dy+J (1222 = 1)dz =15
—1 1

where the first integral is obtained from the line integral by placing y=—1,z=1,dy =0,dz =0;
the second integral by placing x=2,z=1,dx=0,dz=0; and the third integral by placing
x=2,y=1,dx=0,dy=0.

(¢) Physically J F - dr represents the work done in moving an object from (1, —1, 1) to (2, 1, —1) along C.

c
In a conservative force field the work done is independent of the path C joining these points.

MISCELLANEOUS PROBLEMS

10.32. (a) If x = f(u, v), y = g(u, v) defines a transformation which maps a region # of the xy plane into
a region #’ of the uv plane, prove that

o=

R R’

a(x, y)

o, v) du dv

(b) Interpret geometrically the result in ().
(a) If C (assumed to be a simple closed curve) is the boundary of £, then by Problem 10.8,

Jdedy:lfi; xdy — ydx (1)
2]Jc

Under the given transformation the integral on the right of (/) becomes

[ ay ay ox ox 1 ay ox ay x

¢ x|l=—dut+—dv)—y|l—du+—dv|== X——y—)d ——y—)d 2

21)@ "(au u+8v U) y(au u+8v U) 2,|Cr(‘c8u Y ou ut Yo Vo) @
where C' is the mapping of C in the uv plane (we suppose the mapping to be such that C’ is a simple
closed curve also).

By Green’s theorem if #' is the region in the uv plane bounded by C’, the right side of (2) equals

1 a ay ax a ay ax 0

2“5@%‘%9‘5@5”5)”“?”ww o ou

R’ R’

J=
a(u, v)

%'

du dv

where we have inserted absolute value signs so as to ensure that the result is non-negative as is JJ dx dy

In general, we can show (see Problem 10.83) that 7

ax, y)
(u, v)

[ [Fecenasay = [ [ #tra o seon 52 duas 3)

7 /




258 LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS [CHAP. 10

(b) dedy and J ”gﬁ;qyj

; ;
coordinates, the second in curvilinear coordinates. See Page 212, and the introduction of the differ-
ential element of surface area for an alternative to Part ().

dudv represent the area of region %, the first expressed in rectangular

10.33. Let F = %—i_? (a) Calculate V x F. (b) Evaluate <l;F -dr around any closed path and
X 4 .

explain the results.

i ik
ad ] d

(@ VxF=| ox 9y 9z| =0 in any region excluding (0, 0).
—y x 0

[ R

—ydx + xdy . .
(b) }F -dr = fﬁ%—:;} Let x = pcos¢, y = psin ¢, where (p, ¢) are polar coordinates. Then

dx = —psin¢pdp + dpcos ¢, dy = pcos¢pdp+ dpsing

—ydx + xdy

and so
X247

=d¢ = d(arc tan %)

For a closed curve ABCDA [see Fig. 10-22(a) below] surrounding the ozrigin, ¢=0atAand ¢ =27

after a complete circuit back to 4. In this case the line integral equals J d¢ =2m.
0

y y
B Y P
C
% A
[9) ¢ S
o R
D 4 x
[6)
(a) b)
Fig. 10-22

For a closed curve PQRSP [see Fig. 10-22(b) above] not surrounding the origin, ¢ = ¢, at P and

bo
¢ = ¢ after a complete circuit back to P. In this case the line integral equals [ d¢ =0.
Jéy
Since F = Pi+ Qj, V x F = 0 is equivalent to dP/dy = dQ/dx and the results would seem to con-
tradict those of Problem 10.11. However, no contradiction exists since P = % and Q = %
X< 4y x4y

do not have continuous derivatives throughout any region including (0, 0), and this was assumed in
Problem 10.11.

10.34. If div A denotes the divergence of a vector field A at a point P, show that

[ [ -nas

divA = lim &~
VA= A
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where AV is the volume enclosed by the surface AS and the limit is obtained by shrinking AV to
the point P.

