End Semester Examination, 2022

Semester - VI Physics

PAPER - C13T

Full Marks: 40

Time: 2 Hours

Group - A

1. Answer any five questions:

5x2=10

- a) Show that displacement current and conduction current are equal in magnitude in a particular circuit.
- b) In a medium of dielectric constant 5, the maximum displacement current is equal to the maximum conduction current at a frequency of 1 MHz. Find the conductivity of the medium.
- c) What are the significance of gauge transformation?
- d) The intensity of sunlight reaching the earth's surface is about 2 calorie. cm⁻², min⁻¹. Calculate the strength of electric field of in coming sunlight.
- e) Show that equation of continuity $\vec{\nabla} \times \vec{J} + \frac{\partial p}{\partial t} = 0$ is contained in Maxwell's equation.
- f) State Brewster's law. What is Brewster's angle?

(Turn Over)

- g) Show that $Vp Vg = c^2$, where Vp and Vg are the phase and group velocity, c is velocity of light in free space.
- h) What is the difference between optical rotation and specific rotation?

Group - B

Answer any <u>four</u> questions : 4x5=20

- 2.a) Show that electric, magnetic and propagation vectors form a set of orthogonal vectors in free space.
 - b) Also show that, electric and magnetic field vectors are in phase and constant in ratio. 3+2
 - 3. Starting from the Maxwell's equation find the diffarential equation satisfied by the magnetic vector potential $\frac{1}{A}$. Derive the condition for which the equation simplifies to a wave equation. 3+2
- 4.a) What is skin depth?
 - b) Show that the skin depth in a poor conductor is in dependent of frequency and is given by

$$\delta = \frac{2}{\sigma} \sqrt{\frac{\epsilon}{\mu}}$$

where symbols has their usual meaning. 2+3

- 5.a) What is a waveguide?
 - b) Show that TEM waves can not occur in a hollow waveguide. 2+3

6. The electric field of an electromagnetic wave propagating through vaccum is given by

$$\vec{E}(\vec{r},t) = E_0 \hat{Z} \cos \left(100\sqrt{3}\Pi x - 100\Pi y - wt\right)$$

- a) What is the wave vector \vec{K} ? Hence find the value of w.
- b) At the time t=0, there is a point charge q with velocity $\vec{V}=V_0\hat{x}$ at the origin. What is the instantaneous Lorentz force acting on the particle ?2+3
- 7. If x and y component of electric vector of an electromagnetic wave be

$$Ex = a_1 \sin wt$$
 and $Ey = a_2 \sin(wt + \delta)$
where symbol has their usual meaning.
Show that —

- (i) for $\delta = 2m\Pi$ the e.m. wave is linearly polarized, where m = 1, 2, 3, ...
- (ii) for $\delta = (m + \frac{1}{2})\Pi$, we get elliptic polarization, where m = 1, 2, 3,
- (iv) When does the ellipse become a circle? 2+2+1

Group - C

Answer any <u>one</u> questions:

1x10=10

8.a) State and establish Poynting's theorem. Show that the theorem can be expressed as

$$\frac{\partial u}{\partial t} + \vec{\nabla} \cdot \vec{S} = 0$$

where $\bar{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$ and u is the total electromag-

netic energy density

RNLKWC/VIS/PHYSICS/C13T/22