End Semester Examination, 2022

Semester - IV

Physics

PAPER - CCST

Full Marks: 40

Time: 2 Hours

Answer any five questions:

1.a) Given the matrix $A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

Find the eigenvalues of it

- 2
- b) Write down the necessary and sufficient conditions for analyti complex function. 2
- c) Show that $(AB)^n = A^n B^n$ if AB = BA 2
- d) Find the Fourier transform of the function

$$f(n) = \begin{cases} 1 - x^2, & for |x| \le 1 \\ 0, & for |x| > 1 \end{cases}$$

- e) The real part of an analytic complex function is $u = x^2 3y^2x$. What is its imaginary part?
- f) State Convolution and Parsevals theorem for fourier's integral transforms.
- g) Show that the real and imaginary parts of an analytical function are harmonic functions. 2
- h) Define zeros and poles of complex functions. 2

(Turn Over)

Gr - B

- 2.a) Expand the function $f(z) = \frac{1}{(z-1)(z-2)}$ between the annular region z = 1 and z = 2.
 - b) Find the residue of $f(z) = \frac{ze^z}{(z-a)^3}$ at z = a 3+2
- 3.a) Find the inverse of the matrix $A = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 2 & 1 \\ 3 & 4 & 0 \end{pmatrix}$
 - b) Find the rank of the matrix $\begin{bmatrix} 2 & 1 & 3 \\ 4 & 7 & 13 \\ 4 & -3 & -1 \end{bmatrix}$ 3+2
 - 4. Show that if f(z)=u+iV is an analytic function $\vec{F} = V\hat{i} + u\hat{j}$ is a vector, then div F = 0 and curl F = 0 are equivalent to Cauchy-Reimann equations. 5
- 5.a) Find the first three terms of Taylor expansion of $f(z) = \frac{4}{z^2 + 4}$ about z = -i and give the region of convergence.
 - b) Test the analyticity of the functions given below $w = \ln z$ 3+2
- 6.a) Find the Fourier Cosine transform of

$$f(z) = \begin{cases} x \text{ for } 0 < x < 1\\ 2 - x \text{ for } 1 < x < 2\\ 0 \text{ for } x > 2 \end{cases}$$

 Show that the matrix [A], as given below is unitary

$$A = \begin{bmatrix} 1/\sqrt{2} & -i/\sqrt{2} \\ i/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$
 3+2

7. Find the fourier transform of the Gaussian distribution function $f(x) = Ne^{-\alpha x^2}$, where N and α are constant D Write down some comment on result.

Gr - C

- 8.a) If $u-v=(x-y)(x^2+4xy+y^2)$ and f(z)=u+iv is an analytic function of z=x+iy, find f(z) in terms of z by Milne-Thomson method.
 - b) State the Cauchy's integral formula. Evalute $\int \frac{dz}{z^2 1}$ where c is the circle $x^2 + y^2 = 4$ 5+5
- 9.a) For the matrix [A], as given compute the following: the transpose [A^T], the conjugate $[A^*]$ and the conjugate transpose $[A^+]$

$$A = \begin{bmatrix} 5 - 3i & 3 - 5i \\ 3 & 6 + 2i \\ 4 + i & 3 - 2i \end{bmatrix}$$

b) Solve with the help of matrices, the simulteneous equations

$$x+y+z=3$$

$$x+2y+3z=4$$

$$x+4y+9z=6$$
5+5