Total Pages—4

. RNLKWC/IVS/M PHYSICS/CC9T/22

(Turn Over)

End Semester Examination, 2022

Semester - IV

Modern Physics

PAPER - CC9T

Full Marks: 40

Time: 2 Hours

Group - A

1.	Attempt any five questions: 5x2=10
a)	Find $\left[xyz, P_x^2\right]$ 2
b)	Find the probabilities of finding a particle trapped
	in a box of length L in the region from 0.45L to
	0.55L from the ground state.
c)	Calculate the packing fraction and average bind-
	ing energy per nuclear for 8016 of neclear mass
	15.994916u. Given $m_p = 1.007825u$ and
	$m_n = 1.008665u$.
d)	The half life of a radioactive substance is 15 years
,	Calculate the period in which 2.5% of the initial
	quantity will be left over.
e)	Differentiate between spontaneous and stimu-
	lated emissions.
f)	An election is confined to a box of length 1 nm
•	Calculate the minimum uncertainty in its veloc
	ity.
g)	What is the coherence length of laser beam in
	vacuum, if the band width is 30 MHz.

h) An x-ray photon is found to have doubled its wavelength on being scattered by 90°. Find the wavelength of the incident photon.

Group - B

Attempt any four questions:

4x5 = 20

2. What is the probabilistic interpretation of the wavefunction?

The unnormalised wavefunction of a particle is given by,

$$\phi = Nx \, exp\left(-\frac{x^2}{a^2}\right)$$

Determine the normalisation constant N. 2+3

3. Consider a particle of mass m confined in a one dimensional box :

$$V(x) = 0$$
, $-a \le x \le a$
= α . otherwise

Solve the schrodinger equation for the particle and obtain its energy eigen values. 3+2

- 4.a) How does the uncertainty principle rule out the possibility of electron being inside the nucleus?
 - b) Using the single particle shell model, calculate the spin and parity of $_{19}K^{39}$ nucleus in its ground state.
 - 5. Show that the relation between Einstein's A and B co-efficient for transition between two states 1 and 2 is given by

$$\frac{A_{21}}{B_{21}} = \frac{8\Pi h \gamma^3}{C^3}$$

RNLKWC/IVS/M PHYSICS/CC9T/22

- 6. What is pair production? Show that electron-positron pair cannot be created by an isolated photon.
- 7. In the fission of a nucleus of mass number A_0 into the two nuclei A_1 and A_2 , the energy release is $Q = M_0C^2 M_1C^2 M_2C^2$. Estimate Q for symmetric fission of a nucleus with $A_0 = 240$.

Group - C

Attempt any one question:

1x10=10

- 8.i) Why does a monochromatic wave cannot represent a particle?
- ii) What is the significance of Davisson and Germer experimental result?
- iii) An electron having kinetic energy 10ev at $x=-\infty$ is moving from left to right along x-axis. The potential energy is V=0 for x<0 and V=20ev for x>0. Treating to electron as a one dimensional plane wave:
 - a) Write down schrödinger equation for x < 0 and x > 0.
 - b) Sketch the solution of schrödinger equation in the two regions x < 0 and x > 0.
 - c) What is the probability of finding the electron at some positive value of x. 2+2+(2+2+2)
- 9. The Weizacker semi-empirical mass formula is given by—

$$M(A,Z) = ZM_{H} + (A-Z)M_{N} - a_{v}A + a_{s}A^{\frac{1}{15}} + a_{c}\frac{z(z-1)}{A^{\frac{1}{15}}} + a_{a}\frac{(A-2z)^{2}}{A}(\pm,0)a_{p}A^{-\frac{1}{15}}$$
[Where, $a_{r} = 14M_{e}V$, $a_{r} = 12M_{e}V$, $a_{r} = 0.60M_{e}V$

[Where,
$$a_v = 14 \, MeV$$
, $a_s = 13 \, MeV$, $a_c = 0.60 \, MeV$
 $a_a = 19 \, MeV$, $a_p = 34 \, MeV$]

- a) Using this formula, show that M(A,Z) follows a parabolic variation with Z for a group of isobars.
- b) Find out an expression for the atomic number for the most stable isobar and hence identify the most stable isobar corresponding to mass mumber. A = 109.
- c) Show the plotting of binding energy per nuclon as the sum of volume, surface, coulamb and asymmetry energies.
- d) Write down the limitations of the above formula.