2022

Mathematics

[Generic]

(B.Sc. Second Semester End Examination-2022) PAPER-MTM GE201

(Differential equation & Differential Calculus - II)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

[Differential equation]

1. Answer any four questions:

4x2 = 8

- a) Find the Wronskian of the set $\{1-x, 1+x, 1-3x\}$
- b) Write the principle of superposition of linear differential equation.
- c) Solve the equations $\frac{dx}{myz} = \frac{dy}{nzx} = \frac{dz}{pxy}$
- d) Find the general solution of the *ODE* $\frac{d^2x}{dx^2} \frac{2dy}{dx} + 10y = 0$
- e) Find the particular solution of the differential equation $(D^2 + 3aD 4a^2)y = 0 y(0) = 1, y'(0) = 2$

(3)

- f) Define ordinary point and singular point of a differential equations $a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0$
- g) Show that x=1 and x=3 are the ordinary point and the singular points of the equation

$$x(3-x)\frac{d^{2}y}{dx^{2}} - (3-x)\frac{dy}{dx} + 5xy = 0$$

2. Answer any two questions:

2x5 = 10

- a) Solve $(D^2 + 3D + 2)y = e^{2x}Sinx$
- b) Solve $(D^2 + 4D + 1)y = x^2 2x + 2$ by using the method of undetermined coefficients.
- c) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + \frac{1}{x} - \frac{dy}{dx} - \frac{1}{x^2}y = x + Sixx, (x > 0)$$
 It being given

that y = x and y = 1/x are two linearly independent solutions of the associated homogeneous differential equation.

3. Answer any one question:

1x10 = 10

a) i) Find the series solution of the differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0 \text{ around the point } x = 1$

ii) Solve
$$\frac{x dx}{z^2 - 2yz - y^2} = \frac{dy}{y + z} = \frac{dz}{y - z}$$

iii)Solve
$$(D^4 - n^4)y = 0$$

- b) i) Find the general solution of the $ODE \frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = e^{3x}$
 - ii) Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} + 4y = 3\sin x$

Group B [Differential Calculus – II]

4. Answer any four questions:

4x2 = 8

- a) State Rolle's theorem.
- b) Find from definition, the partial derivative of the function $f(x, y) = x^2 \log y$ w.r. to x at the point (1,2)
- c) Show that the function $f(x) = \frac{1}{x^2 2x + 1)^{3/2}}$ has no derivative at $\gamma = 1$
- d) Find at x=1 what values of x the function $f(x) = 12x^5 45x^4 + 40x^3 + 1 \forall x \in \mathbb{R} \text{ has maximum or minimum.}$
- e) If f'(x) = g'(x) in [a,b], then show that f(x) = g(x) is equal or not.
- f) State Schwarz theorem on commutatine property of mixed derivative.
- g) What is directional derivative?
- h) Verify $\frac{Lt}{(x,y) \to (0,0)} \frac{2x^2y}{x^2+y^2}$ exist or not.

i) If $f(x) = \tan x$, then $f(0) = 0 = f(\pi)$. Is Rolle's theorem applicable to f(x) in $[0, \pi]$

5. Answer any two questions:

.2x5 = 10

a) Let $f(x, y) = xy \text{ if } |x| \ge |y|.$ = -xy if |x| < |y|.

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

- b) Stagte and prove Lang range Mean value theorem.
- c) Expand sin x as an infinite series in power of x by the use of Maclaurin's theorem.

6. Answer any one question:

1x10 = 10

a) i) State and prove Euler's theorem on homogeneous function of two variables.

Prove that $\frac{Lt}{x \to 0} \frac{Lt}{y \to 0} \frac{x - y}{x + y} \neq \frac{Lt}{y \to 0} \frac{Lt}{x \to 0} \frac{x - y}{x + y}.$

- ii) Verify Rolle's theorem for f(x) = 1 |x-1| on [0,2].
- b) i) For the function $f(x,y) = \frac{x^3 + y^3}{x y}, x \neq y$ = 0, x = y

Prove that f(x,y) is not continuous at (0,0) but $\frac{df}{dx}, \frac{df}{dy}$ exist at

(0,0)

ii) Find the maximum and minimum value of $\sin x \ (1+\cos x)$ in $[0,2\pi]$