Total	Pages-03
-------	----------

RNLKWC/B.Sc./CBCS/VIS/H/MTMHC601/22

2022

MATHEMATICS

[HONOURS]

(B.Sc. Sixth Semester End Examination-2022) PAPER-MTMH C-601

Full Marks: 60

Time: 03Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

[Graph Theory - III]

1. Answer any ten questions:

10x2 = 20

- a) Consider the group $(\mathbb{Z},+)$ Show that $\mathbb{Z} \times \mathbb{Z}$ is not a cyclic group.
- b) Find the number of elements of order 9 in $Z_3 \times Z_9$.
- c) Define internal direct product of two groups with an example.
- d) Find all abelian group of order 800 upto isomorphism.
- e) Let G_1, G_2 be two groups. Show that $Z(G_1 \times G_2) = Z(G_1) \times Z(G_2)$ where Z(G) is the center of G.
- f) What do you mean by group acting on itself by conjugation?
- g) Define orbit and stabilizer.
- h) If H is normal in G and P is a sylow p-subgroup of H, then show that $G = N_G(P)H$.

- i) If every sylow subgroup of a group G is normal and abelian, then show that G is abelian.
- j) Let H and K be normal subgroups of G such that $H \cong K$. Is $\frac{G}{H} \cong \frac{G}{K}$?
- k) Find all the non-isomorphic abeliam groups of order 20.
- I) Define Kernal of an action.
- m) Show that there is no simple group G of order 216.
- n) Let G be a group and S=G. Show that * defined by $a*x = ax\overline{a}^1, a, x \in G$ is a group action.
- o) Let G act on G by Conjugation i.e., $g*a = ga\overline{g}^1, a, g \in G$ then show that Ker(*) = Z(G)

2. Answer any four questions:

4x5 = 20

- a) Let G_1 , G_2 be two finite cyclic groups of order p,q respectively. Show that $G_1 \times G_2$ is a cyclic group iff gcd(p,q) = 1
- b) Let G be a group and S be a non-empty set. Show that every action of G on S determine a homomorphism G to A(s).
- c) If H, K are normal subgroups of G, Show that $\frac{G}{H \cap K}$ is isomorphic to a subgroup of $\frac{G}{H} \times \frac{G}{K}$.
- d) Show that $Z_{mn} \simeq Z_m \times Z_n$ iff gcd(m, n) = 1

- e) Let G be a finite group and H be a subgroup of G with [G:H]=n and $\|G\| \dagger n!$. Then show that G has a non-trivial normal subgroup.
- f) Let G be a finite group and P be a prime number. Show that G is a p-group iff $|G| = P^n$ for $\mathbb{N} \cup \{O\}$.

3. Answer any two questions:

2x10 = 20

- a) i) Prove that the number of sylow p-subgroups of G is of the form 1+kp where (1+kp)|o(G), K being a non-negative integer.
 - ii) Let G be a group and S be a non-empty set. Show that every action of G on S determine a homomorphism G to A(S) 6+4
- b) i) Let G be a group and $H \le G$ and $S = \{aH : a \in G\}$ and A(S) = the group of all permutations on S. Then show that there exist a homomorphism $\psi : G \to A(S)$ such that $\ker \psi \subseteq H$
 - ii) Let G be a group of order p^2 where p is a prime number. Show that G is an abelian group. 7+3
- c) Let O(G)=30, Show that
 - i) Either Sylow 3-Subgroup or Sylow 5-subgroup is normal in G.
 - ii) G has a normal subgroup of order 15.
 - iii) Both Sylow 3-subgroup and Sylow 5-subgroup are normal in G.