By the divergence theorem, J JJdiV AdV = JJA -ndS
AV AS

By the mean value theorem for integrals, the left side can be written
div AJJJ dV =div AAV
AV

where div A is some value intermediate between the maximum and minimum of div A throughout AV

Then
JJA-ndS

AS
AV

div A =

Taking the limit as AV — 0 such that P is always interior to AV, div A approaches the value div A at

point P; hence
J J A-ndS

divA= lim &5
VAE IS Av
This result can be taken as a starting point for defining the divergence of A, and from it all the
properties may be derived including proof of the divergence theorem. We can also use this to extend the
concept of divergence to coordinate systems other than rectangular (see Page 159).

Physically, ([ [JA ‘n ds) /AV represents the flux or net outflow per unit volume of the vector A from
"AS

the surface AS. If div A is positive in the neighborhood of a point P, it means that the outflow from P is

positive and we call P a source. Similarly, if div A is negative in the neighborhood of P, the outflow is really

an inflow and P is called a sink. If in a region there are no sources or sinks, then div A = 0 and we call A a

solenoidal vector field.

Supplementary Problems

LINE INTEGRALS

10.35.

10.36.

10.37.

10.38.

(4.2)
Evaluate J (x+y)dx + (y — x)dy along (a) the parabola > = x, (b) a straight line, (c) straight lines
1,10

from (1, 1) fo (1,2) and then to (4,2), (d) thecurve x=2r +1+1,y=7, +1.
Ans. (a) 34/3, (b) 11, (c¢) 14, (d) 32/3
Evaluate %(Zx —y+4)dx+ (5Sy+ 3x — 6)dy around a triangle in the xy plane with vertices at (0, 0), (3, 0),

(3, 2) traversed in a counterclockwise direction. Ans. 12

Evaluate the line integral in the preceding problem around a circle of radius 4 with center at (0, 0).
Ans.  64m

2 _ x from the

(a) IfF = (x2 — yz)i + 2xyj, evaluate [ F - dr along the curve C in the xy plane given by y = x
Jc
point (1, 0) to (2,2). (b) Interpret physically the result obtained.

Ans. (a) 124/15
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10.39.

10.40.

10.41.
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Evaluate J (2x + y) ds, where C is the curve in the xy plane given by x> + »* = 25 and s is the arc length
¢
parameter, from the point (3, 4) to (4, 3) along the shortest path. Ans. 15

If F = (3x — 2p)i + (y + 22)j — x°k, evaluate J F - dr from (0, 0, 0) to (1, 1, 1), where C is a path consisting

c
of (a) thecurve x =ty =¢,z=1+¢, (b) a straight line joining these points, (c) the straight lines from
(0,0,0) to (0, 1,0), then to (0, 1, 1) and then to (1,1, 1), (d) the curve x = 22,z = )~

Ans. (a) 23/15, (b) 5/3, (¢) 0, (d) 13/15

If T is the unit tangent vector to a curve C (plane or space curve) and F is a given force field, prove that under

appropriate conditions J F-dr=| F-Tds where s is the arc length parameter. Interpret the result
c c
physically and geometrically.

GREEN’S THEOREM IN THE PLANE, INDEPENDENCE OF THE PATH

10.42.

10.43.

10.44.

10.45.

10.46.

10.47.

10.48.

10.49.

10.50.

10.51.

Verify Green’s theorem in the plane for + (x* = xp*) dx + (y* — 2xy) dy where C is a square with vertices at
c

(0,0),(2,0),(2,2),(0,2) and counterclockwise orientation. Ans. common value = 8
Evaluate the line integrals of (a) Problem 10.36 and (b) Problem 10.37 by Green’s theorem.

(a) Let C be any simple closed curve bounding a region having area 4. Prove that if a;, ay, a3, by, b,, b3 are
constants,

i; (a1x + azy + az) dx + (byx + byy + b3) dy = (b) — ay)A4
c
(b) Under what conditions will the line integral around any path C be zero? Ans. (b) a, = by

Find the area bounded by the hypocycloid x*/* + y*/3 = a*>.

[Hint: Parametric equations are x = acos’> 7, y = asin® 1,0 < ¢ < 27 Ans. 3ma*/8

If x = pcos ¢,y = psin¢, prove that %% xdy —ydx = %Jpz d¢ and interpret.

