2022

CHEMISTRY

[Honours]

B.Sc. Fourth Semester End Examination - 2022
PAPER - C10T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

Answer any one question:-

10×1=10

- 1. (a) Account for the following observations: $2\frac{1}{2} \times 2=5$
 - (i) The rate of the reaction of 1-bromobutane with azide ion is increased 5×10³ fold on changing the solvent from methanol to acetonitrite.

(Turn Over)

- (ii) Both o-bromo anisole and m-bromo anisole give same product on treatment with NaNH₂ in liq. NH₃.
- (b) Write the product(s) of the following reactions and give plausible mechanism in each case.(any two)
 2×2=4

(i)
$$CH_{,C}$$
 $CH_{,C}$ $NH_{,-NH_{,+}}H_{,O}$?

(ii)
$$OH \xrightarrow{CHO} ACONa, Reflux$$

(iii)
$$(Me_2-CH)_2C=O$$
 $\xrightarrow{\text{(i) Me}_2CH MgBr}$?

- (c) 18-Crown-6 ether greatly increases the rates of reaction where KCN is used as the source of cyanide ion. Account for the emperical observation.
- 2. (a) Carry out the following conversions (any two) 2×2=4
 - (i) PhCHO ---- PhCH₂CHO (applying witting

reaction as the key step)

(ii)
$$\bigcirc_0$$
 \bigcirc

(Using alcohol condensation as the key step)

- (iii) phenol ---- p-aminophenol.
- (b) Deuterium labeling experiment may be used to establish the mechanism of cannizaro reaction-Justitfy.

3

2

(c) Compare the green and classical route (Friedel crafts acylation) for the preparation of p-methoxyacetophenone.

Group - B

Answer any four questions.

3. (a) Write the product(s) of the following reaction.

B.Sc. RNLKWC(A)-/Chemistry/C10T/22

(Turn Over)

B.Sc. RNLKWC(A)-/Chemistry/C10T/22

(Continued)

(b) Write the BAC² mechanism of hydrolysis of ethyl benzoate. Hence arrange the following ethyl parasubstitute benzoates.

$$R - CO_2ET$$

(where R is -OMe -NO₂, -Cl and -Me)
In order of decreasing rates of BAC² hydrolysis and explain your answer.

- 4. (a) What is green chemistry?
 - (b) Give example (Green synthesis) 1+1=2
 - (i) Michael reaction (under solvent free)
 - (ii) Knovenagel reaction (Under aqueous solvent)
 - (c) In which case would the equilibrium be more favourable to R.H.S. and why?

(i)
$$_{OH} + _{H} \rightleftharpoons _{O} OH$$

(ii)
$$OH \longrightarrow H \rightleftharpoons OH$$

(Continued)

1

5. (a) Outline the synthesis of

- (ii) CH, COOH from Diethyl malonate.
- (b) Trichloro acelaldyhyde is exclusively hydrated in water-explain.
- 6. (a) Explain the product formation and give plausible mechanism. $2\frac{1}{2} \times 2=5$

(i)
$$OH \xrightarrow{(i) DMF, POCI_3} OH \xrightarrow{OH} CHO$$

(ii)
$$\underset{MeO}{\longrightarrow}$$
 $\underset{OMe}{\longrightarrow}$ OMe

7. (a) Write structure of A, B and C in the following sequence of reactions.

$$CH_3COCH_3 + C = CH \xrightarrow{NaNH_2} A \xrightarrow{H_2/pd-BaSO_4} B \xrightarrow{PBr_1} C$$

B.Sc. RNLKWC(A)-/Chemistry/C10T/22

(Turn Over)

2+2

B.Sc. RNLKWC(A)-/Chemistry/C10T/22

- (b) The substitution reaction of EtSCH₂CH₂Cl with ethanol proceeds at a rate many folds faster than the similar reaction of Et OCH₂CH₂Cl explain. 2
- 8. (a) Use Reformatsky reaction for the synthesis of PhCH=C(Et)COOH. Explain why Magnesium metal can not be used in place of Zinc in the synthesis. 3
 - (b) Write down the product(s) with plausible mechanism.

 (Any one)

Group - C

Answer any five questions:

5×2=10

(a) Give the products of the following reactions and explain.

B.Sc. RNLKWC(A)-/Chemistry/C10T/22

(Continued)

- (b) What is Hammond's potulate?
- (c) Explain the following observation.

$$CH_{3} \xrightarrow{CO_{2}\text{Et}} CO_{2}\text{Et} \xrightarrow{\text{(i) NaOEt, EtOH}} CH_{3} \xrightarrow{CH_{3}} O$$

(d) Write down the structure of the product of the following reaction with plausible mechanism.

(e) Carry out the following conversions and explain with mechanism.

$$OH \longrightarrow OH \longrightarrow OH O CH,$$

B.Sc. RNLKWC(A)-/Chemistry/C10T/22

(Turn Over)

(f) Show the mechanism of the following rearrangement reaction with product structure.

(g) Transform the following

(h) Explain the lack of reactivity of α -halocarbonyl compounds in SN^1 reactions.