Please use this identifier to cite or link to this item: http://localhost:80/xmlui/handle/123456789/1156
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJana, Biswanath-
dc.contributor.authorMondal, Sukumar-
dc.contributor.authorPal, Madhumangal-
dc.date.accessioned2022-12-19T07:16:04Z-
dc.date.available2022-12-19T07:16:04Z-
dc.date.issued2017-
dc.identifier.issn1752-5055-
dc.identifier.issn1752-5063-
dc.identifier.urihttp://111.93.204.14:8080/xmlui/handle/123456789/1156-
dc.description.abstractLet TIG be the tree corresponding to the weighted interval graph G = (V, E). In an inverse 1-centre location problem the parameter of an interval tree TIG corresponding to the weighted interval graph G = (V, E), like vertex weights have to be modified at minimum total cost such that a pre-specified vertex s ∈ V becomes the 1-centre of the interval graph G. In this paper, we present an O(n) time algorithm to find an inverse 1-centre location problem on the weighted tree TIG corresponding to the weighted interval graph, where the vertex weights can be changed within certain bounds and n is the number of vertices of the graph G.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Computing Science and Mathematicsen_US
dc.subjectTree-networksen_US
dc.subjectCentre locationen_US
dc.subject1-centre locationen_US
dc.subjectInverse 1-centre locationen_US
dc.subjectInverse optimisationen_US
dc.subjectInterval graphsen_US
dc.titleComputation of inverse 1-centre location problem on the weighted interval graphsen_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
Inv-1-Int.pdf224.41 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.