Verify Green’s theorem in the plane for i# (x* = x*y) dx + x)* dy, where C is the boundary of the region
¢
enclosed by the circles x* + y> =4 and x* 4+ )7 = 16. Ans. common value = 1207
@1
(a) Prove that J (2xy — y* 4+ 3)dx + (x* — 4x)*) dy is independent of the path joining (1,0) and (2, 1).
(1,0)

(b) Evaluate the integral in (a). Ans. (b) 5

Evaluate J (2xy® = y*cosx)dx + (1 — 2ysin x + 3x*y*) dy along the parabola 2x = m)® from (0,0) to
c
(m/2,1).  Ans. ©*/4

Evaluate the line integral in the preceding problem around a parallelogram with vertices at (0, 0), (3, 0),
(5.2),(2,2). Ans. 0

(a) Prove that G = (2x* 4+ xy — 2)°) dx + (3x* + 2xy) dy is not an exact differential. (b) Prove that e”/*G/x
is an exact differential of ¢ and find ¢. (¢) Find a solution of the differential equation (2x> + xy — 23%) dx+
(3x% +2xy)dy = 0.

Ans. (b) ¢=e"" (P +2x1)+¢, () X+ 2xp+ce? =0
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SURFACE INTEGRALS

10.52.

10.53.

10.54.

10.55.

10.56.

10.57.

10.58.

10.59.

(a) Evaluate JJ(xz + %) dS, where S is the surface of the cone z> = 3(x* + »*) bounded by z = 0 and z = 3.

s
(b) Interpret physically the result in (). Ans. (a) 97

Determine the surface area of the plane 2x+y+2z=16 cut off by (a) x=0,y=0,x=2,y=3,
(b) x=0,y =0, and x* + )* = 64. Ans. (a) 9, (b) 24n

Find the surface area of the paraboloid 2z = x* 4+ ) which is outside the cone z = /x% + 2.
Ans. %71(5«/3— 1)

Find the area of the surface of the cone z* = 3(x*> + ?) cut out by the paraboloid z = x> + y*.
Ans. 6m

Find the surface area of the region common to the intersecting cylinders x* + y* = ¢® and x* + 2* = d%.

Ans. 164

(a) Obtain the surface area of the sphere x> + y*> + z° = ¢* contained within the cone ztana = /x> + 7,
0 <a < m/2. (b) Use the result in (@) to find the surface area of a hemisphere. (¢) Explain why formally
placing & = 7 in the result of (@) yields the total surface area of a sphere.

Ans. (a) 2ma*(1 —cosa), (b) 2ma® (consider the limit as @ — 7/2)

Determine the moment of inertia of the surface of a sphere of radius a about a point on the surface. Assume
a constant density o. Ans. 2Md*, where mass M = 4nd’c

(a) Find the centroid of the surface of the sphere x*+4)” +z° =a* contained within the cone

ztana = /x> + )%, 0 < @ < /2. (h) From the result in (a) obtain the centroid of the surface of a hemi-
sphere.  Ans. (a) ta(l+cosa), (b) a/2

THE DIVERGENCE THEOREM

10.60.

10.61.

10.62.

10.63.

10.64.

10.65.

Verify the divergence theorem for A = (2xy + 2)i + »%j — (x + 3y)k taken over the region bounded by
2x4+2y+z=6,x=0,y=0,z=0. Ans. common value = 27
Evaluate JJF -ndS, where F = (2% — x)i — xyj+ 3zk and S is the surface of the region bounded by

s
z=4—3* x=0,x =3 and the xy plane. Ans. 16

Evaluate JJA -ndS, where A = (2x + 32)i — (xz + )j + ()% + 22)k and S is the surface of the sphere having

N
center at (3, —1, 2) and radius 3. Ans. 108w

Determine the value of JJ xdydz + ydzdx + zdxdy, where S is the surface of the region bounded by the

s
cylinder x* + »> = 9 and the planes z =0 and z=3, (a) by using the divergence theorem, (b) directly.
Ans. 8lm

Evaluate [ [4xz dy dz — y* dz dx + yzdx dy, where S is the surface of the cube bounded by x =0, y =0,
'S
z=0,x=1,y=1,z=1, (a) directly, (b) By Green’s theorem in space (divergence theorem).

Ans. 3/2

Prove that JJ(V x A)-ndS = 0 for any closed surface S.
s
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10.66.

