2022

Mathematics

[Honours]

(B.Sc. Second Semester End Examination-2022) PAPER-MTMH C202

(Real Analysis I)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

1. Answer any ten questions:

10x2 = 20

- a) Prove that there is no least positive real number.
- b) Find the solution set of $\left| \frac{x+2}{2x-1} \right| \le 3$
- c) Give the definition of Interior point and limit point of set in $\ensuremath{\mathbb{R}}$.
- d) State principle of Induction for set of natural number.

e) Show that
$$\lim_{n \to \infty} \frac{1}{n} \left(1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + ... + n^{\frac{1}{n}} \right) = 1$$

f) Prove that,
$$\lim_{n \to \infty} 2^{-n} n^2 = 0$$

- g) Find supremum of A and infimum of A of the set $A = \left\{ 1 + (-1)^n \frac{1}{n} \middle| n \in N \right\}$
- h) State the properties of supremum and infimum of a set in \mathbb{R}
- i) Prove that the every point of the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots\right\}$ is isolated point.
- j) If a $a \ge 0$ and $a \le 6$ for every 6 > 0 prove that a = 0
- k) Let G be an open set in \mathbb{R} and S be a non-empty finite subset of G. Prove that G-S is an open set.
- 1) Prove that the closer of a set S is the smallest closed super set of S
- m) Prove that the set of all limit points of a bounded sequence is bounded.
- n) Give an example of a sequence which have unique limit point but not convergent.
- o) Is the series $1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + ... + \frac{1}{n^n} + ...$ is convergent?

2. Answer any four questions:

4x5 = 20

- a) Let A and B are non empty bounded subsets of R: Prove that
 - i) Sub $A \cup B = min\{Sup A, Sup B\}$
 - ii) $\inf A \cup B = \min \{\inf A, \inf B\}$
- b) State and prove Bol zano weierestrass theorem.

- c) Test the convergence of the series $1 + \frac{1!}{2!}x + \frac{(2!)^2}{4!}x^2 + \frac{(3!)^2}{6!}x^3 + ...x > 0$
- d) Prove that the series $\sum u_n v_n$ converges absolutely if the series $\sum u_n$ be absolutely converge and $\{v_n\}$ be a bounded sequence.
- e) Prove that every sequence of real number has a monotone subsequence.
- f) Prove that the sequence $\{u_n\}$ is convergent by showing that the subsequence $\{u_{2n}\}$ and $\{u_{2n-1}\}$ converges to the same limit, $0 < u_1 < u_2$ and $u_{n+2} = \frac{1}{3} (u_{n+1} + 2un)$ for $n \ge 1$

Group -C

3. Answer any one questions:

2x10 = 20

a) Discuss the convergence of the series

$$i) \sum \frac{(-1)^{n+1}}{\log(n+1)}$$

ii)
$$\sum \frac{(-1)^n 3^n}{n!}$$

b) Let
$$S = \left\{ \frac{(-1)^m}{m} + \frac{1}{n} : m.n \in \mathbb{N} \right\}$$

i) Show that 0 is a limit point of S

- ii) If $K \in N$, show that $\frac{1}{K}$ is a limit point of S
- iii) If $K \in N$, then show that $\frac{-1}{2K-1}$ is a limit point of S
- c) i) Prove that the sequence $\{x_n\}$ and $\{y_n\}$ defined by $x_{n+1} = \frac{1}{2}(x_n + y_n), \quad \frac{2}{y_{n+1}} = \frac{1}{x_n} + \frac{1}{y_n} \quad \text{for} \quad n \ge 1, x_1 > 0, y_1 > 0$

converges to a common limit l where $l^2 = x_1 y_1$

ii) Let S be a subset of $\mathbb R$. Then S is a closed set if and only if $S=S\cup S'$
