End Semester Examination, 2022

Semester - VI Physics PAPER - C14T

Full Marks: 40

Time: 2 Hours

Group - A

1. Answer any five from the following:

- a) Plot Fermi distribution function for T = 0 K and T > 0 K.
- o) Write down the type of statistics (B-E or F-D) the following particles follow neutino, alpha, muon, photon
- c) Explain the terms 'microstate' and 'macrostate' with suitable examples.
- d) Show mathematically under which condition B-E distribution reduces to M-B distribution function.

2

- e) How is canonical partition function used to determine the mean energy of the particles in a system?
- f) State the most significant difference between the assumptions of Einstein and Debye theories of specific heat of solid.
- g) Calculate the number of microstates for a free particle inside a three dimensional cubical box of volume V having energy between E and E+dE. 2

(Turn Over)

h) Consider a photon gas in equilibrium. What is the value of its chemical potential and why?

Group - B

Answer any four from the following:

- 2. A system of N localized magnetic dipoles is kept in a magnetic field.
 - a) Calculate the canonical partition function for the system.
 - b) Find out the average magnetic moment.
 - c) Plot this as a function of temperature. 2+2+1
- a) With the help of the fugacity term state the conditions for a system to obey quantum and classical statistics.
 - b) Obtain the Planck's blackbody radiation law from B-E statistics. 2+3
- 4. Show that the Fermi pressure is proportional to the cube root of the fifth power of the number density at T = O in three dimensions.
- 5. Starting from the expression of canonical partition function for a system having discrete energy levels, show that the relative fluctuation in en
 - ergy $\left(\frac{\operatorname{d} E}{E}\right)$ is $\sqrt{\frac{2}{lNK}}$ where l is the number of degrees of freedom, N is the number of particles in the system and K is the Boltzmann constant, for an ideal gas.

- 6. Consider a system consisting of two energy levels. The system is in thermal equilibrium at temperature 500K. The energy difference of the two levels is 0.2 ev.
 - a) What is the probability that the system is in the higher energy level?
 - b) What is the temperature at which the above probability equals 0.25?
- 7. For a two-dimensional free electron gas, show that the number density is given by

$$n = \frac{4\pi mkT}{h^2} ln \left(e^{\frac{E_F}{kT}} + 1 \right)$$

Group - C

Answer any one from the following:

- 8. a) State how the enumeration of the number of microstates leads to Gibbs paradox. How can it be resolved?
 - b) Derive the Richardson-Dushman equation for current density of thermionic emission from metal.
 3+2+5
- 9. a) A classical anharmonic oscillator has potential energy $V(x) = ax^2 bx^3$, where a and b are positive constants. Determine the average energy of the oscillator at a temperature T. How does it differ from the result obtained from equipartition of energy theorem?

Show that the effective number of particles in a single particle state or the single particle occupation number for Fermions at TK with an energy within $\pm KT$ of the Fermi energy has an approximate range of 0.46 where K is the Boltzmann constant.

Physical constants:

 $h = 6.626 \times 10^{-34} JS$ (Plancle's constant)

 $k = 1.38 \times 10^{-23} \ m^2 kg \, s^{-2} k^{-1}$ (Boltzmann constant)