10.67.
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Prove that JJndS = 0, where 7 is the outward drawn normal to any closed surface S. [Hint: Let A = Oc,

where ¢ is an arbitrary vector constant. Express the divergence theorem in this special case. Use the
arbitrary property of c.

If n is the unit outward drawn normal to any closed surface S bounding the region V, prove that

JJV'J'divndvzs

STOKES’ THEOREM

10.68.

10.69.

10.70.

10.71.

10.72.

10.73.

10.74.

10.75.

10.76.

Verify Stokes” theorem for A = 2yi+ 3xj—z°k, where S is the upper half surface of the sphere
X2 +312+ 22 =9 and C is its boundary. Ans. common value = 97

Verify Stokes’ theorem for A = (y + z)i — xzj 4+ 1°k, where S is the surface of the region in the first octant
bounded by 2x 4+ z = 6 and y = 2 which is not included in the (a) xy plane, (b) plane y =2, (c) plane
2x+z =6 and C is the corresponding boundary.

Ans. The common value is (a) =6, (b)) —9, (¢) —18

Evaluate JJ(V x A)-ndS, where A = (x—2)i+ (x> +y2)j—3x)’k and S is the surface of the cone

s
z=2—./x*+ ) above the xy plane. Ans. 127

If V is a region bounded by a closed surface S and B =V x A, prove that JJB -ndS =0.
s

(a) Prove that F = (2xy + 3)i + (x2 — 4z)j — 4yk is a conservative force field. (b) Find ¢ such that F = V¢.
(¢) Evaluate | F-dr, where C is any path from (3, —1,2) to (2, 1, —1).

c
Ans. (b) ¢ = x>y — 4yz + 3x + constant, (c) 6

2

Let C be any path joining any point on the sphere x*>+ > +z*> =4 to any point on the sphere

x> +12+ 22 =0b> Show that if F = 5-r, where r = xi + yj + zK, then J F-dr=b —d.
c

In Problbem 10.73 evaluate J F - dr is F = f(r)r, where f(r) is assumed to be continuous.
c

Ans. J rf(r)dr

Determine whether there is a function ¢ such that F = V¢, where:
(@) F=(xz— )i+ 2y +2)j+ Gxz® — xp)k.

(b) F =2xei+ (cosz — x?e)j— ysinzk. If so, find it.

Ans. (a) ¢ does not exist. (b) ¢ = x’e’ + ycos z + constant

Solve the differential equation (z> — 4xy) dx + (6y — 2x*) dy + (3xz> + 1) dz = 0.
Ans.  xz° = 2x%y + 3)” 4 z = constant

MISCELLANEOUS PROBLEMS

10.77.

. .. aU U .
Prove that a necessary and sufficient condition that % o ly — . dx be zero around every simple closed
c ox y
path C in a region # (where U is continuous and has continuous partial derivatives of order two, at least) is
PU U
that "l + a2 =0.
ax ay
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10.78.

10.79.

10.80.

10.81.

10.82.

10.83.

10.84.

10.85.

Verify Green’s theorem for a multiply connected region containing two “holes” (see Problem 10.10).

If Pdx + Q dy is not an exact differential but u(P dx + Q dy) is an exact differential where u is some function
of x and y, then u is called an integrating factor. (a) Prove that if F and G are functions of x alone, then
(Fy 4+ G)dx + dy has an integrating factor u which is a function of x alone and find ©. What must be
assumed about F and G? () Use (a) to find solutions of the differential equation xy’ = 2x 4 3y.

Ans. (a) = o] FEIdx (b) y = x® — x, where ¢ is any constant

Find the surface area of the sphere x° + y* + (z — )’ = a* contained within the paraboloid z = x* + 7.
Ans. 2ma

If £(r) is a continuously differentiable function of r = /x* + y* + z2, prove that

”f(r)ndsz ”er av
S V

Prove that J [V X (¢n) dS = 0 where ¢ is any continuously differentiable scalar function of position and n is

s
a unit outward drawn normal to a closed surface S. (See Problem 10.66.)

