2022

Mathematics

[Honours]

(B.Sc. Fourth Semester End Examination-2022)
PAPER-MTMH C402 (Ring Theory - I)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

- 1. Answer any ten questions from the following: 10x2=20
 - a) Find all the maximal and prime ideals of the ring \mathbb{Z}_{12} .
 - b) Find all the subring of \mathbb{Z}_{15} .
 - c) Obtain the units in the integral domain $\mathbb{Z}\left[\sqrt{-3}\right]$.
 - d) Show that the ring \mathbb{Z} and $2\mathbb{Z}$ are not isomorphic.
- e) Find all the irreducible polynomials of degree 3 in $\mathbb{Z}_2[x]$.
- f) Find all the units and divisor of zero in the ring $(\mathbb{Z}_{40},+,\bullet)$.
- g) R is a commutative ring of prime characteristic p. Show that $(a+b)^p = a^p + b^p$ for all $a,b \in R$
- h) Show that the smallest non commutative ring is of order 4.

- i) Show that $x^2 + x + 4$ is irreducible over \mathbb{Z}_{11}
- j) Show that the set $S\{0,3,6,9,12\}$ is a subring of the ring \mathbb{Z}_{15} , Is it a field?
- k) Is \mathbb{Z}_6 a subring of \mathbb{Z}_{12}
- 1) Let, R be finite non-zero commutative ring with unity. Prove that any non-zero element of R is either a unit or a zero divisor.
- m) Test the reducibility of the polynomial $x^3 312312x + 123123$
- n) Let, $f(x) = x^7 105x + 12$. Then show that there does not exist on integer m such that f(m) = 105
- o) Show that the element $3+\sqrt{-5}$ is irreducible in the ring $\mathbb{Z}\left\lceil \sqrt{-5}\right\rceil$

Group-B

- 2. Answer any four questions from the following: 4x5 = 20
- a) If F be a field, then prove that F[x] is a PID
- b) Obtain all the nontrivial ring homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{28}
- c) If p is an odd prime and if $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{a}{b}$, where a, b are positive integers, prove that a is divisible by p.
- d) Show that the domain $\mathbb{Z}\left[\sqrt{-5}\right]$ is not UFD by showing that the element 21 has two different factorisation.

e) Show that the quotient ring

$$\frac{\mathbb{Z}_2[x]}{\langle x^2 + x + 1 \rangle}$$
 is a field of 4 elements.

f) If D_1 and D_2 be two isomorphic integral, domains then show that their respective fields of quotients F_1 and F_2 are also isomorphic.

Group -C

3. Answer any two questions:

10x2 = 20

- a) i) Let, addition \oplus and multiplication \odot be defined on the ring $(\mathbb{Z}, \oplus, \odot)$ by $a \oplus b = a + b 1, a \odot b = a + b a.b$ for $a, b \in \mathbb{Z}$. Prove that $(\mathbb{Z}, \oplus, \odot)$ is a ring with unity.
 - ii) In a cumulative ring with unity, an ideal P is a prime ideal if and only if the quotient ring R/P is an integral domain.
- b) i) Let, C[0,1] be the ring of all real valued continuous function on [0,1] Suppose $A = \left\{ f \in C[0,1] : f\left(\frac{1}{4}\right) = 0, f\left(\frac{3}{4}\right) = 0 \right\}$. Then show that A is an ideal in C[0,1] but is not a prime ideal

Then show that A is an ideal in C[0,1] but is not a prime idea in C[0,1].

ii) Show that the polynomial $x^3 + 2x + 1$ is irreducible in $\mathbb{Z}_3[x]$ and use it to construct a field with 27 elements. Find the inverse of $x^2 + 1$ with that field (where $I = \langle x^3 + 2x + 1 \rangle$)

- c) i) If d be a g.c.d of three elements a,b,c in a principal ideal domain D, show that d be expressed as d = au + bu + cw for u,v,w in D.
- ii) Let D be Euclidean domain with a Euclidean valuation v. If b is unit in D, Prove that v(ab) = v(a) for all non-zero $a \in D$