Րո	tal	Pa	ges-	05
				00

RNLKWC/B.Sc./CBCS/IVS/MTMHC403/22

2022

Mathematics

[Honours]

(B.Sc. Fourth Semester End Examination-2022) PAPER-MTMH C403

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

[USE SEPARATE SHEET FOR EACH GROUP]

Group-A

(Vector Analysis - II)

1. Answer any six questions:

6x2 = 12

- a) Show that a necessary and sufficient condition for a scalar point function ϕ is to be constant is that grad $\phi = 0$
- b) If \vec{a} is a constant vector and \vec{r} is the radius vector then prove that $\operatorname{div}(\vec{r} \times \vec{a}) = 0$
- c) Prove that curl of grad ϕ is a null vector.
- d) If f and g are two scalar point function prove that $\operatorname{div}(f\nabla g) = f\nabla^2 g + \nabla f \nabla g$

- e) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is position vector then evaluate $\nabla(\log r)$ where $r = |\vec{r}|$
- f) Derive the expression for maximum value of directional derivative of a scalar point function ϕ at the point (x, y, z) in the direction of unit vector \hat{e} .
- g) What do you mean by conservative vector field. Show that the work done by a particular conservative field of force in a closed path is 0.
- h) A vector field is given by $\vec{A} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$ is scalar potential of \vec{A} exists?
- i) If ϕ is differentiable scalar function of x, y, z, t, where x, y, z are differentiable scalar function of t prove that $\frac{d\phi}{dt} = \frac{\partial \phi}{\partial t} + \Delta \phi \cdot \frac{d\vec{r}}{dt}$

2. Answer any three questions:

3x5 = 15

- a) Find the circulation of \vec{F} around the curve C where $\vec{F} = (2x y + 4z)\hat{i} + (x + y z^2)\hat{j} + (3x 2y + 4z^3)\hat{k}$ and C is the circle $x^2 + y^2 = 9$, z = 0
- b) Find the angle of intersection of the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2)

- c) Use stokes' theorem to evaluate $\int_c (2x-y)dx yz^2dy y^2zdz$ where c is the circle $x^2 + y^2 = 1$ corresponding to the surface of sphere of unit radius.
- d) What is the physical significance of curl of a vector point function?
- e) Show that $\nabla^2 \left(\frac{1}{r} \right) = 0$, where $r = |\vec{r}|$ and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

3. Answer any one question:

1x10 = 10

- a) Prove that a necessary and sufficient condition that the vector field \vec{F} be conservative is that $\nabla \times \vec{F} = \vec{0}$ where \vec{F} has continuous derivatives in an open region R in which \vec{F} is defined.
- b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds$ where, $\vec{F} = x\hat{i} y\hat{j} + (z^2 1)\hat{k}$. S is the surface of the region bounded by $x^2 + y^2 = 4$, z = 0, z = 4 in first octant.

Group-B

(Metric Space - I)

1. Answer any four questions:

4x2=8

a) If d_1 and d_2 are two metrices on a non-empty set A. Prove that $ad_1 + bd_2$ is also a metric on A where $a, b \in \mathbb{R}^+$

- b) If x_1, x_2, x_m are arbitrary points of a metric space (A, d). Then prove that $d(x_1, x_m) \le d(x_1, x_2) + d(x_2, x_3) + ... + d(x_{m-1}, x_m)$
- c) Let (x,d) be a metric space and $A,B\subseteq X$ then prove that $d(A,B)\leq diam(A\cup B)$
- d) Find all open and closed sets in a discrete metric space.
- e) Define complete metric space (x,d). Give an example of a metric space which is not complete in a metric space but complete in another metric space.

 1+1
- f) Let \mathbb{R}^2 be the set of all order pairs of real numbers and define a metric $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $d(x,y) = |x_1 y_1| + |x_2 y_2|$ for all $x = (x_1, x_2)$ and $y = (y_1, y_2) \in \mathbb{R}^2$. Draw geometrically an ball B(a,r) in \mathbb{R}^2

2. Answer any one questions:

1x5 = 5

- a) Let A denote the set of all Cauchy sequences of real numbers. We define a distance function $d: A \times A \to \mathbb{R}$ by $d(x, y) = Sup|x_i y_i|$ for all $x = \{x_n\}$ and $y = \{y_n\}$. Prove that (A, d) is metric space.
- b) Let A be a subset of a metric space (X,d). Then prove that $x \in \overline{A}$ iff every open nbd of x intersect A

3. Answer any one questions:

1x10 = 10

a) i) Prove that if A is closed iff each sequence in X which converges to a point A^c is eventually in A^c .

- ii) Let (x,d) be a metric space and $A \subseteq X$ and F be a closed set containing A. Then prove that $\overline{A} \subseteq F$.
- iii) Define separable metric space and give an example.
- b) i) Let (x,d) be a metric space U ⊆ X and x ∈ X. Then U is a nbd of x iff there is an open ball B(y,r) for some r > 0 and some y ∈ X (y is not necessarily x) such that x ∈ B(y,r) ⊆ U ii) Define bounded set in a metric space (X,d) and give an of a bounded set.
 - iii) Let (X,d) be a metric space and $A,B\subseteq X$ prove that $A^0\cup B^0\subseteq (A\cup B)^0$. Is the converse true? Justify.