Establish equation (3), Problem 10.32, by using Green’s theorem in the plane.
[Hint: Let the closed region £ in the xy plane have boundary C and suppose that under the transformation
x = f(u, v), y = g(u, v), these are transformed into £’ and C’ in the uv plane, respectively. First prove
thatJJF(x,y) dxdy = J Q(x,y)dy where 0Q/dy = F(x,y). Then show that apart from sign this last
c
R

integral is equal to J Olf (u, v), g(u, v)][ du+—= dvi| Finally, use Green’s theorem to transform this
c
(« Y

into J[ FIf(u,v), g(u, U)]

R

D

If x = f(u,v,w),y = g(u, v, w), z = h(u, v, w) defines a transformation which maps a region # of xyz space
into a region 2’ of uvw space, prove using Stokes’ theorem that

JJ?J F(x,y,2)dxdydz = JJJ Glu, v, w)

where G(u, v, w) = F[f(u, v, w), g(u, v, w), h(u,v, w)].  State sufficient conditions under which the result
is valid. See Problem 10.83. Alternatively, employ the differential element of volume dV =
or 3r or

— - — X — dudvdw (recall the geometric meaning).
u E)v

a(x, y, z)

78(14, o) du dv dw

(a) Show that in general the equation r = r(u, v) geometrically represents a surface. (b) Discuss the geo-
metric significance of u = ¢, v = ¢,, where ¢; and ¢, are constants. (¢) Prove that the element of arc length
on this surface is given by

ds* = Edi* + 2F dudv + G dv*

where E_ﬁ i F:ﬂ.ﬁ, Gzﬁ,ﬁ.
 du’ du v v v
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10.86.

10.87.

10.88.
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(a) Referring to Problem 10.85, show that the element of surface area is given by dS = v EG — F? du dv.
(b) Deduce from (a) that the area of a surface r = r(u, v) is JJ\/EG — F?dudbv.

s
—x—
ov

ar or ar ar . .
o = \/ <£x£) . <5> X (%> and then wuse the identity

(AxB)-(CxD)=(A-C)B-D)—(A-D)B-C).

ar or

[Hint: Use the fact that

(a) Prove that r =asinucosvi+asinusinvj+acosu, 0 < u < 7,0 < v < 2w represents a sphere of
radius a. (b) Use Problem 10.86 to show that the surface area of this sphere is 47ra*.

Use the result of Problem 10.34 to obtain div A in (@) cylindrical and (b) spherical coordinates. See Page
161.



Infinite Series

The early developers of the calculus, including Newton and Leibniz, were well aware of the
importance of infinite series. The values of many functions such as sine and cosine were geometrically
obtainable only in special cases. Infinite series provided a way of developing extensive tables of values
for them.

This chapter begins with a statement of what is meant by infinite series, then the question of when
these sums can be assigned values is addressed. Much information can be obtained by exploring infinite
sums of constant terms; however, the eventual objective in analysis is to introduce series that depend on
variables. This presents the possibility of representing functions by series. Afterward, the question of
how continuity, differentiability, and integrability play a role can be examined.

The question of dividing a line segment into infinitesimal parts has stimulated the imaginations of
philosophers for a very long time. In a corruption of a paradox introduce by Zeno of Elea (in the fifth
century B.C.) a dimensionless frog sits on the end of a one-dimensional log of unit length. The frog
jumps halfway, and then halfway and halfway ad infinitum. The question is whether the frog ever
reaches the other end. Mathematically, an unending sum,

Ll ey
2 4 2n
is suggested. “Common sense” tells us that the sum must approach one even though that value is never

attained. We can form sequences of partial sums

1 11 11 1
E’SZ_E Z,,Sn—§+z++2—n
and then examine the limit. This returns us to Chapter 2 and the modern manner of thinking about the
infinitesimal.

In this chapter consideration of such sums launches us on the road to the theory of infinite series.

S = 4.

DEFINITIONS OF INFINITE SERIES AND THEIR CONVERGENCE AND DIVERGENCE
Definition: The sum

S = Uy = Uy + Uy + o+l + - ()

n=

265
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is an infinite series. Its value, if one exists, is the limit of the sequence of partial sums {S,}
S = lim S, 2

n—00

If there is a unique value, the series is said to converge to that sum, S. If there is not a unique sum
the series is said to diverge.

o0
. . . . 1
Sometimes the character of a series is obvious. For example, the series E > generated by the

=) n=1
frog on the log surely converges, while Zn is divergent. On the other hand, the variable series
n=1
l—x4+x = +x =+
raises questions. |
This series may be obtained by carrying out the division I

If —1 < x < 1, the sums S, yields an

approximations to 7 and (2) is the exact value. The indecision arises for x = —1. Some very great

—Xx
mathematicians, including Leonard Euler, thought that S should be equal to 1

> as is obtained by

substituting —1 into The problem with this conclusion arises with examination of

l1—14+1—1+1-1+4--- and observation that appropriate associations can produce values of 1 or
0. Imposition of the condition of uniqueness for convergence put this series in the category of divergent
and eliminated such possibility of ambiguity in other cases.

FUNDAMENTAL FACTS CONCERNING INFINITE SERIES

1. If Xu, converges, then lim u, = 0 (see Problem 2.26, Chap. 2). The converse, however, is not
n—00

necessarily true, i.e., if lim u, = 0, Xu, may or may not converge. It follows that if the nth
n—00

term of a series does not approach zero the series is divergent.

2. Multiplication of each term of a series by a constant different from zero does not affect the
convergence or divergence.

3. Removal (or addition) of a finite number of terms from (or to) a series does not affect the
convergence or divergence.

SPECIAL SERIES

1. Geometric series E " =a+ar+ar? +---, where a and r are constants, converges to
n=1 n
. . . . 1—
S = ] a if |[r] <1 and diverges if |r] = 1. The sum of the first n terms is S, = M
—r _
(see Problem 2.25, Chap. 2).

N 1 1 . .
2. The p series Z,Tp =7 + > + ¥ + ---, where p is a constant, converges for p > 1 and diverges
n=I

for p < 1. The series with p =1 is called the harmonic series.

TESTS FOR CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

More often than not, exact values of infinite series cannot be obtained. Thus, the search turns
toward information about the series. In particular, its convergence or divergence comes in question.
The following tests aid in discovering this information.
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1.

2.

Comparison test for series of non-negative terms.

(a) Convergence. Let v, =2 0 for all » > N and suppose that Xv, converges. Then if
0<u, <w, for all n > N, Xu, also converges. Note that n > N means from some
term onward. Often, N = 1.

1

1 1
< — and Z > converges, Z il also converges.

. 1
EXAMPLE. Since il =

(b) Divergence. Letwv, = 0foralln > N and suppose that v, diverges. Then if u, = v, for
all n > N, Zu, also diverges.

. 1 1 N N .
EXAMPLE. Since o > p and "Z; P diverges, Z o also diverges.

n=2

The Limit-Comparison or Quotient Test for series of non-negative terms.

(a) Ifu, = 0and v, = 0 and if lim Un_ 4 # 0 or oo, then Xu, and Xwv, either both converge

or both diverge. "0 Un
(b) If A=0in (a) and v, converges, then Xu, converges.
(¢) If A =00 in (a) and X, diverges, then Xu, diverges.

This test is related to the comparison test and is often a very useful alternative to it. In
particlar, taking v, = 1/n”, we have from known facts about the p series the

Theorem 1. Let lim n’u, = A. Then

n—oo

(i) Zu, converges if p > 1 and 4 is finite.
(il)y Zu, diverges if p £ 1 and 4 # 0 (4 may be infinite).

3.

1
EXAMPLES. 1. Zh converges since ’71Lr£10 " 411;1——2:1

Inn Inn
2. diverges since lim n'? . ——— = oo.
2 Gy dvere e )7
Integral test for series of non-negative terms.
If f(x) is positive, continuous, and monotonic decreasing for x = N and is such that
fW)=u,,n=N,N+1,N+2,..., then 3Zu, converges or diverges according as

00 M
J f(x)dx = A}im J f(x)dx converges or diverges. In particular we may have N =1, as
N = Jn

is often true in practice.

This theorem borrows from the next chapter since the integral has an unbounded upper
limit. (It is an improper integral. The convergence or divergence of these integrals is defined in
much the same way as for infinite series.)

1 . . M dx . 1 .
EXAMPLE: ; el converges since A/}Ll;noo J] == A}linoc(l - ﬁ) exists.
Alternating series test. An alternating series is one whose successive terms are alternately
positive and negative.
An alternating series converges if the following two conditions are satisfied (see Problem

11.15).

(@) |upe] = luy for n = N (Since a fixed number of terms does not affect the conver-
gence or divergence of a series, N may be any positive integer. Frequently it is chosen to
be 1.)

() lim wu, =0 (or lim |u,| = o)
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0 nfl n—1
-1 1
EXAMPLE. For the series 1—1+1-14+1— Z , we have u, = ( ) s luy| = -

1
[thq1 ] :?. Then for n = 1, |u, | < |u,|. Also 11 |u,,| =0. Hence, the series converges.
n

Theorem 2. The numerical error made in stopping at any particular term of a convergent alternating
series which satisfies conditions (a) and (b) is less than the absolute value of the next term.

EXAMPLE. If we stop at the 4th term of the series 1 —§+4—1+1—-., the error made is less than
1-0.2
l=02.

5. Absolute and conditional convergence. The series Xu, is called absolutely convergent if X|u,|
converges. If Xu, converges but X|u,| diverges, then Xu, is called conditionally convergent.

Theorem 3. 1If X|u,| converges, then Xu, converges. In words, an absolutely convergent series is
convergent (see Problem 11.17).

1 1 1 1 1 1
EXAMPLE 1. ?+27_37_?+52+?
1

1
series of absolute values B + 5+ 7 + 5+ - - converges.

— .- is absolutely convergent and thus convergent, since the

1 1 1 1 1 1 . 1 1 1
EXAMPLE 2. 1—7—|—§ Zl - converges, but1—|—2+3+4—|— - diverges. Thus,l—i—&—g 7

is conditionally convergent.

Any of the tests used for series with non-negative terms can be used to test for absolute
convergence. Also, tests that compare successive terms are common. Tests 6, 8, and 9 are of
this type.

Uyt
ul’l
(a) converges (absolutely) if L < 1
(b) diverges if L > 1.
If L =1 the test fails.
7. The nth root test. Let nanQQ M = L. Then the series Zu,

6. Ratio test. Let lim

n—00

= L. Then the series Zu,

(a) converges (absolutely) if L < 1
(b) diverges if L > 1.
If L =1 the test fails.

1
8. Raabe’s test. Let lim,, (1 _ [t

ul’l
(a) converges (absolutely) if L > 1

n—oo

D = L. Then the series Xu,

(b) diverges or converges conditionally if L < 1.

If L =1 the test fails.
This test is often used when the ratio tests fails.

u
9. Gauss’ test. If |[—L

c .
=1——+ 5, where |¢,| < P for all n > N, then the series Xu,
u, non

(a) converges (absolutely) if L > 1
(b) diverges or converges conditionally if L < 1.
This test is often used when Raabe’s test fails.



CHAP. 11] INFINITE SERIES 269

THEOREMS ON ABSOLUTELY CONVERGENT SERIES

Theorem 4. (Rearrangement of Terms) The terms of an absolutely convergent series can be rearranged
in any order, and all such rearranged series will converge to the same sum. However, if the terms of a
conditionally convergent series are suitably rearranged, the resulting series may diverge or converge to
any desired sum (see Problem 11.80).

Theorem 5. (Sums, Differences, and Products) The sum, difference, and product of two absolutely
convergent series is absolutely convergent. The operations can be performed as for finite series.

INFINITE SEQUENCES AND SERIES OF FUNCTIONS, UNIFORM CONVERGENCE

We opened this chapter with the thought that functions could be expressed in series form. Such
representation is illustrated by

3 5 x2n71

iy x— N Lyt
sinx=x -5 -+ EDT g Tt

where

3 2k—1

. . . X a ] X
SIHXZHILHC;IOSH, with S]:X,Szzx—g,...s,,,:;(—l)k lm.

Observe that until this section the sequences and series depended on one element, n. Now there is
variation with respect to x as well. This complexity requires the introduction of a new concept called
uniform convergence, which, in turn, is fundamental in exploring the continuity, differentiation, and
integrability of series.

Let {u,(x)},n=1,2,3,... be a sequence of functions defined in [¢,b]. The sequence is said to
converge to F(x), or to have the limit F(x) in [a, b], if for each € > 0 and each x in [a, b] we can find
N > 0 such that |u,(x) — F(x)| < e for alln > N. In such case we write nllglo u,(x) = F(x). The number

N may depend on x as well as €. If it depends only on € and not on x, the sequence is said to converge to
F(x) uniformly in [a, b] or to be uniformly convergent in [a, b].
The infinite series of functions

o0

Z Lln(x) = Ml(.x) + Mz(X) + M3(x) + .. (3)

n=1

is said to be convergent in [a, b] if the sequence of partial sums {S,(x)}, n=1,2,3,..., where
S,(x) = u(x) + ur(x) + - - - + u,(x), is convergent in [a,b]. In such case we write lim S,(x) = S(x)
and call S(x) the sum of the series. e

It follows that Xu,(x) converges to S(x) in [a, ] if for each € > 0 and each x in [a, ] we can find
N > 0O such that |S,(x) — S(x)| < eforalln > N. If N depends only on € and not on x, the series is called
uniformly convergent in [a, b].

Since S(x) — S, (x) = R,(x), the remainder after n terms, we can equivalently say that Xu,(x) is
uniformly convergent in [a, b] if for each € > 0 we can find N depending on € but not on x such that
|R,(x)| < € for all n > N and all x in [a, b].

These definitions can be modified to include other intervals besides ¢ < x < b, such as a < x < b,
and so on.

The domain of convergence (absolute or uniform) of a series is the set of values of x for which the
series of functions converges (absolutely or uniformly).

EXAMPLE 1. Suppose u, = x"/n and —% < x £ 1. Now think of the constant function F(x) = 0 on this interval.
For any € > 0 and any x in the interval, there is N such that for all n > N|u, — F(x)| < ¢, i.e., |X"/n| < e. Since the
limit does not depend on x, the sequence is uniformly convergent.
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EXAMPLE 2. Ifu, = x" and 0 < x < 1, the sequence is not uniformly convergent because (think of the function
Fx)=0,0=x<1,F(l)=1)

[x" — 0] < € when X" <€,
thus

nlnx < Ine.
S
On the interval 0 £ x < 1, and for 0 < € < 1, both members

. . . Ine .
of the inequality are negative, therefore, n > e Since
nx

lnie: Inl—Ine = In(/€) , it follows that we must choose N
Inx Inl—nnx In(l/x)

such that

. . 1
From this expression we see that € — 0 then In— — co and
€

1
also as x — 1 from the left In— — 0 from the right; thus, in either
X

case, N must increase without bound. This dependency on both Fig. 11-1
€ and x demonstrations that the sequence is not uniformly
convergent. For a pictorial view of this example, see Fig. 11-1.

SPECIAL TESTS FOR UNIFORM CONVERGENCE OF SERIES
1. Weierstrass M test. If sequence of positive constants M, M,, M3, ... can be found such that
in some interval
(a) |u,(x)| = M, n=1,2,3,...
(h) XM, converges
then Xu,(x) is uniformly and absolutely convergent in the interval.

cosnx cosnx

n?

is uniformly and absolutely convergent in [0, 2] since

o0
EXAMPLE. Z
n=1

1 1
2 = pad )

converges.

This test supplies a sufficient but not a necessary condition for uniform convergence, i.e., a
series may be uniformly convergent even when the test cannot be made to apply.

One may be led because of this test to believe that uniformly convergent series must be
absolutely convergent, and conversely. However, the two properties are independent, i.e., a
series can be uniformly convergent without being absolutely convergent, and conversely. See
Problems 11.30, 11.127.

2. Dirichlet’s test. Suppose that

(a) the sequence {a,} is a monotonic decreasing sequence of positive constants having limit
zero,

(b) there exists a constant P such that fora < x < b
[t (x) + up(x) + - - - +u,(x)| < P for all n > N.

Then the series
o0
ajuy(x) + apup(x) + -+ - = Zanun(x)
n=1

is uniformly convergent in ¢ < x < b.
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THEOREMS ON UNIFORMLY CONVERGENT SERIES

If an infinite series of func